Universidad Austral de Chile

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Austral de Chile"

Transcripción

1 Universidad Austral de Chile Facultad de Ciencias de la Ingeniería Escuela de Ingeniería Civil en Obras Civiles ANALISIS TEORICO DE LASEPARACION MAXIMA ENTRE PILAS DE SOCALZADO CONSIDERANDO ELEFECTO ARCO EN SUELOS GRANULARES Tesis presentada como parte de los requisitos para optar al Título de: Ingeniero Civil en Obras Civiles. Profesor Patrocinante: Sr. Luis Collarte Concha Ingeniero Civil. M.Sc. Ingeniería Civil. Especialidad Hidráulica Mecánica de Suelos MARCELO LEONEL ROCHA PALAVECINOS VALDIVIA CHILE 2011

2 Contenido RESUMEN... I SUMARY... II I. INTRODUCCIÓN... 1 I.1 DESCRIPCION DEL PROBLEMA... 1 I.2 OBJETIVOS... 2 I.2.1 Objetivos Generales:... 2 I.2.2 Objetivos Específicos:... 2 I.3 METODOLOGIA... 3 II. ESTADO DEL ARTE... 4 III. MARCO TEORICO... 8 IV. COMPORTAMIENTO DEL SUELO IV.1 ANÁLISIS DEL EFECTO ARCO IV.2 MODELO DE FALLA V. SEPARACIÓN MÁXIMA DE PILAS DE SOCALZADO V.1 ANALISIS TOTAL DE LA ESTABILIDAD DE LA CUÑA DE FALLA V.2 ANALISIS POR DOVELAS DE LA ESTABILIDAD DE LA CUÑA DE FALLA V.3 LIMITANTES POR TENSIONES DEL EFECTO ARCO V.4 SECUENCIA DE CÁLCULO VI. CONSIDERACIONES SISMICAS VII. CONCLUSIONES VIII. BIBLIOGRAFIA ANEXO A. EJEMPLO DE CALCULO....A1

3 Índice de Figuras Figura 1: Modelo conceptual para el análisis del mecanismo de grupos de pilas de estabilización. (Chen, 2002)... 5 Figura 2: Grilla usada para el análisis plano de tensiones. (Chen, 2002)... 5 Figura 3: Desarrollo de la falla plástica en suelos granulares. (Chen, 2002)... 6 Figura 4: Rotación de la dirección principal de tensiones bajo condición no drenada. (Chen, 2002)... 6 Figura 5: Esquema del efecto arco entre pilotes (Cheng y Martins, 2002)... 8 Figura 6: Falla en arenas cohesivas precedidas por efecto arco. (a) Causado por el movimiento descendente de una sección larga y estrecha de una capa de arena, (b) detalle ampliado de la figura (a), (c) el fallo a cortante en la arena debido a la perdida de soporte lateral por la inclinación en su borde superior (Terzaghi, 1943) Figura 7: (a) Diagrama que ilustra los supuestos en que el cálculo de la presión en la arena entre dos superficies verticales de deslizamiento se basa, (c y d) las representaciones de los resultados de los cálculos (Terzaghi, 1943) Figura 8: Zonas Activas y en Reposo (Elaboración propia) Figura 9: Diagrama de hipótesis de cálculo (Elaboración propia) Figura 10: Esquema cuña de falla. (a) vista superior de la falla considerando el efecto arco. (b) vista lateral de la cuña de falla (Elaboración Propia) Figura 11: Diagrama de fuerzas actuantes sobre la cuña de falla (Elaboración propia) Figura 12: Detalle fuerzas actuantes en dovelas. (a) planta de cuña de falla y los parámetros que la definen. (b) elevación cuña de falla. (c) detalle 1 indicado en (a). (d) detalle 2 indicado en (b). (Elaboración Propia) Figura 13: Interacción entre tensiones de arcos contiguos (Elaboración Propia)

4 RESUMEN El presente trabajo tiene por finalidad presentar una relación entre las propiedades del suelo y la separación máxima entre pilas de socalzado, realizando un análisis teórico de tensiones del suelo entre las pilas considerando el efecto arco. El análisis estará basado en las teorías expuestas por Terzaghi (1943), la cual trataba el efecto arco en arenas cohesivas, las que perdían estabilidad vertical debido al desplazamiento de una sección bajo el estrato de arena. Una vez realizado el análisis tensional considerando el efecto arco, se obtendrá una relación teórica para determinar la separación máxima de las pilas de socalzado, para la cual el suelo permanecerá estable, proponiendo modelos de falla y haciendo recomendaciones de diseño. I

5 SUMMARY This paper aims to present a relationship between soil properties and the maximum separation between piles of pilewall, making a theoretical analysis of soil tensions between stacks considering the effect of arc. The analysis will be based on the theories discussed by Terzaghi (1943), which was the arc effect of cohesive sand, which lost stability due to vertical displacement of a section under the layer of sand. Once in stress analysis considering the effect arc will produce a theoretical relationship to determine the maximum separation of piles, for which the soil will remain stable, proposing models of failure and making design recommendations. II

6 I. INTRODUCCIÓN I.1 DESCRIPCION DEL PROBLEMA Las pilas de socalzado son ampliamente utilizadas en la actualidad, ya que, con el requerimiento de espacios se hace necesaria la ejecución de cada vez más subterráneos en las edificaciones. Además estas edificaciones se emplazan cerca de estructuras contiguas y esto implica que las excavaciones pudieran afectar las estructuras vecinas, debido a esto y al riesgo que implica mantener cortes verticales en obras en ejecución, se hace necesario implementar métodos que aseguren la estabilidad de los cortes, sin entorpecer los trabajos en la obra. Las pilas de socalzado corresponden a estructuras de contención de cortes verticales de suelo, generalmente realizados para la ejecución de excavaciones, sirviendo de soporte para el suelo y/o las fundaciones de edificios contiguos a la excavación. El estado del arte del efecto arco será revisado en el punto II. Estas estructuras contienen el terreno mediante el efecto arco, el cual se produce entre pilas, logrando así estabilizar el corte sin la necesidad de ejecutar un muro continuo o tablestacado. Actualmente la separación entre las pilas se proyecta basada en experiencias anteriores, en suelos con características similares a las del proyecto a realizar. Esto genera diferencias de criterio según el ingeniero que realice el diseño. En este trabajo de tesis, a partir de un modelo se pretende determinar la separación máxima entre pilas de socalzado considerando el efecto arco en suelos granulares. 1

7 I.2 OBJETIVOS I.2.1 Objetivos Generales: - Realizar un análisis teórico de las tensiones en suelos granulares contenidos con estructuras de socalzado considerando el efecto arco. I.2.2 Objetivos Específicos: - Estudiar y analizar la teoría de efecto arco. - Proponer un modelo de falla para el suelo entre las pilas. - Elaborar una relación que permita determinar la separación máxima de las pilas de socalzado. 2

8 I.3 METODOLOGIA Para lograr los objetivos indicados anteriormente es necesario realizar la siguiente secuencia de trabajos. - Investigación bibliográfica, con la cual se realizara el marco teórico. - Realizar un análisis de los parámetros del suelo y las fuerzas involucradas en el efecto arco. - Elaborar un modelo de falla del suelo sostenido por pilas de socalzado considerando el efecto arco. - Establecer una relación teórica entre la separación entre pilas de socalzado y los empujes de tierra, considerando el modelo de falla propuesto. 3

9 II. ESTADO DEL ARTE Desde tiempos antiguos el hombre ha conocido las propiedades del arco para distribuir las tensiones, en distintas aplicaciones de la ingeniería, utilizándola en sus construcciones. Además se dio cuenta de que estas propiedades también se aplicaban a los suelos y que la distribución de tenciones de los arcos aparecía naturalmente en los túneles, ya sean estos para minería, tuberías o de transito de medios de transporte. Las primeras investigaciones referidas al efecto arco fueron realizadas en el siglo XIX, las que estudiaban las cargas producidas en los silos, ya que las paredes de los silos estaban recibiendo mas cargas de las esperadas. Estos estudios dieron paso otros en donde se realizaba este análisis para distintos materiales. Ya a comienzos de siglo XX, fue reconocida la importancia del efecto arco en túneles, lo que permitió que se realizaran variadas investigaciones al respecto, en donde se destacan las investigaciones y los análisis teóricos elaborados por Terzaghi. El experimento desarrollado por Terzaghi para el estudio del efecto arco, consistió en una caja de arena con una puerta trampa en el fondo, a la cual se le abría la puerta trampa para dejar una abertura en el fondo, de esta manera se podía estudiar las tensiones y deformaciones producidas por la masa que tiende a desplazarse. Los resultados de estos análisis se indican en mayor detalle en el capítulo III. En la década de 1950 se contempla el análisis del efecto arco horizontalmente para el desarrollo de métodos de estabilización de taludes mediante pilas o pilotes, estos análisis sientan las bases para el desarrollo posterior de investigaciones, las cuales utilizando métodos computacionales de elementos finitos permiten con mayor detalle, ver las tensiones generadas por el efecto de arco entre los pilotes. Una de las investigaciones más interesante para analizar en este estudio es la de Chen y Martin, la cual analiza mediante elementos finitos, las tensiones y desplazamientos en taludes con pilas de estabilización. Para esto propusieron el modelo y la grilla de análisis de tensiones planos que se muestran a continuación. 4

