TRABAJO ESPECIAL: SPECKLE DINÁMICO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO ESPECIAL: SPECKLE DINÁMICO"

Transcripción

1 TRABAJO ESPECIAL: SPECKLE DINÁMICO Asignatura: Física 3 Grupo: 5 Alumnos: Cianci, Matías Mat Guebara, Sol Mat Gosella, Pablo Mat Melillo, Francisco Mat Ponce, Damián Mat Ayudante: Antonacci, Julián Fecha de entrega:

2 INTRODUCCIÓN En este trabajo se intentó probar el funcionamiento del Speckle dinámico, tratando de observar el fenómeno ya visto teóricamente en Física 3. Para ello se realizaron diversas experiencias empleando materiales aportados por el Laboratorio Láser de la Facultad, con lo que se armó el banco de medición. BANCO DE MEDICIÓN Cuando hablamos de banco de medición nos referimos a todos los elementos que entran en juego en el experimento y su configuración. Para la realización de la experiencia utilizamos un láser HeNe con una longitud de onda de 632.8nm y potencia 20mw ópticos. El haz de luz emitido por el láser pasa a través de un lente divergente para aumentar el diámetro del haz, y así poder observar objetos más grandes. Para poder direccionar el rayo se hace incidir el haz sobre un espejo de primera metalización que desvía el mismo para llegar hasta el objeto y ser observado con una cámara que luego pasará a visualizarse en el monitor de la computadora. Para evitar que las vibraciones del suelo y el posible movimiento de los elementos interfieran en la medición se utiliza un banco óptico, el cual tiene un sistema de amortiguadores neumáticos en sus patas y agujeros roscados distribuidos matricialmente en toda su superficie para poder fijar los elementos usados. Aclaraciones: Normalmente en los 2

3 espejos la luz incide primero sobre el vidrio y luego en la metalización pero esto genera aberraciones ópticas por defectos en el vidrio característicos del mismo por ser un sólido amorfo (sus moléculas están dispuestas de forma irregular), por eso, para que no pase a través del vidrio usamos uno de primera metalización. MARCO TEÓRICO Un patrón de Speckle es un patrón de intensidad producido por la interferencia mutua de un conjunto de fuentes distribuidas en la superficie. Estos patrones se analizan mayoritariamente cuando una superficie es iluminada, como en el caso de este trabajo, con un haz láser, pudiendo analizar deformaciones o desplazamientos en la superficie de la muestra respecto del observador, que en este caso sería la cámara, ya que un observador humano siempre presenta un movimiento que, aunque mínimo, no permite que este fenómeno sea apreciado correctamente. El Speckle dinámico es el resultado de la evolución en el tiempo de un diagrama de Speckle, en el que las variaciones en los elementos dispersores que forman la figura de interferencia en la situación estática, son las causantes de los cambios producidos en la misma. El aspecto visual del diagrama de Speckle dinámico es similar al de un líquido que hierve, donde los granos de Speckle (puntos) varían su intensidad y forma. Esto ocurre cuando la muestra cambia sus características debido al movimiento de los centros de la dispersión, que cambia en el camino óptico debido a las variaciones del índice de refracción, por los cambios de configuración o a la combinación de estas situaciones, hasta que la actividad de la muestra analizada culmina. PROCEDIMIENTO 3

4 Tras haber preparado la mesa se procedió a la ejecución del experimento, en el cual se fue poniendo al ojo de la cámara diversos objetos y materiales, y se observó el efecto de interferencia. Inicialmente se colocó sobre un vidrio un poco de alcohol isopropílico, el cual al ir secándose iba variando su superficie, lo que se podía apreciar en la pantalla. Ya que se veía un movimiento de los granos de Speckle. Luego se puso yerba seca que, al quedar en reposo, se veía estática al ojo de la cámara. Al mojarla ya se podía apreciar un movimiento, el cual era producido por la absorción del agua por parte de las hojas de yerba, ya que esto las hinchaba levemente. Si bien es despreciable al ojo humano, gracias al Speckle fue posible observar este fenómeno. Finalmente se colocó una manzana, que a diferencia de la yerba seca, ésta no se veía inicialmente estática. Ya que, al ser una manzana fresca ésta estaba en proceso de descomposición y dentro de ella había un ligero movimiento de fluidos que afectaba levemente la superficie. Al golpearla, el movimiento se intensificó. Los fluidos internos comenzaron a fluir más rápidamente, lo que provocó una variación en la superficie más apreciable. Al contrario de los experimentos anteriores la manzana luego de varios minutos no frenó su movimiento; esto sólo sucedería, cuanto la misma se secase, luego de unos días, haciendo que cese el movimiento de fluidos. En esencia el Speckle sirve para poder observar movimientos de carácter despreciable a nuestros ojos. Y así poder sacar conclusiones, o cálculos de diferentes materiales y experiencias. APLICACIONES Una de sus más grandes aplicaciones, es la que realizamos en el trabajo, el Speckle dinámico, 4

