SOLUCIONES: ; I g = I 3 I 2. siendo: Z 11 = R 1 + R 2 + R 3 + L 1 D + L 2 D + L 3 D 2M 23 D + 1/(C 1 D)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCIONES: ; I g = I 3 I 2. siendo: Z 11 = R 1 + R 2 + R 3 + L 1 D + L 2 D + L 3 D 2M 23 D + 1/(C 1 D)"

Transcripción

1 Plantear todas las ecuaciones necesarias para resolver el siguiente circuito. Los acoplamientos magnéticos son M 14, M 23, M 24 y M 34. Dar el resultado en forma matricial (vector de fuerzas electromotrices e impedancias ij ). Nota: todos los generadores son variables con el tiempo, pero no necesariamente senoidales. SOLUCONES: siendo: E g1 + E E g3 E + V E g 4 Vg g = ; g = = R 1 + R 2 + R 3 + L 1 D + L 2 D + L 3 D 2M 23 D + 1/(C 1 D) 12 = -R 2 L 2 D + M 24 D + M 23 D M 34 D M 14 D = = -R 3 L 3 D + M 14 D + M 23 D M 24 D + M 34 D = = R 2 + R 4 + R 5 + L 2 D + L 4 D + 1/(C 2 D) 2M 24 D 23 = -R 4 L 4 D + M 24 D + M 34 D M 23 D = = R 3 + R 4 + R 6 + L 3 D + L 4 D 2M 34 D

2 SUGERENCAS: Tenemos dos formas usuales de resolver este tipo de circuitos (siempre por mallas, ya que nudos es prácticamente imposible y el método completo de variables de rama no se ha visto con todo detalle), aplicando expresamente la segunda ley de Kirchhoff (recomendado) o aplicando directamente el método matricial, con las indicaciones específicas que hay que seguir para el caso de que el circuito contenga acoplamientos magnéticos. El método recomendado es el primero, ya que solamente se tiene necesidad de saber aplicar la 2ª ley de Kirchhoff (que se supone de sobra conocida), mientras que para el método matricial se necesita memorizar una serie de reglas que, casi con toda seguridad, se olvidarán cuando dejen de usarse de forma continuada, además de que, según nuestra experiencia, se corren más riesgos (si los acoplamientos tienen una cierta complejidad) de olvidar algún término en el proceso. Para el primer método, a fin de no olvidar ningún término, se ruega encarecidamente, que, antes de empezar, se pinten todas las caídas que cada acoplamiento produce en el resto de bobinas. Una vez indicados todos, ya es relativamente fácil el plantear la 2ª ley de Kirchhoff para todas las mallas existentes en el circuito. Para el segundo método, suponemos conocido el procedimiento cuando las mallas no tienen acoplamientos magnéticos, con lo que solamente recordaremos las modificaciones a tener en cuenta, debido a la existencia de éstos: Regla 1.- Para cada impedancia propia de malla, se añadirá un término ±2M jk D por cada pareja de bobinas acopladas que se encuentren en la misma malla. El signo será positivo si la corriente de malla entra en ambas bobinas por terminales correspondientes, y negativo en caso contrario. Regla 2.- Para las impedancia mutuas, se añadirán términos de la forma ±M ij D por cada acoplamiento mutuo que se tenga entre bobina de la malla i y bobina de la malla j. El signo será positivo si la corriente de malla de cada una, entra por terminales correspondientes para cada bobina, y negativo en caso contrario. En ambos casos, como es de uso general, cuando se utilizan mallas, no se deben tener generadores de corriente, y si se dispone de ellos (y no se puede o no se desea su transformación a generador de tensión), hay que suponerles una caída de tensión de polaridad arbitraria, que introducirá una nueva incógnita en el sistema. Afortunadamente, también se añade otra ecuación más, la dada por el hecho de que por la rama en que se encuentra el generador de corriente, la intensidad es conocida.