10 Figura 1: Modelo conceptual para el análisis del mecanismo de grupos de pilas de estabilización. (Chen, 2002) Figura 2: Grilla usada para el análisis plano de tensiones. (Chen, 2002) Un análisis mediante una aproximación numérica modelo propuesto, muestra las deformaciones en el suelo, además muestra la formación de una zona de arco elástica, lo que nos permite visualizar de mejor manera la forma que adopta el el efecto arco entra las pilas de estabilización. Los resultados gráficos de este análisis se muestran en la figura 3. 5

11 Figura 3: Desarrollo de la falla plástica en suelos granulares. (Chen, 2002) Otro de los gráficos interesantes de analizar es el que muestra la rotación de la dirección principal de tensiones, la cual cual ayuda igualmente a dimensionar la estructura del arco en el suelo entre las pilas. Figura 4: Rotación de la dirección principal de tensiones bajo condición no drenada. (Chen, 2002) 6

12 De las investigación del efecto arco en pilas de estabbilización se obtuvieron algunas recomendaciones para la separación máxima entre pilotes. Se han tenido experiencias satisfactorias para separaciones de 3 diámetros, para pilotes de 0,5 a 1,0 metros de diámetro. Además se considera que un espaciamiento típico corresponde a 2,5 mts. En la actualidad en Chile los socalzados típicos en suelos granulares están compuestos por pilas de 0,6 a 1,0 mts de diámetro, con separaciones de 2 a 3 metros. 7

13 III. MARCO TEORICO El efecto arco ha sido estudiado principalmente para el desarrollo de teorías de túneles y también en estabilización de taludes mediante pilas o pilotes. A continuación se indican las bases teóricas de estos estudios, principalmente dirigidos a la estabilización de taludes, que es lo que más se asemeja al tema de este análisis. Figura 5: Esquema del efecto arco entre pilotes (Cheng y Martins, 2002) Las pilas de socalzado corresponden a un método de contención de suelos, el cual se basa en pilas que contienen el terreno mediante el efecto arco generado entre ellas, ya que este distribuye las cargas hacia las pilas, evitando que el suelo se deslice entre estas. El efecto arco en suelos fue teorizado por Terzaghi (1943) y se lo definió como la transferencia de esfuerzos de una masa que se mueve a otros elementos lateralmente contiguos que se desplazan menos o no se mueven. El arco se mantiene solamente por los esfuerzos de corte en el suelo los cuales varían con las influencias externas, modificando la intensidad del efecto arco. Las vibraciones son la influencia más importante que reduce el efecto arco. El estado tensional en la zona del arco se produce debido a la pérdida de soporte en el suelo, este tiende a desplazarse oponiéndose a la resistencia a la fricción a lo largo de las fronteras de la faja en movimiento y la que se mantiene estacionaria, produciéndose un patrón de cizalle circular en 8

14 la base debido al aumento brusco de las tensiones en esta zona, tal como se muestra en la figura 6a y a mayor escala, en la figura 6b. Una vez que la faja ha cedido lo suficiente se produce la falla por corte a lo largo de la superficie que se desplaza, generándose las deformaciones que se muestran en la figura 2ª. Figura 6: Falla en arenas cohesivas precedidas por efecto arco. (a) Causado por el movimiento descendente de una sección larga y estrecha de una capa de arena, (b) detalle ampliado de la figura (a), (c) el fallo a cortante en la arena debido a la perdida de soporte lateral por la inclinación en su borde superior (Terzaghi, 1943). Las teorías suponen que las secciones ae y bf (figura 2a) representan las superficies de deslizamiento y que la presión sobre la franja ab es igual a la diferencia entre el peso del suelo sobre esta y la resistencia total a la fricción a lo largo de las secciones verticales. La superficie de deslizamiento real ac y bd (figura 2a) se curvan, por lo tanto las secciones verticales ae y bf no pueden ser plenamente activas. La resistencia al corte del suelo está determinada por la ecuación s = c + σ tan ø 9

15 Figura 7: (a) Diagrama que ilustra los supuestos en que el cálculo de la presión en la arena entre dos superficies verticales de deslizamiento se basa, (c y d) las representaciones de los resultados de los cálculos (Terzaghi, 1943) La relación entre la presión horizontal y la presión vertical se supone que es igual a una constante empírica K en cada punto del relleno. La tensión vertical en una sección horizontal a cualquier profundidad z por debajo de la superficie es σ v y el normal correspondiente la tensión en la superficie vertical de deslizamiento es [1] 10

16 El peso del deslizamiento con un espesor dz a una profundidad z por debajo de la superficie es 2Bγ dz por unidad de longitud perpendicular al plano del dibujo. El sector que actúa sobre las fuerzas se indicas en la figura. La condición de que la suma de los elementos verticales que actúan en el segmento debe ser igual a cero se puede expresar por la ecuación o y tan ø tan ø para 0 Al resolver estas ecuaciones se obtiene ø 1 ø ø [2] Sustituyendo en esta ecuación en la sucesión de los valores c = 0 y q = 0, obtenemos c > 0 q = 0 ø 1 ø [3] c = 0 q > 0 1 ø ø ø [4] c = 0 q = 0 1 ø ø [5] Si la resistencia al corte en una cama de arena es completamente activo en la sección vertical ae y bf (fig. 6a), la presión vertical σ v por unidad de superficie de la tira de ab se determina por la ecuación 5. Sustituyendo en esta ecuación Obtenemos [6a] En donde 1 ø ø ø 1 ø [6b] 11

17 Para z = se obtiene a = 1/K tan ø y ø [7] En la Figura 7b las ordenadas de la curva marcado representan los valores de n = z / B y las abscisas los valores correspondientes de a para ø = 30 y K = 1, o K tan Ø = 0,58. Figura 6c contiene los mismos datos de ø = 40 y K = 1 o K tan Ø = 0,84. Investigaciones experimentales sobre la situación de estrés en la arena situada sobre una franja de deslizamiento han demostrado que el valor de K aumenta de cerca de la unidad inmediatamente por encima de la línea central de la tira de deslizamiento a un máximo de alrededor de 1,5 a una altura de aproximadamente 2B por encima de la línea central. En elevaciones de más de 5B sobre el eje de la reducción de la tira parece no tener efecto alguno sobre el estado de estrés en la arena. Por lo tanto estamos obligados a asumir que la resistencia al corte de la arena es activa sólo en la parte inferior de la ae y bf límites verticales del prisma de arena situada por encima de la franja de deslizamiento ab en la figura 6a. En este supuesto, la parte superior del prisma actúa una sobrecarga q en la parte inferior y la presión sobre la franja de rendimiento se determina por la ecuación 4. Si z 1 = n 1 B es la profundidad a la que no hay esfuerzos cortantes en los límites verticales del prisma abfe en la figura 2a la presión vertical por unidad de área de una sección horizontal e 1 f 1 a través del prisma a una profundidad z 1 debajo de la superficie es q = = γz 1 γn 1 B. Introduciendo este valor y el valor z = z 2 = n 2 B en la ecuación 4 se obtiene [8a] en donde 1 ø ø y ø [8b] Para n 2 = el valor de a 2 es igual a 1 tanø y el valor de b 2 igual a cero. El valor correspondiente de σ v es tan 12