5 también conocido como biospeckle, permite el análisis de la actividad biológica, como por ejemplo de hongos, semillas, flujo sanguíneo, etc. Pero también sirve para varias aplicaciones de los materiales no biológicos. Aplicación al estudio de secado de pintura. El dispositivo experimental es similar al que usamos en la experiencia, donde en lugar de colocar la semilla, o la manzana, se coloca una superficie plana pintada con esmalte blanco. Lo que se estudia en este caso es la evolución temporal de los patrones de Speckle. Esto refleja cambios a medida que la pintura se seca. Trabajo de la Universidad Nacional de La Plata El trabajo muestra la aplicación del Speckle dinámico al análisis de la hidrofilicidad de materiales como sílica-gel y sílico-aluminatos naturales (bentonitas, zeolitas y caolinitas) con diferentes propiedades texturales como área superficial y volumen de poros. Los resultados experimentales muestran la evolución temporaria de los diagramas de Speckle de los materiales elegidos durante el proceso de absorción de agua. El trabajo realizado muestra que la técnica de Speckle ofrece una comparación efectiva entre varios productos y se puede considerar un método alternativo para el estudio de materiales porosos de interés como adsorbentes o soportes de catalizadores. 5

6 CONCLUSIÓN En este trabajo hemos podido apreciar fenómenos que suceden a otra escala, la cual es difícil de apreciar a simple vista. Como el caso de la yerba mojada, que por medio de los granos de Speckle, se puede observar el movimiento de fluidos producido por la absorción del agua por parte de sus hojas, afectando así la superficie. Se observó también que para distintas muestras el comportamiento no es igual, que el espectro visual del diagrama Speckle es similar al de un líquido que hierve, donde los puntos de Speckle varían su forma e intensidad, debido a las variaciones de los índices de refracción de las muestras. Siendo la esencia del Speckle poder observar movimientos de carácter despreciable a nuestros ojos, generalmente es utilizado para observar el movimiento de fluidos en superficies. En el experimento se aprecia el patrón como una fuente de luz muy brillante compuesta por innumerables puntos de gran intensidad. El conocimiento de este nuevo fenómeno trajo un aporte a nuestros conceptos físicos, dándole gran importancia a los contenidos de interferencia. 6

UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción

UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción UNIVERSIDAD NACIONAL DEL SANTA Práctica N 01 Interferencia y Difracción Objetivos.- Estudio de los fenómenos de interferencia y difracción usando un láser como fuente de luz coherente y monocromática.

Más detalles

Medición del índice de refracción de líquidos.

Medición del índice de refracción de líquidos. Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II Proyecto Experimental: Medición del índice de refracción de líquidos.

Más detalles

Interferencia y Difracción

Interferencia y Difracción Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Año 2011 Proyecto de Física III Interferencia y Difracción Integrantes Lomenzo, María Florencia Ing. Biomédica (flor_lomenzo@hotmail.com)

Más detalles

1. Fundamentos de óptica

1. Fundamentos de óptica Relación microscopio - ojo Espectro radiación electromagnética Diferencias en intensidad o brillo Propiedades de la luz Teoría corpuscular Teoría ondulatoria Dualidad onda-corpúsculo Propiedades de la

Más detalles

FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA

FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA UNIDAD DIDÁCTICA : MOVIMIENTO 01.- Movimiento rectilíneo uniforme Duración Estimada: 1 h Capacidad Terminal Conocer las características de un movimiento rectilíneo

Más detalles

Práctica de Óptica Física

Práctica de Óptica Física Práctica de Estudio de fenómenos de interferencia difracción 2 Pre - requisitos para realizar la práctica...2 Bibliografía recomendada en referencia la modelo teórico...2 Competencias a desarrollar por

Más detalles

CUESTIONARIO DE ÓPTICA.