3 RESOLUCÓN: En primer lugar, es muy importante no olvidar que el generador de corriente también tiene una caída de tensión en sus bornes (V g ) con una polaridad asignada arbitrariamente (posteriormente se obtendrá el signo correcto), por lo que lo vamos a considerar como si de un generador de tensión se tratase (a efectos del planteamiento de mallas). A continuación, vamos a resolver el problema planteando en cada malla el segundo lema de Kirchhoff, para lo cual, previamente vamos a dibujar las caídas de tensión que cada bobina provoca sobre las demás (en cada caso, elegiremos arbitrariamente el sentido de la corriente inductora 1 2 o viceversa). En cualquier caso, el resultado final deberá ser el mismo. Esas caídas son las indicadas a continuación, con los sentidos indicados en el siguiente circuito: V 1 = M 14 D 1 V 2 = M 14 D( 3 2 ) V 3 = M 23 D( 1 2 ) V 4 = M 23 D( 1 3 ) V 5 = M 24 D( 1 2 ) V 6 = M 24 D( 3 2 ) V 7 = M 34 D( 3 2 ) V 8 = M 34 D( 1 3 ) Vamos ahora a plantear las ecuaciones de cada malla:

4 Malla 1: E g1 + E g2 = (1/C 1 D) 1 + R L 2 D( 1 2 )+ R 2 ( 1 2 ) + R 3 ( 1 3 ) + L 1 D 1 + Malla 2: + L 3 D( 1 3 ) + V 2 V 4 V 6 + V 7 V 3 E g3 E g2 + V g = R /(C 2 D) 2 + R 4 ( 2 3 ) + R 2 ( 2 1 ) + L 4 D( 2 3 ) + Malla 3: + L 2 D( 2 1 ) + V 4 + V 6 + V 5 V 8 V 1 E g4 - V g = R R 3 ( 3 1 ) + L 3 D( 3 1 ) + R 4 ( 3 2 ) + L 4 D( 3 2 ) + + V 1 + V 3 V 7 + V 8 V 5 Adicionalmente necesitamos (tenemos tres ecuaciones y cuatro incógnitas) otra ecuación más, que saldrá de la definición del generador de intensidad: g = 3 2 Si sustituimos los valores de V n y separamos los factores correspondientes a cada corriente, se obtiene la solución matricial que obtenemos a continuación de forma directa. Para terminar, vamos a plantear el problema por la forma matricial, considerando esta última ecuación del generador y el sistema matricial obtenido a continuación. Recuérdese que en la diagonal principal solamente aparecerán términos de la forma ±2 M kl D si se tienen dos acoplamientos mutuos sobre la misma malla, siendo el signo + solamente si por ambas inductancias la corriente de la malla entra por terminales correspondientes, mientras que en el resto, aparecerán un término de la forma ±M kl D por cada acoplamiento entre las inducciones k y l de mallas distintas, con signo positivo si y solo si, el sentido de la corriente de la malla de la primera inducción y el de la otra malla, son concurrentes con los terminales correspondientes de las bobinas k y l. siendo E g1 + E E g3 E + V E g 4 Vg g = = R 1 + R 2 + R 3 + L 1 D + L 2 D + L 3 D 2M 23 D + 1/(C 1 D) 12 = -R 2 L 2 D + M 24 D + M 23 D M 34 D M 14 D = = -R 3 L 3 D + M 14 D + M 23 D M 24 D + M 34 D = 31

5 22 = R 2 + R 4 + R 5 + L 2 D + L 4 D + 1/(C 2 D) 2M 24 D 23 = -R 4 L 4 D + M 24 D + M 34 D M 23 D = = R 3 + R 4 + R 6 + L 3 D + L 4 D 2M 34 D Puede comprobarse que ambos resultados coinciden.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 7: REGLAS DE KIRCHHOFF Comprobar experimentalmente que en un

Más detalles

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones

Más detalles

Electrotecnia. Tema 7. Problemas. R-R -N oro

Electrotecnia. Tema 7. Problemas. R-R -N oro R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua Análisis de circuitos en corriente continua. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas

Más detalles

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS

MÉTODOS DE RESOLUCIÓN DE CIRCUITOS MÉTODOS DE RESOLUCIÓN DE CIRCUITOS Un circuito eléctrico está formado por elementos activos (generadores) y pasivos (resistencias, condensadores, y bobinas). En muchas ocasiones estos elementos forman