18 que es igual al valor dado por la ecuación 7. En otras palabras, el valor σ v es independiente de la profundidad z 1 en la figura 6a. La relación entre n 2 y a 2 es idéntica a la relación entre n y a, representada por la ecuación 6b y por los planos de curvas en las figuras 18b y 18c. La relación entre los valores n y los valores correspondientes de está representado en las figuras 18b y 18c por las curvas punteadas b. Wang y Cheng (1974) analizaron el efecto arco en pilotes para la estabilización de deslizamientos presentando las siguientes conclusiones: La presión máxima promedio del arco es igual a la presión de reposos del suelo. El efecto arco es más notorio para valores mayores de cohesión (c) y fricción (ø). Existe un espaciamiento critico a partir del cual el efecto arco desaparece al aumentar el espaciamiento. El efecto arco se produce tanto en taludes de arenas como de arcillas. Además la magnitud de efecto arco depende, entre otros, de los siguientes factores: La rugosidad de la superficie del pilote. A mayor rugosidad es mayor el efecto arco. La dilatancia del suelo. A mayor Angulo de dilatancia, se generan mayores presiones de efecto arco. La resistencia del suelo. A mayores valores de c y ø, mayor es el efecto arco. 13

19 IV. COMPORTAMIENTO DEL SUELO El comportamiento de los suelos sostenidos por pilas de socalzado, está condicionado por la formación del efecto arco, este efecto es producido por las tensiones de corte dentro del suelo, las cuales se producen debido al desplazamiento horizontal de una faja de suelo entre las pilas de socalzado. A diferencia de lo estudiado por Terzaghi, que analizo el efecto arco para franjas de desplazamiento verticales, en el presente estudio analiza el efecto arco para franjas de deslizamiento horizontales, lo que implica que las tensiones involucradas en el proceso son generadas por los empujes del suelo y no por el peso de este. Para la realización del análisis se consideró a las pilas como rígidas y que el suelo estaba en condición drenada. IV.1 ANÁLISIS DEL EFECTO ARCO El análisis del efecto arco para franjas de deslizamiento horizontales, se efectuara mediante la sumatoria de fuerzas de una sección perpendicular al deslizamiento, considerando dos zonas de empujes laterales, una de empuje activo entre las pilas y bajo la zona del arco, y otra de empujes en reposo sobre el arco, tal como se indica en la figura 8. Figura 8: Zonas Activas y en Reposo (Elaboración propia). 14

20 De acuerdo a esto, se toma un segmento transversal de todo el ancho de la franja de deslizamiento horizontal para hacer una sumatoria de fuerzas, considerando presiones laterales en reposo para la totalidad de la franja en x = 0, y presiones laterales activas en la totalidad de la franja para el borde de la excavación. Figura 9: Diagrama de hipótesis de cálculo (Elaboración propia). Las presiones laterales en reposo y activas están definidas por: Reposo : [1] Activa : [2] Donde, Ko : Coeficiente de empuje en reposo para suelos granulares = 1-sin() Ka : Coeficiente de empuje en reposo para suelos granulares = tan 2 (45-/2) v : presión vertical de suelo = *z + q La sumatoria de las fuerzas actuantes en la dirección x, sobre el elemento dx, debe ser igual a cero y puede expresarse por la ecuación 15

21 2 2 2 tan [3] o 2 2 tan [4] Reemplazado las ecuaciones [1] y [2] en la ecuación [4] tenemos 2 2 tan [5] Integrando la ecuación [5] e incluyendo la condición de borde para x=0, K=Ko nos queda [6] De la ecuación [6] podemos concluir que la cohesión intensifica el efecto arco, pero este efecto va disminuyendo a medida que aumenta la profundidad. IV.2 MODELO DE FALLA Una vez realizado el análisis del efecto arco, debemos identificar la cuña de falla, la cual no está influenciada por el efecto arco, y por lo tanto, susceptible a desplazarse. De acuerdo a lo concluido de la ecuación [6], considerar la cohesión en el efecto arco podría suponer que una porción del arco actúa sin tensiones verticales (ver figura 10(b), línea ab), lo cual no es real, debido a esto, no se considerara el aporte de la cohesión en la determinación de la cuña de falla. Figura 10: Esquema cuña de falla. (a) vista superior de la falla considerando el efecto arco. (b) vista lateral de la cuña de falla (Elaboración Propia) 16

22 Con la corrección antes señalada anteriormente e indicada en la figura 10(b) por la línea ac, la ecuación [6] queda Despejando x 1 [7] / 1 [8] Para determinar la zona de influencia del arco, se igualara K = Ka. Con esto x representa la distancia, medida en el centro del arco, entre el borde de la excavación y el arco formado por las tensiones en el suelo, a este valor le denominaremos A o 1 [9] tan45 [10] El valor A obtenido de la ecuación [10], nos permite definir la cuña de falla, obteniendo el arco de circunferencia que determina su límite de influencia. La cuña de falla queda limitada lateralmente por el arco determinado con la ecuación [10], e inferiormente por el plano descrito por Rankine para empujes activos de tierra. 17

23 V. SEPARACIÓN MÁXIMA DE PILAS DE SOCALZADO La separación máxima entre pilas de socalzado queda determinada por la estabilidad de la cuña de falla. La estabilidad de la cuña de falla se puede calcular mediante el estudio de las fuerzas que actúan sobre esta. Se analizaran dos métodos para evaluar la estabilidad de la cuña de falla V.1 ANALISIS TOTAL DE LA ESTABILIDAD DE LA CUÑA DE FALLA La figura 11 muestra estas fuerzas y grafica la relación entre estas. Figura 11: Diagrama de fuerzas actuantes sobre la cuña de falla (Elaboración propia). Como se puede apreciar en la figura 11 las fuerzas que determinan la estabilidad de la cuña son las fuerzas horizontales, y la relacion que expresa esta condición está dada por la sumatoria de fuerzas en esa dirección. Donde sin45 cos45 [11] 18

24 Fuerza Fricción Inferior Reacción Normal : tan : cos45 Con: Peso Cuña Fuerza Fricción Lateral : : Además V: Volumen de la Cuña A L : Area Lateral Curva de la Cuña A i : Area Inferior de la Cuña As: Area Superior de la Cuña El cálculo del volumen y las áreas de la cuña se muestran a continuación: 1 2 sin sin180 2 tan 45 2 /cos Debido a la complejidad de las integrales a desarrollar para el cálculo de V y A L, se proponen las siguientes aproximaciones. tan tan

25 Con 1 6 2sin 90 cos 90 sin 90 3 cos cos90 sin 90 1 sin 90 cos V.2 ANALISIS POR DOVELAS DE LA ESTABILIDAD DE LA CUÑA DE FALLA En el análisis por dovelas se realiza considerando franjas de suelo en la cuña de falla, paralelas al corte vertical del talud, tal como se muestra en la figura 12. Figura 12: Detalle fuerzas actuantes en dovelas. (a) planta de cuña de falla y los parámetros que la definen. (b) elevación cuña de falla. (c) detalle 1 indicado en (a). (d) detalle 2 indicado en (b). (Elaboración Propia). La estabilidad de la cuña de falla está dada por la relación entre las fuerzas estabilizadoras y las desestabilizadoras, debiendo ser esta relación mayor a 1 para que la cuña se considere estable... [12] 20

26 Las fuerzas estabilizadoras se definen como: : sin : cos tan : 2 Las fuerzas desestabilizadoras de definen como: tan : sin Las variables de las ecuaciones anteriores se obtienen por la geometría de las dovelas que se muestra en la figura 12. Obteniéndose. 2 ; 0 2 sin Asin 2R 2 ; ; 0 21

27 V.3 LIMITANTES POR TENSIONES DEL EFECTO ARCO. La separación de las pilas de socalzado también depende del ancho o diámetro de las pilas, esto debido a que las tensiones generadas por arcos contiguos pueden interferir entre si dentro de sus respectivas aéreas de influencia. Con el fin de limitar estos efectos la bibliografía recomienda separaciones entre pilas menores a 6 o 4 diámetros, en nuestro caso propondremos que las tensiones que se muestran en la Figura 13, no interfieran con las tensiones generadas por arcos actuantes en la misma pila, a una distancia menor que A, medida desde el borde de la pila, quedando la siguiente relación: tan 45 [13] Figura 13: Interacción entre tensiones de arcos contiguos (Elaboración Propia). 22

28 V.4 SECUENCIA DE CÁLCULO Se propone la siguiente secuencia de cálculos para la determinación de la separación máxima de pilas de socalzado: Se propone un ancho de pila b, se calcula el valor de A según ecuación [13]. Con este valor de A se calcula el valor de B según ecuación [10] y se evalúa la estabilidad de la cuña de falla según ecuación [11]. Si la cuña es estable, el valor de la separación máxima entre pilas de socalzado d max = 2B 1 Si la cuña no resulta estable, se deberá iterar disminuyendo los valores de B, hasta conseguir un valor para el cual la cuña sea estable. 23