CUESTIONARIO DE ÓPTICA. CUESTIONARIO DE ÓPTICA. 1.- Qué es la luz, onda o partícula? 2.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Huygens: Young: Newton:

Más detalles

Práctica 4. Interferómetro de Michelson

Práctica 4. Interferómetro de Michelson . Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Ejercicios de Interferencia en láminas delgadas.

Ejercicios de Interferencia en láminas delgadas. Ejercicios de Interferencia en láminas delgadas. 1.- Sobre una película delgada y transparente de índice de refracción n 2 y espesor uniforme d, situada en un medio de índice de refracción n 1, incide

Más detalles

DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor

DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor CONSIGNAS TP1 Teoría de la luz Desarrollar una investigación teniendo como base el origen de la luz como fenómeno físico y su comportamiento. Dicho trabajo práctico requiere rigor en los datos técnicos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Reflexión de la luz MATERIALES MONTAJE

Reflexión de la luz MATERIALES MONTAJE Reflexión de la luz Espejos planos Estamos acostumbrados a usar los espejos sin plantearnos que ocurre con los rayos de luz que inciden sobre ellos. Vamos a estudiar el comportamiento de la luz primero

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º 1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encuentra el ángulo refractado ( n agua = 1, 33 ).. Encuentra el ángulo límite para la reflexión total interna

Más detalles

MEDIDAS DE POTENCIAL ZETA EN LA SERIE ZETASIZER NANO. Enrique Mazarrón

MEDIDAS DE POTENCIAL ZETA EN LA SERIE ZETASIZER NANO. Enrique Mazarrón MEDIDAS DE POTENCIAL ZETA EN LA SERIE ZETASIZER NANO Enrique Mazarrón Medida de Potencial Zeta Usando Electroforesis Doppler con Láser Es una técnica usada para medir el movimiento de las partículas cargadas

Más detalles

REPASO Interferencia

REPASO Interferencia REPASO Interferencia Dos fuentes de ondas coherentes separadas por una distancia 4 Considere un punto a en el eje x. las dos distancias de S 1 a a y de S 2 a a son iguales las ondas requieren tiempos iguales

Más detalles

LA LUZ. 1.- Qué es la luz?

LA LUZ. 1.- Qué es la luz? 1.- Qué es la luz? LA LUZ La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u) 1)

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

1. Verificar experimentalmente de la ley de Snell. 2. Medir el índice de refracción del agua y un material acrílico.

1. Verificar experimentalmente de la ley de Snell. 2. Medir el índice de refracción del agua y un material acrílico. Laboratorio 5 Indice de Refracción 5.1 Objetivos 1. Verificar experimentalmente de la ley de Snell. 2. Medir el índice de refracción del agua y un material acrílico. 3. Medir el ángulo de reflexión interna

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo:

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo: ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO 2012 2013 PRIMERA EVALUACION DE FISICA D Nombre: Nota: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica.

Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica. Capitulo 5 Arreglo experimental para la transmisión de datos utilizando rejillas de difracción y modulación acusto óptica. 5.1 Introducción. En este capítulo se describen los resultados experimentales

Más detalles

Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: OPTICA Y FÍSICA MODERNA CON LABORATORIO Clave: 004856 Academia a la que pertenece: Óptica y física moderna Requisitos: Ninguno

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipo de óptica ondulatoria con Láser U17303 Instrucciones de uso 10/08 Alf 1. Advertencias de seguridad El Láser emite una radiación visible de una longitud de onda de 635 nm con

Más detalles

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN

Más detalles

Problemario FS107 Óptica Básica Cal16B. Parámetros ópticos

Problemario FS107 Óptica Básica Cal16B. Parámetros ópticos Problemario FS107 Óptica Básica Cal16B Parámetros ópticos 33.3 Un haz de luz tiene una longitud de onda de 650 nm en el vacío. Cuál es la rapidez de esta luz en un líquido cuyo índice de refracción a esta

Más detalles

ANALOGIAS. (Págs. 70, 71, 72 y 73).

ANALOGIAS. (Págs. 70, 71, 72 y 73). 1 LICEO SALVADOREÑO CIENCIA, SALUD Y MEDIO, AMBIENTE HERMANOS MARISTAS PROFESORES: CLAUDIA POSADA / CARLOS ALEMAN GRADO Y SECCIONES: 9º: A, B, C, D Y E. UNIDAD N 5: ONDAS, LUZ Y SONIDO. GUIA N 1 ANALOGIAS.