Más detalles

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ 3.10 EQUIVALENTE THEVENIN CON FUENTESDEPENDIENTES Y RESISTENCIAS Ejercicio 59. Equivalente Thévenin con fuentes dependientes y resistencias. Determine el equivalente Thévenin visto

Más detalles

Fuerzas ejercidas por campos magnéticos

Fuerzas ejercidas por campos magnéticos Fuerzas ejercidas por campos magnéticos Ejemplo resuelto nº 1 Se introduce un electrón en un campo magnético de inducción magnética 25 T a una velocidad de 5. 10 5 m. s -1 perpendicular al campo magnético.

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

CORRIENTE ELECTRICA. Presentación extraída de Slideshare.

CORRIENTE ELECTRICA. Presentación extraída de Slideshare. FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia

Más detalles

Tema 1. Conceptos básicos

Tema 1. Conceptos básicos Tema 1. Conceptos básicos 1. Introducción... 1 2. Conceptos básicos... 2 2.1. Circuito eléctrico... 2 2.2. Teoría de Circuitos... 2 3. Magnitudes de un circuito: Tensión e intensidad... 3 3.1. Carga y

Más detalles

5.- Construcción de la Matriz Admitancia de Barra del Sistema

5.- Construcción de la Matriz Admitancia de Barra del Sistema MATRIZ ADMITANCIA DE BARRA 5.- Construcción de la Matri Admitancia de Barra del Sistema Encontradas las matrices de admitancia de barra elementales, estas se pueden combinar para formar la matri Admitancia

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ 3.7 EQUIVALENTE THEVENIN Y NORTON Ejercicio 52. Equivalente Thévenin y Norton. a) Determine el equivalente Thévenin visto desde los terminales a y b. Circuito 162. Equivalente Thévenin

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS - PROBLEMAS EN CORRIENTE CONTINUA 1. Calcular la intensidad que circula por la siguiente rama si en todos los casos se tiene V AB = 24 V 2. Calcular la diferencia de potencial entre los puntos A y B de los

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ Forma general Circuito 109. Forma general transformación de fuentes. 3.3TRANSFORMACIÓN DE FUENTES Ejercicio 47. Transformación de fuentes. A partir del circuito y aplicando el método

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS II

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS II SÍLABO ASIGNATURA: ANÁLISIS DE CIRCUITOS ELÉCTRICOS II CÓDIGO: 8F0010 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO : Ingeniería Electronica e Informática 1.2. ESCUELA PROFESIONAL : Ingeniería Mecatrónica.

Más detalles

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos. APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

CIRCUITO COMBINADO SERIE y PARALELO. Caso I

CIRCUITO COMBINADO SERIE y PARALELO. Caso I CIRCUITO COMBINADO SERIE y PARALELO Caso I Figura 1 Figura 2 Figura 3 Tabla de datos: 1 30 2 10 3 20 23 123 60 Esquema El circuito está compuesto por dos resistencias en serie que a su vez está conectado

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ ANÁLISIS DE CIRCUITO POR CORRIENTES DE MALLA Ejercicio 27. Análisis de circuitos por corrientes de malla. Determinar a través de análisis de mallas las corrientes que circulan en el

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden

Más detalles

1.2 Elementos Básicos

1.2 Elementos Básicos 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos. 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos: Thevenin y Norton. 1.6 Fuentes reales dependientes.

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Figura 3.1. Grafo orientado.

Figura 3.1. Grafo orientado. Leyes de Kirchhoff 46. ECUACIONES DE INTERCONEXION. Leyes de Kirchhoff..1. Definiciones. Una red está formada por la interconexión de componentes en sus terminales; y deben cumplirse simultáneamente las

Más detalles

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B Ejercicio resuelto Nº 1 Dado el circuito de la figura adjunta: ε = 15 V A r i = 0,5 Ω B R 2 R 1 A C B R 3 R 4 R 1 = 2 Ω ; R 2 = 1 Ω ; R 3 = 2 Ω ; R 4 = 3 Ω Determinar: a) Intensidad de corriente que circula

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

W 1 Z 2 W 2 FIGURA 9.1

W 1 Z 2 W 2 FIGURA 9.1 OBJETIVOS: 1.- Medir la potencia a una carga trifásica balanceada utilizando el método de los dos wáttmetros. 2.- Determinar las potencias activa y reactiva, así como el factor de potencia de un sistema

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

EMILIO SÁEZ-Q. LÓPEZ DEPARTAMENTO DE TECNOLOGÍA IES ISLA VERDE. Sean cuatro resistencias como las de la figura conectadas a una pila de 12 voltios.