29 Diagrama 1: Secuencia de cálculo separación máxima entre pilas de socalzado. Definiciones: b: ancho pila. ϕ: ángulo de fricción del suelo. c: cohesión del suelo. γ: densidad del suelo. H: altura del talud. A: distancia máxima entre el borde del talud y el arco que limita la cuña de falla. B: media separación entre pilas. d: separación entre pilas. Inicio Datos: b, ϕ, c, γ, H Calculo: Valor de A de ec. 13 Valor de Bi de ec. 10 Ecuaciones: Ec. 10: tan45 Ec. 11: sin45 2 cos45 2 Ec. 13: tan 45 Verificación relación de estabilidad ec. 11 Si Calculo: dmax = 2Bi No Considerar nuevo valor Bi+1 < Bi Calculo: Valor de A de ec 10 No Verificación relación de estabilidad ec. 11 Si Calculo: dmax = 2Bi+1 Fin 24

30 VI. CONSIDERACIONES SISMICAS De acuerdo lo expuesto por Terzaghi (1943), las vibraciones reducen notablemente las tensiones de corte de las cuales depende el efecto arco. Esto hace que el análisis sísmico del efecto arco requiera antecedentes de ensayes en terreno o en laboratorio, que permitan determinar de qué manera influyen las vibraciones generadas por un sismo en el efecto arco, los cuales no se han desarrollado aun. 25

31 VII. CONCLUSIONES - La estabilidad del suelo entre las pilas está determinada por la estabilidad de la cuña de falla delimitada por el efecto arco. - El método de dovelas no es exacto como el método total de análisis, por lo cual da valores de Factor de Seguridad más conservadores. - Para el caso de suelos sin cohesión, a pesar de la formación del efecto arco, el suelo entre las pilas no se sostiene por sí solo, debiendo considerarse un sistema de contención entre pilas. - En ancho o diámetro de la pila es la principal limitante de la separación de las pilas de socalzado, para suelos con valores de cohesión altos, dando relaciones d/b de 3 a 7 dependiendo del Angulo de fricción del suelo. - Debido al debilitamiento del efecto arco con las vibraciones producidas por sismos, no se recomienda la utilización de este tipo de sistema para la contención de taludes permanentes, debiendo adoptarse soluciones alternativas o considerar estructuras de contención de taludes entre pilas, que aseguren la estabilidad en caso de sismos. - Este análisis no ha sido verificado mediante ensayos o el uso de método de elementos finitos, por lo que se hace necesario la realización de estas verificaciones en futuras investigaciones. - El método de cálculo de la separación máxima entre pilas solo es válido, considerando las condiciones de rigidez de las pilas y de suelos granulares en condición drenada. 26

32 VIII. BIBLIOGRAFIA CHEN, C.Y.; MARTIN, G.R. (2002). Soil-structure interaction for landslide stabilizing piles, Computers and geotechnics 29p HSIEN-JEN, T. (1996). A literature study of the arching effect SHELKE, A.; PATRA, N. (2008). Effect of arching on uplift capacity of pile grouping sand, Journal of Geomechanics 8p SUARES, J. (2009). Deslizamientos: Tecnicas de Remediacion. Cap 7. 30p TERZAGHI, K. (1943). Theoretical soil mechanics. Cap. V. 11p WANG, WL.; YEN, BC. (1974). Soil Arching in slope. Journal of Geotechnical Engineering Division, ASCE 100(No. GT1). 18p

33 Anexo A Anexo A. EJEMPLO DE ANALISIS En el siguiente ejemplo de análisis se reviso la estabilidad mediante los dos métodos que se indican en el punto IV, para un suelo con las características que se indican en las tablas. SEPARACION PILAS SOCALZADO (Considerando Efecto Arco en Suelos Granulares) 1. GEOMETRIA 1.1 Datos 1.2 Coeficientes separacion interior pilas : d = 3,00 (m) Coef. Empuje Reposo : Ko = 0,36 Angulo Friccion : = 40 ( ) Coef. Empuje Activo : Ka = 0,22 Peso Unitario : = 2,00 (t/m3) Coef. Empuje Pasivo : Kp = 4,60 Cohesion : c = 0,80 (t/m2) Prof. Talud Estable : Zc = 1,62 (m) Sobrecarga : q = 0,20 (t/m2) Angulo Cuña Activa (): 45+/2 = 65 ( ) Altura : H = 10,00 (m) Angulo Efecto Arco (): 45 /2 = 25 ( ) 2. EFECTO ARCO 2.1 Cuña de Falla (Arco Circular) 2.2 Sumatoria de Fuerzas Media Separacion Pilas : B = 1,50 (m) Peso Cuña : W = 27,99 (ton) Dist. Centro Arco : A = 0,70 (m) Fuerza Roce Lateral : FRL = 24,61 (ton) Radio Arco : r = 1,96 (m) Reaccion Normal : R = 1,43 (ton) Area Superior Cuña : As = 1,46 (m2) F. de Roce inferior sol. : FR,SOL = 3,07 (ton) Volumen de Cuña : V = 13,85 (m3) F. de Roce inferior resist. : FR,RESIST = 3,96 (ton) Area Inferior Cuña : Ai = 3,45 (m2) Area Lateral Cuña : AL = 30,76 (m2) 3. RESULTADOS 3.1 Verificaciones 3.2 Recomendaciones Sumatoria de fuerzas Ancho de pila minimo según separacion entre pilas FR,SOL /FR,RESIST = 1,29 > 1 OK! b = 0,65 (m) Cuña de falla se sostiene por si sola Tabla 1 : verificación de estabilidad total de la cuña de falla. A-1

34 Anexo A Datos Suelo Datos Geometria datos generales Nota: γ = 2,00 T/m3 B = 1,50 m α = 65,0 Celdas en amarillo son los c = 0,8 T/m2 H = 10,00 m D = 1,26 m ø = 40 R = 1,96 m A = 0,70 m q = 0,20 T/m2 b/a = 0,05 Dovela b ΔRACUM L h β (rad) W FE1 FE2 FE3 FD FE 1 0,03 0,02 0,52 8,54 0,13 0,32 0,02 0,11 3,55 0,29 3,68 2 0,03 0,05 0,90 8,61 0,23 0,55 0,03 0,19 2,04 0,50 2,26 3 0,03 0,09 1,16 8,69 0,30 0,71 0,04 0,25 1,57 0,64 1,86 4 0,03 0,12 1,36 8,76 0,36 0,84 0,04 0,30 1,32 0,77 1,66 5 0,03 0,16 1,54 8,84 0,40 0,96 0,05 0,34 1,16 0,87 1,55 6 0,03 0,19 1,69 8,91 0,45 1,07 0,05 0,38 1,04 0,97 1,47 7 0,03 0,23 1,83 8,99 0,49 1,16 0,06 0,41 0,95 1,06 1,42 8 0,03 0,26 1,96 9,06 0,52 1,25 0,06 0,44 0,88 1,14 1,38 9 0,03 0,30 2,07 9,14 0,56 1,34 0,06 0,48 0,82 1,21 1, ,03 0,33 2,18 9,21 0,59 1,42 0,07 0,50 0,77 1,29 1, ,03 0,37 2,28 9,29 0,62 1,50 0,07 0,53 0,72 1,36 1, ,03 0,40 2,38 9,36 0,65 1,57 0,07 0,56 0,69 1,43 1, ,03 0,44 2,47 9,44 0,68 1,65 0,08 0,58 0,65 1,49 1, ,03 0,47 2,55 9,51 0,71 1,71 0,08 0,61 0,62 1,55 1, ,03 0,51 2,63 9,59 0,74 1,78 0,08 0,63 0,59 1,61 1, ,03 0,54 2,70 9,66 0,76 1,85 0,08 0,65 0,57 1,67 1, ,03 0,58 2,78 9,74 0,79 1,91 0,09 0,68 0,54 1,73 1, ,03 0,61 2,84 9,81 0,81 1,97 0,09 0,70 0,52 1,79 1, ,03 0,65 2,91 9,89 0,84 2,03 0,09 0,72 0,50 1,84 1, ,03 0,68 2,97 9,96 0,86 2,09 0,09 0,74 0,48 1,89 1,31 Σ = 25,10 31,09 F.S. = 1,24 Tabla 2 : verificación de estabilidad por dovelas de la cuña de falla. A-2

CAPACIDAD DE CARGA EN SUELOS 1

CAPACIDAD DE CARGA EN SUELOS 1 CAPACIDAD DE CARGA EN SUELOS 1 1. INTRODUCCIÓN Para visualizar el problema de la capacidad de carga en suelos resulta útil el análisis del modelo mecánico que se presenta a continuación, debido a Khristianovich.