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015

INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015 INSTITUCION EDUCATIVA NUESTRA SEÑORA DEL CARMEN SINCELEJO SUCRE AREA DE CIENCIAS NATURALES ASIGNATURA FISICA I JULIO/30/2015 LOGRO: MOVIMIENTO CIRCULAR UNIFORME LABORATORIO DE FISICA OBJETIVO GENERAL:

Más detalles

Física Experimental 1: Práctica #6

Física Experimental 1: Práctica #6 Física Experimental 1: Práctica #6 Interferómetro de Mach-Zehnder Fecha de entrega: Martes 17 de marzo, 2015 (Enero-Mayo 2015) Dr. Raúl Hernández 1 Contenido Objetivos de la práctica 3 Material a utilizar

Más detalles

BLOQUE 4.1 ÓPTICA FÍSICA

BLOQUE 4.1 ÓPTICA FÍSICA BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar

Más detalles

=0,23 =13,3. Si las longitudes de onda están muy cercanas entre sí podemos escribir y como y, respectivamente. Luego:

=0,23 =13,3. Si las longitudes de onda están muy cercanas entre sí podemos escribir y como y, respectivamente. Luego: Ejercicios de Difracción. 1.- Una red de difracción tiene 10 4 líneas uniformemente distribuidas en 0,0254 [m]. Se ilumina normalmente con luz amarilla de una lámpara de sodio. Esta luz está formada por

Más detalles

Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología. Cátedra de Física Experimental II --- Asignatura: Física III --- Año: 2009

Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología. Cátedra de Física Experimental II --- Asignatura: Física III --- Año: 2009 Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Sistema de enseñanza-aprendizaje por proyectos experimentales simples y por simulación en computadora Cátedra

Más detalles

1 LA LUZ. 2 La velocidad de la luz

1 LA LUZ. 2 La velocidad de la luz 1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE LA LUZ. OPTICA. José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE LA LUZ. OPTICA. José Mª Martín Hernández Generalidades: 1. (103-S11) La estrella más cercana a la Tierra dista 4 años-luz y puede observarse con un telescopio. a) Si en la estrella citada se produce una explosión, se daría cuenta de ello inmediatamente

Más detalles

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son)

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son) Programa Estándar Anual Nº Guía práctica Ondas V: imágenes en espejos y lentes Ejercicios PSU 1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado,

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica A) Óptica Física 1.- Un haz de luz roja penetra en una lámina de vidrio de 30 cm de espesor con un ángulo de incidencia de 45 º. a) Explica si cambia el color de la luz al penetrar en el vidrio y determina

Más detalles

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN 1.- Equipamiento y montaje Componentes del equipo Los accesorios necesarios para la realización de la presente práctica se enumeran a continuación: 1. Caja de Almacenamiento

Más detalles

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción? ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo

Más detalles

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r Slide 1 / 55 Óptica Geométrica ' El Modelo de Rayos de la Luz Slide 2 / 55 La luz puede viajar en una linea recta. Representamos esto con rayos, cuales son lineas rectas emitidos por una fuente de luz

Más detalles

Difracción con Rayos X

Difracción con Rayos X Difracción con Rayos X Hurgando en la estructura de las moléculas En el ICMA se utilizan métodos de Difracción con Rayos X para conocer la estructura de la materia Algo de Historia Página Qué es la difracción

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. Abril 2011

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. Abril 2011 COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ Abril 2011 LUZ LA LUZ ES UNA MANIFESTACIÓN DE LA ENERGÍA EN FORMA DE RADIACIONES ELECTROMAGNÉTICAS CAPACES DE AFECTAR EL ÓRGANO VISUAL SE DENOMINA RADIACIÓN

Más detalles

Clase N 4. Ondas I Espejos. Módulo Plan Común ICAL ATACAMA

Clase N 4. Ondas I Espejos. Módulo Plan Común ICAL ATACAMA Pre-Universitario Manuel Guerrero Ceballos Clase N 4 Ondas I Espejos ICAL ATACAMA Módulo Plan Común Síntesis De La Clase Anterior Proviene de fuentes La luz Posee - Primarias - Secundarias - Naturales

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

El puntero láser y el diámetro de un cabello. Prof. Pablo Adrián Nuñez. Instituto San José de Morón 2007