EMILIO SÁEZ-Q. LÓPEZ DEPARTAMENTO DE TECNOLOGÍA IES ISLA VERDE. Sean cuatro resistencias como las de la figura conectadas a una pila de 12 voltios. CRCUTO MXTO Veamos este procedimiento de cálculo con un ejemplo numérico: Sean cuatro resistencias como las de la figura conectadas a una pila de 12 voltios. =3 Ω R 4 =2,5 Ω R 2 =4 Ω =2 Ω Para realizar

Más detalles

Corriente Directa. La batería se define como fuente de fem

Corriente Directa. La batería se define como fuente de fem Capítulo 28 Circuitos de Corriente Directa Corriente Directa Cuando la corriente en un circuito tiene una magnitud y una dirección ambas constantes, la corriente se llama corriente directa Como la diferencia

Más detalles

Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas

Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 1: Corriente Continua. 1.- Naturaleza de la electricidad El átomo es la parte más pequeña que puede existir de un cuerpo simple o elemento. Está constituido por un núcleo y una corteza.

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

UNIVERSIDAD TECNOLOGICA DE PEREIRA PROGRAMA DE TECNOLOGIA ELECTRICA

UNIVERSIDAD TECNOLOGICA DE PEREIRA PROGRAMA DE TECNOLOGIA ELECTRICA UNERSDAD TECNOLOGCA DE PERERA PROGRAMA DE TECNOLOGA ELECTRCA Curso Básico de Análisis de Sistemas Eléctricos de Potencia Antonio Escobar Zuluaga Pereira - Risaralda - Colombia 0 Matriz admitancia Y BUS

Más detalles

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones.

CORRIENTE CONTINUA. Es una propiedad de la materia. Puede ser positiva o negativa según el cuerpo tenga defecto o exceso de electrones. CORRENTE CONTNU CONTENDOS. 1.- Carga eléctrica. Conservación. 2.- Corriente continua. Diferencia de potencial. ntensidad. 3.- Ley de Ohm. 4.- Fuerza electromotriz suministrada por un generador. 5.- Fuerza

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 6: Inducción magnética PUNTOS OBJETO DE ESTUDIO 3

Más detalles

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema

Más detalles

Práctica 6. Circuitos de Corriente Continua

Práctica 6. Circuitos de Corriente Continua Práctica 6. Circuitos de Corriente Continua OBJETIOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las

Más detalles

Regla de Cramer. Semana 2 2. Empecemos! Qué sabes de...? la regla de Cramer,

Regla de Cramer. Semana 2 2. Empecemos! Qué sabes de...? la regla de Cramer, Semana 2 2 Empecemos! Como recodarás en el 7mo semestre estudiamos los sistemas de ecuaciones lineales (SEL) con tres incógnitas, los cuales se resolvieron empleando los métodos analíticos: sustitución,

Más detalles

Bolilla 9: Corriente Eléctrica

Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Bolilla 9: Corriente Eléctrica Corriente eléctrica es el flujo de cargas a lo largo de un conductor. Las cargas se mueven debido a una diferencia de potencial aplicada a

Más detalles

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE 6.5.3.- RESOLCÓN DE CRCTOS CON MPEDNCS EN SERE Supongamos un circuito con tres elementos pasivos en serie, al cual le aplicamos una intensidad alterna senoidal, vamos a calcular la tensión en los bornes

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR)