Más detalles

Capítulo 4. Diseño muro de contención no anclado

Capítulo 4. Diseño muro de contención no anclado Manual de Ingeniería No. 4 Actualizado: 11/2016 Capítulo 4. Diseño muro de contención no anclado Programa: Diseño de Muros Pantalla Archivo: Demo_manual_04.gp1 En este capítulo se describe el diseño de

Más detalles

Mecánica de Rocas. F.I. UNAM CRITERIOS ROTURA PARA EL MACIZO ROCOSO

Mecánica de Rocas. F.I. UNAM CRITERIOS ROTURA PARA EL MACIZO ROCOSO CRITERIOS ROTURA PARA EL MACIZO ROCOSO Existen dos formas para definir el comportamiento de una roca en rotura: mediante el estado de tensiones o mediante el de deformaciones. Normalmente se utiliza la

Más detalles

ESTABILIDAD DE TALUDES TEORÍA Y APLICACIÓN. Mg. GARY DURAN RAMIREZ

ESTABILIDAD DE TALUDES TEORÍA Y APLICACIÓN. Mg. GARY DURAN RAMIREZ ESTABILIDAD DE TALUDES TEORÍA Y APLICACIÓN Mg. GARY DURAN RAMIREZ CONTENIDO Conceptos Básicos o o o o o Factor de Seguridad (FS). Esfuerzo Efectivo. Resistencia al Corte. Parámetros de Resistencia. Trayectoria

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

F I U B A CIMENTACIONES (74.11)

F I U B A CIMENTACIONES (74.11) información general: Proyecto de Arquitectura Estudios de Suelos Empuje suelo Nivel freático Método constructivo Conocimiento de linderos Estado de los muros en elevación Existencia de subsuelos Método

Más detalles

Capitulo 3: Determinación de los movimientos inducidos por la excavación del túnel

Capitulo 3: Determinación de los movimientos inducidos por la excavación del túnel Capitulo 3: Determinación de los movimientos inducidos por la excavación del túnel 3.1 Introducción Para poder registrar y controlar los posibles movimientos, tanto en superficie como en profundidad, producidos

Más detalles

13 IMPLEMENTACIÓN DEL MÓDULO "CARGA DE HUNDIMIENTO"

13 IMPLEMENTACIÓN DEL MÓDULO CARGA DE HUNDIMIENTO 13 IMPLEMENTACIÓN DEL MÓDULO "CARGA DE HUNDIMIENTO" 13.1 OBJETIVO En este módulo de la aplicación, se pretende obtener la carga de hundimiento del terreno asociada a un pilote aislado. Es decir, la máxima

Más detalles

UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO PROGRAMA ESPECIAL DE TITULACIÓN

UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO PROGRAMA ESPECIAL DE TITULACIÓN UNIVERSIDAD AUTÓNOMA JUAN MISAEL SARACHO PROGRAMA ESPECIAL DE TITULACIÓN PROYECTO: COMPARACIÓN TÉCNICO ECONÓMICA ENTRE MUROS EN VOLADIZO Y MUROS PANTALLA DE HORMIGÓN ARMADO Postulante: Lidio Angel Yelma

Más detalles

SECCION 18. DISEÑO DE OBRAS DE TIERRA, TALUDES EN CORTE Y TERRAPLEN

SECCION 18. DISEÑO DE OBRAS DE TIERRA, TALUDES EN CORTE Y TERRAPLEN SECCION 18. DISEÑO DE OBRAS DE TIERRA, TALUDES EN CORTE Y TERRAPLEN INDICE GENERAL Pág. ART. 18.1. OBJETIVO Y DEFINICIONES... 2 ART. 18.2. TIPOS DE FALLA... 2 18.2.1. FALLA ROTACIONAL... 3 18.2.2. FALLA

Más detalles

Análisis de gavión Entrada de datos

Análisis de gavión Entrada de datos Paseo de la Emila 8 Análisis de gavión Entrada de datos Proyecto Fecha :..00 Material de bloques - relleno g j c [ ] [ ] [kpa] Material No. 7,00 Material de bloques - malla Resistencia Sobresalir R t []

Más detalles

CONSTRUCCION IV 1/73 MUROS PANTALLA

CONSTRUCCION IV 1/73 MUROS PANTALLA II CONSTRUCCION IV 1/73 II: Programa Muros con múltiples apoyos: Influencia del proceso constructivo Movilización del empuje pasivo en las bermas Análisis de la estabilidad. Criterios para la determinación

Más detalles

ESTABILIDAD DE TALUDES

ESTABILIDAD DE TALUDES GEOLOGIA Y GEOTECNIA 2010 2da edición ESTABILIDAD DE TALUDES Ing. Silvia Angelone ESTABILIDAD DE TALUDES Talud: Cualquier superficie inclinada respecto a la horizontal que haya adoptado una estructura

Más detalles

FUNDACIONES PROFUNDAS

FUNDACIONES PROFUNDAS CIMENTACIONES 74.11 GEOTECNIA APLICADA 94.09 FUNDACIONES PROFUNDAS FUNDACIONES PROFUNDAS FUNDACIONES PROFUNDAS Grupo Pilotes 2 C 2016 Lámina 2 GRUPO DE PILOTES FUNDACIONES PROFUNDAS Grupo Pilotes 2 C 2016

Más detalles

CIMENTACIONES EN LA NORMA REQUISITOS ESENCIALES PARA EDIFICIOS DE CONCRETO REFORZADO IPS-1 JORGE IGNACIO SEGURA FRANCO

CIMENTACIONES EN LA NORMA REQUISITOS ESENCIALES PARA EDIFICIOS DE CONCRETO REFORZADO IPS-1 JORGE IGNACIO SEGURA FRANCO CIMENTACIONES EN LA NORMA REQUISITOS ESENCIALES PARA EDIFICIOS DE CONCRETO REFORZADO IPS-1 JORGE IGNACIO SEGURA FRANCO Ingeniero Civil, Universidad Nacional de Colombia Profesor Emérito de la Universidad

Más detalles

CAPITULO 1 ESTUDIO DEL SUELO DE CIMENTACION

CAPITULO 1 ESTUDIO DEL SUELO DE CIMENTACION 5 CAPITULO 1 ESTUDIO DEL SUELO DE CIMENTACION Todas las obras de ingeniería tienen una acción activa sobre el suelo a través de las cargas que se aplican. Estas cargas pueden variar en su intensidad y

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

Análisis y diseño de una cimentación:

Análisis y diseño de una cimentación: 45 Análisis y diseño de una cimentación: Diseño estructural El programa de Excel CimDeCa tiene como objetivo hacer un análisis y diseño para cimentaciones superficiales. Este análisis lo realiza haciendo

Más detalles

CONDICIONES TÉCNICAS DE LOS MUROS DE CONTENCIÓN DE TIERRA ARMADA TIPO ALLAN BLOCK

CONDICIONES TÉCNICAS DE LOS MUROS DE CONTENCIÓN DE TIERRA ARMADA TIPO ALLAN BLOCK CONDICIONES TÉCNICAS DE LOS MUROS DE CONTENCIÓN DE TIERRA ARMADA TIPO ALLAN BLOCK PREFHORVISA OUTEIRO, S.L. Avda. da Ponte, 26 15143 Arteixo (A CORUÑA) Tlf. (+34) 981 600485 Fax. (+34) 981 602023 P.E.

Más detalles

SEMINARIO DISEÑO Y CONSTRUCCION DE CALZADURAS

SEMINARIO DISEÑO Y CONSTRUCCION DE CALZADURAS COLEGIO DE INGENIERIOS DEL PERU CONSEJO DEPARTAMENTAL DE LIMA CAPITULO DE INGENIERIA CIVIL SEMINARIO DISEÑO Y CONSTRUCCION DE CALZADURAS SISTEMAS DE SOPORTE LATERAL JORGE E. ALVA HURTADO, PhD Profesor

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

PRESA RALCO ALTO BIO BIO

PRESA RALCO ALTO BIO BIO PRESA RALCO ALTO BIO BIO CARACTERISTICAS PRESA RALCO EN EL RIO BIO BIO Un embalse de 3.467 hectáreas fue formado por la construcción de una presa gravitacional de hormigón compactado con rodillo (HCR).