El puntero láser y el diámetro de un cabello. Prof. Pablo Adrián Nuñez. Instituto San José de Morón 2007 RESUMEN: El puntero láser y el diámetro de un cabello. Prof. Pablo Adrián Nuñez. pablo_nuniez2000@yahoo.com.ar Instituto San José de Morón 2007 En este trabajo se muestra un método experimental basado

Más detalles

Simulación en Matlab. Capítulo 5

Simulación en Matlab. Capítulo 5 Capítulo 5 Simulación en Matlab 71 5.1 Introducción El sensor obtiene la información del medio gracias a las variaciones de señal medidas como consecuencia de la interacción del campo que viaja por la

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

En esta práctica utilizamos un láser con el cual medimos los

En esta práctica utilizamos un láser con el cual medimos los Propiedades de la luz: Reflexión y refracción. Padilla Robles Emiliano, González Amador María Fernanda, Cabrera Segoviano Diego : UMDI-Juriquilla, UNAM En esta práctica utilizamos un láser con el cual

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener Física Experimental III 1 1. Objetivos EXPERIMENTO 7 POLARIZACIÓN DE LA LUZ Generar diferentes estados de polarización de un haz de luz, por diferentes métodos, y estudiar experimentalmente el comportamiento

Más detalles

Ejercicio 1. y el ángulo de refracción será:

Ejercicio 1. y el ángulo de refracción será: Ejercicio 1 Un rayo de luz que se propaga en el aire entra en el agua con un ángulo de incidencia de 45º. Si el índice de refracción del agua es de 1,33, cuál es el ángulo de refracción? Aplicando la ley

Más detalles

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA GEOMÉTRICA En la práctica anterior se trabajó con una onda de naturaleza

Más detalles

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012

COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012 COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ abril 2012 LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

FENÓMENOS ÓPTICOS. - Objetivo: comprobación de la veracidad de los distintos efectos ópticos.

FENÓMENOS ÓPTICOS. - Objetivo: comprobación de la veracidad de los distintos efectos ópticos. FENÓMENOS ÓPTICOS - Objetivo: comprobación de la veracidad de los distintos efectos ópticos. Materiales: Cantidad: - Banco óptico 1 - Fuente de luz 1 - Lentes 1 - Disco de Hartl 1 - Diafragma con ranura

Más detalles

Óptica. Medición del índice de refracción del aire con un interferómetro de Mach-Zehnder. LD Hojas de Física P

Óptica. Medición del índice de refracción del aire con un interferómetro de Mach-Zehnder. LD Hojas de Física P Óptica Óptica ondulatoria Interferómetro de Mach-Zehnder LD Hojas de Física Medición del índice de refracción del aire con un interferómetro de Mach-Zehnder Objetivos del experimento Montaje de un interferómetro

Más detalles

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible

Más detalles

PROYECTOS DE SISTEMAS OPTO MECÁNICOS (OP 003)

PROYECTOS DE SISTEMAS OPTO MECÁNICOS (OP 003) Resumen del curso: Se estudian los conceptos necesarios para acometer un proyecto optomecánico. Los fundamentos teóricos, las estrategias adecuadas de diseño, los aspectos de fabricación, montaje y pruebas

Más detalles

Medición terrestre de la velocidad de la luz

Medición terrestre de la velocidad de la luz Medición terrestre de la velocidad de la luz Ondas en el agua Ondas en el agua Frente de ondas circulares Frente de ondas planas Onda Electromagnética Sombras Sombras: eclipse Espectro Electromagnético

Más detalles

Anillos de Newton. FCEyN - UBA Grupo 6 ΘΘΘΘΘ. Maltauro, Fabio Lavia, Edmundo

Anillos de Newton. FCEyN - UBA Grupo 6 ΘΘΘΘΘ. Maltauro, Fabio Lavia, Edmundo Anillos de Newton FCEyN - UBA Grupo 6 ΘΘΘΘΘ Maltauro, Fabio Lavia, Edmundo Anillos de Newton: Introducción Si se apoya una lente sobre una placa de vidrio plana se observa un patrón de interferencia. Patrón

Más detalles

Problemas de Óptica I. Óptica física 2º de bachillerato. Física

Problemas de Óptica I. Óptica física 2º de bachillerato. Física Problemas de Óptica I. Óptica física 2º de bachillerato. Física 1. Calcular la energía de un fotón de luz amarilla de longitud de onda igual a 5,8.10 3 A. Solución: 3,43.10-19 J. 2. Una de las frecuencias

Más detalles

Transferencia de Calor por Radiación

Transferencia de Calor por Radiación INSTITUTO TECNOLÓGICO de Durango Transferencia de Calor por Radiación Dr. Carlos Francisco Cruz Fierro Revisión 1 67004.97 12-jun-12 1 INTRODUCCIÓN A LA RADIACIÓN ELECTROMAGNÉTICA 2 Dualidad de la Luz

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes.

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes. Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Física General Práctica # 4 Espejos y lentes I. Introducción. Los fenómenos de reflexión y refracción están presentes en nuestra vida diaria:

Más detalles

TEMA I.9. Ondas y Barreras. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA I.9. Ondas y Barreras. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA I.9 Ondas y Barreras Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

INSTRUMENTAL DE BAJO COSTO PARA ANÁLISIS DE PROCESOS DINÁMICOS CON TÉCNICAS SPECKLE OPTODIGITALES

INSTRUMENTAL DE BAJO COSTO PARA ANÁLISIS DE PROCESOS DINÁMICOS CON TÉCNICAS SPECKLE OPTODIGITALES INSTRUMENTAL DE BAJO COSTO PARA ANÁLISIS DE PROCESOS DINÁMICOS CON TÉCNICAS SPECKLE OPTODIGITALES Hanisch Elián, Riera Gastón, Grumel Eduardo E, Trivi Marcelo R, Rabal Héctor. UID ÓPTIMO, Departamento

Más detalles

Capítulo 4. Rejillas de difracción.

Capítulo 4. Rejillas de difracción. Capítulo 4 Rejillas de difracción. 4.1 Introducción. En este capítulo se estudiarán las rejillas de difracción así como se mencionará el papel que juega dentro de la óptica, también se muestra una imagen

Más detalles

Oferta tecnológica: Novedoso método de fabricación de superficies metálicas estructuradas para uso en diferentes Espectroscopias

Oferta tecnológica: Novedoso método de fabricación de superficies metálicas estructuradas para uso en diferentes Espectroscopias Oferta tecnológica: Novedoso método de fabricación de superficies metálicas estructuradas para uso en diferentes Espectroscopias Oferta tecnológica: Novedoso método de fabricación de superficies metálicas

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Juego de demostración de óptica de laser U17300 y juego complementario Instrucciones de servicio 1/05 ALF Índice Página Exp. Nr. Experimento Equipo 1 Introducción 2 Volumen de suministro

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS 1.* Cuál es el periodo de la onda si la frecuencia es de 65,4 Hz? 2.** Relacionen los conceptos con sus definiciones correspondientes. a) Amplitud b) Longitud

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

FENÓMENOS ONDULATORIOS ELEMENTALES EN CUBETA DE ONDAS

FENÓMENOS ONDULATORIOS ELEMENTALES EN CUBETA DE ONDAS 1 FENÓMENOS ONDULATORIOS ELEMENTALES EN CUBETA DE ONDAS I. Objetivos: Este experimento permite observar algunos de los fenómenos ondulatorios elementales más comunes que ocurren en la naturaleza. Se analizará

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA COLEGIO NACIONAL RAFAEL HERNÁNDEZ DEPARTAMENTO DE CIENCIAS EXACTAS SECCIÓN FÍSICA PROGRAMA DE FÍSICA DE 3º AÑO

UNIVERSIDAD NACIONAL DE LA PLATA COLEGIO NACIONAL RAFAEL HERNÁNDEZ DEPARTAMENTO DE CIENCIAS EXACTAS SECCIÓN FÍSICA PROGRAMA DE FÍSICA DE 3º AÑO UNIVERSIDAD NACIONAL DE LA PLATA COLEGIO NACIONAL RAFAEL HERNÁNDEZ DEPARTAMENTO DE CIENCIAS EXACTAS SECCIÓN FÍSICA PROGRAMA DE FÍSICA DE 3º AÑO Asignatura: Física Departamento: Ciencias Exactas Nivel:

Más detalles

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

CAPITULO I: La Luz CAPITULO I: LA LUZ 1 CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción

Más detalles

Práctica 5 Reflexión y refracción

Práctica 5 Reflexión y refracción Página 1/8 Práctica 5 Reflexión y refracción 1 Página 2/8 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 banco óptico Mal colocado puede caer de la mesa y provocar una lesión.

Más detalles

Determinación del módulo de Young

Determinación del módulo de Young Determinación del módulo de Young OBJETIVOS: - Determinación del módulo de Young de diversos materiales a partir de la flexión estática y dinámica de una viga en voladizo - Medición de señales luminosas

Más detalles

Laboratorio Virtual de Óptica

Laboratorio Virtual de Óptica Laboratorio Virtual de Óptica Miranda Vitela A. I., Pérez-Silva J. L., Garcés Madrigal A. M. Gamboa Rodriguez F., Caviedes Contreras F. Centro de Ciencias Aplicadas y Desarrollo Tecnológico UNAM, México

Más detalles

6 INFLUENCIA DE LA SUCIEDAD EN LA POTENCIA PRODUCIDA POR LOS PANELES FOTOVOLTAICOS

6 INFLUENCIA DE LA SUCIEDAD EN LA POTENCIA PRODUCIDA POR LOS PANELES FOTOVOLTAICOS 6 INFLUENCIA DE LA SUCIEDAD EN LA POTENCIA PRODUCIDA POR LOS PANELES FOTOVOLTAICOS Se procede en este capítulo a la descripción de unos ensayos realizado en la Escuela Técnica Superior de Ingenieros orientado

Más detalles

FORMACIÓN DE IMÁGENES EN ESPEJOS

FORMACIÓN DE IMÁGENES EN ESPEJOS FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

Capítulo Óptica. Lentes. Matías Enrique Puello Chamorro

Capítulo Óptica. Lentes. Matías Enrique Puello Chamorro Capítulo Óptica. Lentes Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 24 de abril de 2017 Índice 1. Óptica 2 2. Lentes 3 3. Tipos de lentes 4 4. Lentes convergentes 5 5. Lentes divergentes

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

PRÁCTICA 14. Reflexión y refracción

PRÁCTICA 14. Reflexión y refracción PRÁCTICA 14 Reflexión y refracción Laboratorio de Física General Objetivos Generales 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. Equipo y materiales

Más detalles

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4)

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) 1. OBJETIVO - Estudiar cómo varía la intensidad de la luz, al atravesar dos polarizadores, en función del ángulo existente entre sus ejes de transmisión.

Más detalles

1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos.

1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. FÍSICA 2 (FÍSICOS) - CÁTEDRA PROF. DEPINE SEGUNDO CUATRIMESTRE DE 2015 GUÍA 5: INTERFERENCIA Y DIFRACCIÓN 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué condiciones

Más detalles

TEMA 6.- Óptica CUESTIONES

TEMA 6.- Óptica CUESTIONES TEMA 6.- Óptica CUESTIONES 51.- a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema, las características de la imagen formada.

Más detalles

FUNDAMENTOS. REFRACTOMETRÍA/ Versión 3.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/

FUNDAMENTOS. REFRACTOMETRÍA/ Versión 3.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ FUNDAMENTOS. REFRACTOMETRÍA/ Versión 3.0/ MODULO 4/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ REFRACTOMETRÍA El índice de refracción es una constante física de interés teórico y práctico tanto en el campo bioquímico

Más detalles

Naturaleza ondulatoria de la luz. Difracción.

Naturaleza ondulatoria de la luz. Difracción. Objetivos Comprobar la naturaleza ondulatoria de la luz. Estudio de la difracción de la luz en diferentes rendijas y obstáculos. Estudiar la difracción de Fraunhofer por una rendija. Material Láser de

Más detalles

Problema Interferencia de N ranuras.

Problema Interferencia de N ranuras. Problema 9. 4. Interferencia de N ranuras. Considere un obstáculo con tres ranuras separadas por una distancia d e iluminado con una onda plana de longitud de onda λ. Emplee el método de los fasores para

Más detalles

COLOR. Pag.1/7. Área: FÍSICO-QUÍMICA Asignatura: FÍSICA. Título. Curso: 4 TO Año: 2012 AÑO

COLOR. Pag.1/7. Área: FÍSICO-QUÍMICA Asignatura: FÍSICA. Título. Curso: 4 TO Año: 2012 AÑO Área: FÍSICO-QUÍMICA Asignatura: FÍSICA Título COLOR Prof: BOHORQUEZ MARTINEZ LARGHI STRUM - TAITZ WALITZKY -IGNACIO D AMORE EZEQUIEL Curso: 4 TO Año: 2012 AÑO Pag.1/7 Dispersión de la luz Ya sabemos que

Más detalles