Laboratorio de Electricidad PRACTICA - 4 PROPIEDADES DE LOS CIRCUITOS SERIE-PARALELO LEYES DE KIRCHHOFF (PARA UN GENERADOR) PRACTICA - 4 PROPIDADS D LOS CIRCUITOS SRI-PARALLO LYS D KIRCHHOFF (PARA UN GNRADOR) I - Finalidades 1.- Comprobar experimentalmente que la resistencia total R T de una combinación de resistencias en conexión

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA Área : Tecnología Asignatura : Tecnología e Informática Grado : 7 Nombre del docente: Jorge Enrique Giraldo Valencia 1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA La ley de Ohm expresa la relación que

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA

Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las

Más detalles

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

Denotamos a los elementos de la matriz A, de orden m x n, por su localización en la matriz de la

Denotamos a los elementos de la matriz A, de orden m x n, por su localización en la matriz de la MATRICES Una matri es un arreglo rectangular de números. Los números están ordenados en filas y columnas. Nombramos a las matrices para distinguirlas con una letra del alfabeto en mayúscula. Veamos un

Más detalles

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.

Más detalles

Tema 2. Métodos de Análisis de Circuitos

Tema 2. Métodos de Análisis de Circuitos Tema. Métodos de Análisis de Circuitos. Introducción. Análisis de nudos. Análisis de mallas.4 Comparación entre el análisis de nudos y el de mallas A Ω i Ω A i R? i i 0 6 Ω Ω Análisis de Circuitos (G-86).

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ ANÁLISIS DE MALLAS CON FUENTES INDEPENDIENTES DE TENSIÓN Y CORRIENTE. Ejercicio 30. Análisis de mallas con fuentes independientes de tensión y corriente. a) Determinar a través de

Más detalles

Electrónica: Electrotecnia y medidas. UNIDAD 1. Leyes de Kirchhoff

Electrónica: Electrotecnia y medidas. UNIDAD 1. Leyes de Kirchhoff Electrónica: Electrotecnia y medidas. UNIDAD 1 Leyes de Kirchhoff Tabla de Contenido Presentación. Divisores de voltaje y corriente. Primera Ley de Kirchhoff. o Pasos para la utilización de la primera

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad

Más detalles

Corriente continua (Repaso)

Corriente continua (Repaso) Fundamentos de Tecnología Eléctrica (º ITIM) Tema 0 Corriente continua (epaso) Damián Laloux, 004 Índice Magnitudes esenciales Tensión, corriente, energía y potencia Leyes fundamentales Ley de Ohm, ley

Más detalles

Problemas Tema 3. Introducción al análisis de circuitos eléctricos

Problemas Tema 3. Introducción al análisis de circuitos eléctricos Problemas Tema 3. Introducción al análisis de circuitos eléctricos PROBLEMA 1. Calcule la potencia total generada en el circuito siguiente [Prob. 2.3 del Nilsson]: PROBLEMA 2. Calcule la potencia total

Más detalles

Ejercicio 2.1. Calcular el valor de tensión del generador VX

Ejercicio 2.1. Calcular el valor de tensión del generador VX Ejercicio 2.1. Calcular el valor de tensión del generador y los valores de tensión sobre cada una de las resistencias. Solución: 13.88[ ] 720.63 640 2.18 1.98 10.34 9 [ ] [ ] 8 9 1 m 2 4 7 m 3 5 6 Ejercicio

Más detalles

Tema IV: Régimen sinusoidal permanente

Tema IV: Régimen sinusoidal permanente 33 Tema IV: Régimen sinusoidal permanente 1 Consideraciones generales El análisis del comportamiento de un circuito sometido a una excitación en la que hay una o varias componentes del tipo sinusoidal

Más detalles

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA.

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. ESTUIO E LOS EJEMPLOS RESUELTOS.1,.2 Y.8 EL LIRO E FUNMENTOS FÍSIOS E L INFORMÁTI. Resolver un circuito implica conocer las intensidades que circula por cada una de sus ramas lo que permite conocer la

Más detalles

Potencia Eléctrica en C.A.