Más detalles

Mecánica de Rocas. F.I. UNAM ESTABILIDAD DE TALUDES TIPOS DE FALLA EN TALUDES

Mecánica de Rocas. F.I. UNAM ESTABILIDAD DE TALUDES TIPOS DE FALLA EN TALUDES ESTABILIDAD DE TALUDES TIPOS DE FALLA EN TALUDES Taludes El diseño de los taludes es uno de los aspectos más importantes en Minería y en Ingeniería Civil pues están presentes en la mayoría de actividades

Más detalles

G(θ) = máx{g 1 (θ), G 2 (θ)}

G(θ) = máx{g 1 (θ), G 2 (θ)} Rec. UIT-R F.1336 Rec. UIT-R F.1336 1 RECOMENDACIÓN UIT-R F.1336* DIAGRAMAS DE RADIACIÓN DE REFERENCIA DE ANTENAS OMNIDIRECCIONALES Y OTROS TIPOS DE ANTENAS DE SISTEMAS DE PUNTO A MULTIPUNTO PARA SU UTILIZACIÓN

Más detalles

Capítulo 7. Análisis de Sensibilidad: Influencia de las Variables Mecánicas y Geométricas

Capítulo 7. Análisis de Sensibilidad: Influencia de las Variables Mecánicas y Geométricas Capítulo 7. Análisis de Sensibilidad: Influencia de las Variables Mecánicas y Geométricas La Figura 7 6 muestra que el módulo de rigidez influye en gran manera sobre la respuesta del modelo, como era de

Más detalles

Introducción a la Mecánica de los Sólidos

Introducción a la Mecánica de los Sólidos Introducción a la Mecánica de los Sólidos Clase 1 Suposiciones introducidas, Propiedades Mecánicas de los Materiales, Coeficientes de Seguridad Reología Mecánica de los Fluidos Mecánica de las Materias

Más detalles

Análisis de deformación y dimensionado de un grupo de pilotes

Análisis de deformación y dimensionado de un grupo de pilotes Manual de Ingeniería No. 18 Actualización: 06/2016 Análisis de deformación y dimensionado de un grupo de pilotes Programa: Grupo de pilotes Archivo: Demo_manual_18.gsp El objetivo de este capítulo es explicar

Más detalles

PROYECTO DE CONSTRUCCIÓN

PROYECTO DE CONSTRUCCIÓN ACOSOL, S.A. PROYECTO DE CONSTRUCCIÓN Titulo: Sustitución del Tramo de la Tubería Norte de las Conducciones Principales de Abastecimiento entre los Autoportantes de Arroyo Calahonda y Arroyo Lucera en

Más detalles

Asentamiento de cimentación de un silo circular

Asentamiento de cimentación de un silo circular Manual de Ingeniería No. 22 Actualización: 09/2016 Asentamiento de cimentación de un silo circular Programa: Archivo: MEF Demo_manual_22.gmk El objetivo de este manual es describir la solución para asentamiento

Más detalles

Relaciones esfuerzo deformación

Relaciones esfuerzo deformación Capítulo Relaciones esfuerzo deformación En esta sección se emplea la primera ley de la termodinámica para derivar la relación esfuerzo deformación..1. Relaciones constitutivas Se llama modelo constitutivo

Más detalles

Superficie de deslizamiento plana

Superficie de deslizamiento plana Manual de Ingeniería No. 29 Actualización: 03/2016 Superficie de deslizamiento plana Programa: Estabilidad de Rocas Archivo: Demo_manual_29.gsk Este manual describe cómo determinar la estabilidad de un

Más detalles

TEMA 2. Dinámica, Trabajo, Energía y Presión

TEMA 2. Dinámica, Trabajo, Energía y Presión TEMA 2. Dinámica, Trabajo, Energía y Presión 1. Objeto de la dinámica Dinámica es la parte de la mecánica que estudia el movimiento atendiendo a las causas que lo producen. Estas causas son las fuerzas.

Más detalles

Factores geotécnicos que condicionan el diseño de obras civiles en Buenos Aires

Factores geotécnicos que condicionan el diseño de obras civiles en Buenos Aires Factores geotécnicos que condicionan el diseño de obras civiles en Buenos Aires (84.07) Mecánica de Suelos y Geología Alejo O. Sfriso: asfriso@fi.uba.ar Índice Obras civile es en Buenos Aires Condiciones

Más detalles

CRITERIO DE ROTURA ENSAYOS DE RESISTENCIA AL CORTE CONDUCTA ESFUERZO-DEFORMACION RELACIÓN MOHR - COULOMB DIAGRAMAS

CRITERIO DE ROTURA ENSAYOS DE RESISTENCIA AL CORTE CONDUCTA ESFUERZO-DEFORMACION RELACIÓN MOHR - COULOMB DIAGRAMAS Indice INDICE CRITERIO DE ROTURA ENSAYOS DE RESISTENCIA AL CORTE CONDUCTA ESFUERZO-DEFORMACION RELACIÓN MOHR - COULOMB DIAGRAMAS p-q PARAMETROS DE ESTABILIDAD Indice 1 1 RESISTENCIA AL CORTE Criterio de

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Ayudantía # 4 Tensiones de una masa de suelo

Ayudantía # 4 Tensiones de una masa de suelo UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERIA ESCUELA DE INGENIERÍA EN OBRAS CIVILES IOC2010-1 MECÁNICA DE SUELOS Profesor: Pascale Rousé Hollemart Ayudante: Sebastián De la Fuente Bornand Ayudantía

Más detalles

PRESENTACIÓN EXPOSITOR:

PRESENTACIÓN EXPOSITOR: PRESENTACIÓN EXPOSITOR: Se trata de un método de mejora de suelos naturales o de relleno, consistente en inclusiones de material granular, realizadas en el terreno de apoyo de terraplenes o fundación de

Más detalles

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes.

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes. Fricción. Cuando dos superficies se tocan se ejercen fuerzas entre ellas. La fuente primordial de estas fuerzas superficiales o de contacto es la atracción o repulsión eléctrica entre las partículas cargadas

Más detalles

CARTA DESCRIPTIVA. Antecedente(s): Mecánica de Suelos II

CARTA DESCRIPTIVA. Antecedente(s): Mecánica de Suelos II CARTA DESCRIPTIVA I. Identificadores de la asignatura Clave: ICA3604 Créditos: 8 Materia: Cimentaciones Departamento: Ingeniería Civil y Ambiental Instituto: Ingeniería y Tecnología Carrera: Licenciatura

Más detalles

PROYECTO DE UNA ESTRUCTURA DE CONTENCIÓN

PROYECTO DE UNA ESTRUCTURA DE CONTENCIÓN TEMÁTICA DE MUROS PROYECTO DE UNA ESTRUCTURA DE CONTENCIÓN Fabio Jaramillo Correa. Andrés Cárdenas Mejía. FABIO JARAMILLO CORREA / ANDRÉS CÁRDENAS MEJÍA 1 PROYECTO DE UNA ESTRUCTURA DE CONTENCIÓN 1. Planteamiento

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio

Más detalles

Hoja Geotécnica Nº 3 Pilotes excavados y hormigonados in situ en suelos granulares Resistencia Friccional y Resistencia de Punta

Hoja Geotécnica Nº 3 Pilotes excavados y hormigonados in situ en suelos granulares Resistencia Friccional y Resistencia de Punta 1 3. RESISTENCIA DE PILOTES EXCAVADOS Y HORMIGONADOS IN SITU EN SUELOS NO COHESIVOS La capacidad de carga nominal de los pilotes excavados en suelos friccionales se estima utilizando métodos aplicables,

Más detalles

INFORME TÉCNICO ESTRUCTURA CUBIERTA LUZ 10 METROS CON AREAS DE SERVICIO INDICE. 1.- ANTECEDENTES y OBJETO NORMATIVA UTILIZADA...

INFORME TÉCNICO ESTRUCTURA CUBIERTA LUZ 10 METROS CON AREAS DE SERVICIO INDICE. 1.- ANTECEDENTES y OBJETO NORMATIVA UTILIZADA... INDICE 1.- ANTECEDENTES y OBJETO...2 2.- NORMATIVA UTILIZADA...3 3.- REALIZACIÓN DEL ESTUDIO...4 3.1.- CONSIDERACIONES DE CÁLCULO... 5 3.2.- COEFICIENTES DE PONDERACIÓN... 6 3.3.- SOFTWARE USADO... 7 3.4.-

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

CAPITULO VI CONCLUSIONES Y RECOMENDACIONES

CAPITULO VI CONCLUSIONES Y RECOMENDACIONES CAPITULO VI CONCLUSIONES Y RECOMENDACIONES 6.1 Introducción A través de los capítulos se ha analizado pilotes de todo tipo de sección y profundidad para concluir comportamientos y así ir logrando avances

Más detalles

NORMAS DE SEGURIDAD ESTRUCTURAL DE EDIFICACIONES Y OBRAS DE INFRAESTRUCTURA PARA LA REPÚBLICA DE GUATEMALA

NORMAS DE SEGURIDAD ESTRUCTURAL DE EDIFICACIONES Y OBRAS DE INFRAESTRUCTURA PARA LA REPÚBLICA DE GUATEMALA 0 TABLA DE CONTENIDO PRÓLOGO 3 CAPITULO 3 (PARCIAL) OBRAS DE RETENCIÓN (DETERMINACION DE CARGAS DE SUELOS) 3.3 Cálculo de los empujes laterales del suelo 3.4 Análisis por Sismo 3.7.2 Consideraciones de

Más detalles

bibjbkqlp=ab=`lkqbk`fþk

bibjbkqlp=ab=`lkqbk`fþk OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bibjbkqlp=ab=`lkqbk`fþk iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

Guía para la presentación de proyectos de depósitos de relaves de pequeña minería versión preeliminar

Guía para la presentación de proyectos de depósitos de relaves de pequeña minería versión preeliminar Guía para la presentación de proyectos de depósitos de relaves de pequeña minería versión preeliminar DEPARTAMENTO DE DEPOSITOS DE RELAVES SUBDIRECCIÓN NACIONAL DE MINERIA SERNAGEOMIN María Francisca Falcón

Más detalles

Ficha Técnica Flotación de la Tubería Fecha: Mayo 23, 1996 (Revisada Abril 1999; Julio 2001)

Ficha Técnica Flotación de la Tubería Fecha: Mayo 23, 1996 (Revisada Abril 1999; Julio 2001) Ficha Técnica 2.107 Re: Flotación de la Tubería Fecha: Mayo 23, 1996 (Revisada Abril 1999; Julio 2001) Flotabilidad de la Tubería Debido a Fuerzas Hidrostáticas y de Levantamiento por Utilización de Material

Más detalles

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 EJERCICIO Nº 1 ZAPATAS: CARGAS DE HUNDIMIENTO Una zapata

Más detalles

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él?

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él? LA ENERGÍA E l concepto de energía es uno de los más importantes del mundo de la ciencia. En nuestra vida diaria, el termino energía tiene que ver con el costo del combustible para transporte y calefacción,

Más detalles

Estabilidad de taludes en suelos. (84.07) Mecánica de Suelos y Geología Alejo O. Sfriso:

Estabilidad de taludes en suelos. (84.07) Mecánica de Suelos y Geología Alejo O. Sfriso: Estabilidad de taludes en suelos (84.07) Mecánica de Suelos y Geología Alejo O. Sfriso: asfriso@fi.uba.ar Índice Definición del problema de estabilidad de taludes Métodos de análisis Solución analítica:

Más detalles

Capítulo VI ENSAYOS IN SITU

Capítulo VI ENSAYOS IN SITU Capítulo VI ENSAYOS IN SITU 6.1 Introducción La determinación de las propiedades del suelo a partir de ensayos realizados en el laboratorio presenta algunos inconvenientes. Según se indica en el capítulo

Más detalles

Planteamiento del problema CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN 3.2 SUPERESTRUCTURA FICTICIA

Planteamiento del problema CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN 3.2 SUPERESTRUCTURA FICTICIA CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN En este capítulo se define el problema principal mediante el cual será posible aplicar y desarrollar las diversas teorías y métodos de cálculo señalados

Más detalles

16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL

16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL 16 IMPLEMENTACIÓN DEL MÓDULO MOVIMIENTO HORIZONTAL 16.1 OBJETIVO El objetivo de este módulo es obtener el movimiento horizontal provocado por una acción horizontal en la cabeza del pilote, de una forma

Más detalles

Fuerza de Empuje Hidrostática Debido a una Alta Napa Freática

Fuerza de Empuje Hidrostática Debido a una Alta Napa Freática NOTA TÉCNICA Flotación de Tuberías NT 5.05 Diciembre 2010 Introducción El poco peso que presenta una tubería de polietileno de alta densidad (HDPE) hace que sea muy atractivo trabajar con ellas debido

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.

Más detalles

1ª Edición Editado e impreso en Alicante (España) Windows es marca registrada de Microsoft Corporation

1ª Edición Editado e impreso en Alicante (España) Windows es marca registrada de Microsoft Corporation IMPORTANTE: ESTE TEXTO REQUIERE SU ATENCIÓN Y SU LECTURA La información contenida en este documento es propiedad de, S.A. y no puede ser reproducida ni transferida total o parcialmente en forma alguna

Más detalles

UNIDAD 5 Parte 2 de 3. Bases Excéntricas

UNIDAD 5 Parte 2 de 3. Bases Excéntricas UNIDAD 5 Parte 2 de 3 Bases Excéntricas Bibliografía consultada Manual de cálculo de estructuras de hormigón armado Zapatas de hormigón Armado Hormigón Armado Apuntes Cátedra Hormigón I-II Reglamento CIRSOC

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Nombre: Cédula: Sección:

Nombre: Cédula: Sección: U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 27/11/2008 Nombre: Cédula: Sección: PRIMER PARCIAL TEORÍA 1. Se tiene un trozo de hierro y uno de brea, cuál de

Más detalles

Selección de listados

Selección de listados ÍNDICE 1.- NORMA Y MATERIALES... 2 2.- ACCIONES... 2 3.- DATOS GENERALES... 2 4.- DESCRIPCIÓN DEL TERRENO... 2 6.- GEOMETRÍA... 2 7.- ESQUEMA DE LAS FASES... 3 8.- CARGAS... 3 9.- RESULTADOS DE LAS FASES...

Más detalles

ESCUELA DE INGENIERIA Ingeniería Civil

ESCUELA DE INGENIERIA Ingeniería Civil ESCUELA DE INGENIERIA Ingeniería Civil ASIGNATURA INGENIERÍA DE FUNDACIONES CODIGO IC0661 SEMESTRE 2013-2 INTENSIDAD HORARIA 48 horas semestral CARACTERÍSTICAS No suficientable CRÉDITOS 3 1. JUSTIFICACIÓN

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 02. Está-ca de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

Verificación del muro de contención con una fila de anclajes

Verificación del muro de contención con una fila de anclajes Manual de Ingeniería No. 6 Actualización: 02/2016 Verificación del muro de contención con una fila de anclajes Programa: Verificación de Muros Pantalla Archivo: Demo_manual_06.gp1 En este capítulo le mostraremos

Más detalles

TENSIONES VERTICALES TOTALES, EFECTIVAS E INTERSTICIALES EN UN TERRENO ESTRATIFICADO

TENSIONES VERTICALES TOTALES, EFECTIVAS E INTERSTICIALES EN UN TERRENO ESTRATIFICADO TENSIONES VERTICALES TOTALES, EFECTIVAS E INTERSTICIALES EN UN TERRENO ESTRATIFICADO Laboratorio Virtual de Ingeniería Geotécnica www.utpl.edu.ec/vleg Universidad Técnica Particular de Loja Ecuador - 2010

Más detalles

Análisis de estabilidad de taludes Entrada de datos

Análisis de estabilidad de taludes Entrada de datos Paseo de la Emila 8 Análisis de estabilidad de taludes Entrada de datos Proyecto Fecha : 4..03 Configuración (entrada para tarea actual) Análisis de estabilidad Análisis sísmico : Metodología de verificación

Más detalles

PROBLEMA 1 (3p.) Esquema

PROBLEMA 1 (3p.) Esquema Examen Cimentaciones 5º Ing. Industrial Junio 007 PROBLEMA (3p.) Consideramos la cimentación de un pilar de medianería de un edificio de viviendas con los siguientes datos de partida: Transmite al cimiento

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Diseño de Estribos de Concreto

Diseño de Estribos de Concreto COLEGIO DE INGENIEROS DEL PERU CAPITULO DE INGENIERIA CIVIL CD - ICA INSTITUTO DE ESTUDIOS PROFESIONALES DE INGENIERIA I CURSO DIPLOMADO EN SUELOS Y CIMENTACIONES Diseño de Estribos de Concreto Ing. Angel

Más detalles

LA PRACTICA DE LA INGENIERÍA DE CIMENTACIONES EN LA CIUDAD DE MÉXICO

LA PRACTICA DE LA INGENIERÍA DE CIMENTACIONES EN LA CIUDAD DE MÉXICO LA PRACTICA DE LA INGENIERÍA DE CIMENTACIONES EN LA CIUDAD DE MÉXICO Mapa de la República Mexicana Mapa de la Ciudad de México Panorama del lago de México y la Isla de Tenochtitlán-Tlatelolco en 1519,

Más detalles

IGVO (OA) 007 INSTRUCCIONES PARA EL PROYECTO Y LA EJECUCION DE PILASTRAS DE DURMIENTES

IGVO (OA) 007 INSTRUCCIONES PARA EL PROYECTO Y LA EJECUCION DE PILASTRAS DE DURMIENTES GERENCIA DE INFRAESTRUCTURA INSTRUCCIONES PARA EL PROYECTO Y LA EJECUCION DE PILASTRAS DE DURMIENTES IGVO (OA) 007 Se denomina pilastra de durmientes a una estructura en elevación constituída por sucesivas

Más detalles

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA BOLILLA 7 Atmósfera en Movimiento ECUACION DEL MOVIMIENTO EN LA ATMOSFERA Las parcelas de aire se mueven en la horizontal y en la vertical, con rapidez variable. El viento se asocia con la componente horizontal.

Más detalles

ALTERNATIVAS DE ESTABILIZACION DE TALUDES

ALTERNATIVAS DE ESTABILIZACION DE TALUDES UNIVERSIDAD CENTROAMERICANA JOSE SIMEON CAÑAS ALTERNATIVAS DE ESTABILIZACION DE TALUDES PRESENTA: Ing. MSc. Luis Pineda ALTERNATIVAS DE INTERVENCION DE TALUDES ELUSION MITIGACION ESTABILIZACION 1. CONFORMACION

Más detalles

Verificación del pilote Entrada de datos

Verificación del pilote Entrada de datos Verificación del pilote Entrada de datos Proyecto Fecha : 28.10.2015 Configuración (entrada para tarea actual) Materiales y estándares Estructuras de hormigón : CSN 73 1201 R Pilote Para pilote compresivo

Más detalles

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS VIGAS MIXTAS El tema se refiere a vigas formadas por perfiles metálicos donde la losa de hormigón armado colabora para absorber los esfuerzos de compresión. Este tipo de vigas tiene la ventaja de colocar

Más detalles

1.- NORMA Y MATERIALES ACCIONES DATOS GENERALES DESCRIPCIÓN DEL TERRENO SECCIÓN VERTICAL DEL TERRENO GEOMETRÍA...

1.- NORMA Y MATERIALES ACCIONES DATOS GENERALES DESCRIPCIÓN DEL TERRENO SECCIÓN VERTICAL DEL TERRENO GEOMETRÍA... ÍNDICE 1.- NORMA Y MATERIALES... 2.- ACCIONES... 3.- DATOS GENERALES... 4.- DESCRIPCIÓN DEL TERRENO... 5.- SECCIÓN VERTICAL DEL TERRENO... 6.- GEOMETRÍA... 7.- ESQUEMA DE LAS FASES... 8.- CARGAS... 9.-

Más detalles

Aplicaciones de la teoría matemática de la elasticidad a problemas de geotecnia

Aplicaciones de la teoría matemática de la elasticidad a problemas de geotecnia Aplicaciones de la teoría matemática de la elasticidad a problemas de geotecnia (84.07) Mecánica de Suelos y Geología Alejo O. Sfriso: asfriso@fi.uba.ar Ernesto Strina: estrina@fi.uba.ar Índice Elasticidad

Más detalles

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS Ing. MSc. Luz Marina Torrado Gómez RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS SOLICITACIONES INTERNAS QUE SE GENERAN EN UN SUELO Tensiones normales, : Pueden

Más detalles

Fundaciones superficiales

Fundaciones superficiales Fundaciones superficiales Mecánica de Suelos 360 UCA Resumen Fundaciones Clasificación de fundaciones Estados límites (Eurocódigo 7) Capacidad de carga 2 Clasificación fundaciones A) Superficial ó Directa

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

EVALUACIÓN DE CÓDIGO SÍSMICO. CUBA Evaluación llevada a cabo por Carlos Llanes Burón

EVALUACIÓN DE CÓDIGO SÍSMICO. CUBA Evaluación llevada a cabo por Carlos Llanes Burón EVALUACIÓN DE CÓDIGO SÍSMICO CUBA Evaluación llevada a cabo por Carlos Llanes Burón NOMBRE DEL DOCUMENTO: NC 46 1999. Construcciones sismorresistentes. Requisitos básicos para el diseño y construcción.

Más detalles

CAPITULO V EL GALVANOMETRO DE D'ARSONVAL

CAPITULO V EL GALVANOMETRO DE D'ARSONVAL CAPITULO V EL GALVANOMETRO DE D'ARSONVAL 5.1 INTRODUCCION. En la industria existen actualmente una gran cantidad de instrumentos eléctricos de aguja capaces de medir los parámetros más variados: corriente,

Más detalles

Capítulo 2 Imperfecciones en materiales cristalinos

Capítulo 2 Imperfecciones en materiales cristalinos Capítulo 2 Imperfecciones en materiales cristalinos Dislocaciones Experimento: Magnesio HCP Que predice la teoría? τ = 9x10 3 MPa En la práctica: 1 1,000 a 1 100,000 Dislocaciones: Porción de material

Más detalles

Estimación Rápida de Desplazamientos Laterales Producidos por Sismo

Estimación Rápida de Desplazamientos Laterales Producidos por Sismo Estimación Rápida de Desplazamientos Laterales Producidos por Sismo Dr. Ing. ugo Scaletti Farina Introducción Las normas de diseño sismorresistente hacen referencia a dos escenarios: el del sismo muy severo,

Más detalles

9 MECANICA Y FLUIDOS: Colisiones

9 MECANICA Y FLUIDOS: Colisiones 9 MECANICA Y FLUIDOS: Colisiones CONTENIDOS Conservación de cantidad de movimiento y de la energía. Colisiones elásticas e inelásticas. Coeficiente de restitución. Trabajo de Fuerzas conservativas y no

Más detalles

MECÁNICA DE SUELOS TEÓRICA.

MECÁNICA DE SUELOS TEÓRICA. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: SEMESTRE: 7º

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

EL CHOQUE. v 1 N 2 N 1. Antes del choque P 2 P 1 F 21 F 12. Choque. v 2. Después del choque

EL CHOQUE. v 1 N 2 N 1. Antes del choque P 2 P 1 F 21 F 12. Choque. v 2. Después del choque EL CHOQUE Una masa de 400 g se desliza sobre una superficie horizontal sin rozamiento con una velocidad de m/s y, choca con otra de 600 g inicialmente en reposo. a) Si el choque es central y elástico,

Más detalles

PARAMETROS DE RESISTENCIA AL CORTE PARA INTERFASES DE ARENA-CONCRETO: PROPUESTA DE INVESTIGACIÓN

PARAMETROS DE RESISTENCIA AL CORTE PARA INTERFASES DE ARENA-CONCRETO: PROPUESTA DE INVESTIGACIÓN Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI 2014) Excellence in Engineering To Enhance a Country s Productivity July 22-24, 2014 Guayaquil, Ecuador. PARAMETROS

Más detalles

Respuesta estructural de un puente de tirantes de gran luz variando las condiciones de los vanos laterales ANEJO 1 PLANOS

Respuesta estructural de un puente de tirantes de gran luz variando las condiciones de los vanos laterales ANEJO 1 PLANOS ANEJO 1 PLANOS Ing. Víctor Josué Gutiérrez Gracia 111 112 Ing. Víctor Josué Gutiérrez Gracia Ing. Víctor Josué Gutiérrez Gracia 113 114 Ing. Víctor Josué Gutiérrez Gracia ANEJO 2 RESULTADOS DEL MODELO

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

División 6. Análisis de la mecánica de fractura Esquemas simples

División 6. Análisis de la mecánica de fractura Esquemas simples CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS División 6 Análisis de la mecánica de fractura Esquemas simples 1. Introducción En esta división del capítulo se analizarán someramente

Más detalles

En el diseño del transportador de tornillo hay que determinar los siguientes parámetros :

En el diseño del transportador de tornillo hay que determinar los siguientes parámetros : ANEXO 4. DISEÑO DEL TRANSPORTADOR - ENFRIADOR El material descontaminado de salida del desorbedor junto con las partículas recogidas en el separador ciclónico y filtro de mangas llegan a un transportador

Más detalles

Terremoto y isolacion. El SP metodo de construccion asismica con base de aislamiento

Terremoto y isolacion. El SP metodo de construccion asismica con base de aislamiento 1 2 Indices de magnitud (M) M> 8: Terremoto gigante M> 7: Gran terremoto 1923 Gran Terremoto de Kanto M : 7.9 1995 Terremoto Hanshin-Awaji M : 7.3 2011 Terremoto de la Region de Tohoku Pacifico Shore M

Más detalles