Potencia Eléctrica en C.A. Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Objetivo de la actividad

Objetivo de la actividad Tema 7. Métodos de análisis de mallas Objetivo de la actividad Al finalizar la actividad serás capaz de: Aplicar el método de mallas al análisis de circuitos. 1 Temas Introducción alanálisis de Mallas

Más detalles

TEMA 5 RESOLUCIÓN DE CIRCUITOS

TEMA 5 RESOLUCIÓN DE CIRCUITOS TEMA 5 RESOLUCIÓN DE CIRCUITOS RESOLUCIÓN DE CIRCUITOS POR KIRCHHOFF Para poder resolver circuitos por Kirchhoff debemos determinar primeros los conceptos de malla, rama y nudo. Concepto de malla: Se llama

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: CONOCIMIENTOS PREVIOS. Inecuaciones.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución de ecuaciones

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

I.E.S. CUADERNO Nº 5 NOMBRE: FECHA: / / Inecuaciones. Resolver inecuaciones de primer y segundo grado con una incógnita.

I.E.S. CUADERNO Nº 5 NOMBRE: FECHA: / / Inecuaciones. Resolver inecuaciones de primer y segundo grado con una incógnita. Inecuaciones Contenidos 1. Inecuaciones de primer grado con una incógnita Definiciones Inecuaciones equivalentes Resolución Sistemas de inecuaciones 2. Inecuaciones de segundo grado con una incógnita Resolución

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

CORRIENTE CONTINUA (I) CONCEPTOS BÁSICOS. IES La Magdalena. Avilés. Asturias. l R = ρ. Símil de la corriente eléctrica

CORRIENTE CONTINUA (I) CONCEPTOS BÁSICOS. IES La Magdalena. Avilés. Asturias. l R = ρ. Símil de la corriente eléctrica OENTE ONTNU () ONEPTOS ÁSOS ES La Magdalena. vilés. sturias enominamos corriente eléctrica a un flujo de cargas eléctricas entre dos puntos conectados físicamente mediante una sustancia conductora. Para

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

Capítulo 1 Matriz Admitancia de Barra

Capítulo 1 Matriz Admitancia de Barra ELC-05 Sistemas de Potencia Capítulo Matriz Admitancia de Barra Prof. Francisco M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm SSTEMAS DE POTENCA Copright 007 . La inección

Más detalles

TEOREMA DE THEVENIN. 1 P ágina SOLEC MEXICO

TEOREMA DE THEVENIN. 1 P ágina SOLEC MEXICO 1 P ágina SOLEC MEXICO TEOREMA DE THEVENIN Un circuito lineal con resistencias que contenga una o más fuentes de voltaje o corriente puede reemplazarse por una fuente única de voltaje y una resistencia

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA

GUÍA DOCENTE DE LA ASIGNATURA Grado en Ingeniería de Tecnologías de Telecomunicación GUÍA DOCENTE DE LA ASIGNATURA G286 - Análisis de Circuitos Curso Académico 2012-2013 1 1. DATOS IDENTIFICATIVOS DE LA ASIGNATURA Título/s Centro Módulo

Más detalles

Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales)

Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales) Análisis de redes eléctricas de baterías y resistencias (una aplicación de sistemas de ecuaciones lineales) Objetivos. Conocer una aplicación de sistemas de ecuaciones lineales al análisis de redes eléctricas

Más detalles

CIRCUITOS CON CORRIENTE VARIABLE

CIRCUITOS CON CORRIENTE VARIABLE 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchho. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchho.

Más detalles

CIRCUITO RL EN CORRIENTE CONTINUA

CIRCUITO RL EN CORRIENTE CONTINUA Autoinducción CIRCUITO RL EN CORRIENTE CONTINUA En un circuito existe una corriente que produce un campo magnético ligado al propio circuito y que varía cuando lo hace la intensidad. Por tanto, cualquier

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

MÉTODOS DE ANÁLISIS DE CIRCUITOS. Mg. Amancio R. Rojas Flores

MÉTODOS DE ANÁLISIS DE CIRCUITOS. Mg. Amancio R. Rojas Flores MÉTODOS DE ANÁLISIS DE CIRCUITOS Mg. Amancio R. Rojas Flores INTRODUCCION En base a la comprensión de las leyes fundamentales de la teoría de circuitos, se aplicara al desarrollo de dos eficaces técnicas

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles