Introducción a la optimización. Tomás Arredondo Vidal 7/4/09

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la optimización. Tomás Arredondo Vidal 7/4/09"

Transcripción

1 Introducción a la optimización Tomás Arredondo Vidal 7/4/09

2 Esta charla trata de lo siguiente: Algunos aspectos de la optimización basada en derivados.

3 Optimización basada en derivados: La optimización basada en derivados incluye muchos métodos y algoritmos. Tres algoritmos fundamentales son los de pendiente máxima (steepest descent), el método de Newton (Newtons method) y el método Levenberg-Marquart Estos dos métodos son métodos de descenso en la cual la función a minimizar es E(Θ) Θ = [Θ 1, Θ 2,..., Θ n ] T y el objetivo es encontrar un punto minimo Θ = Θ* En general la función E puede ser no linear con respecto al parámetro ajustable Θ.

4 Optimización basada en derivados: Muchas veces E(Θ) es una función compleja (Ej. Powell's quartic function: E(Θ) = E(Θ 1,Θ 2,Θ 3, Θ 4 ) = (Θ Θ 2 ) 2 + 5(Θ 3 -Θ 4 ) 2 + (Θ 2-2Θ 3 ) (Θ 1 -Θ 4 ) 4 Hay que usar un algoritmo iterativo para encontrar y explorar el espacio de búsqueda eficientemente. En métodos iterativos de búsqueda (Ej. buscar el mínimo de una función ) el objetivo principal es encontrar el próximo punto Θ next basado en un vector d en la dirección de avance deseada.

5 Optimización basada en derivados: Θ next = Θ now + d (6.1) En el método iterativo se incluye una tasa de aprendizaje que determina la rapidez con la cual el algoritmo se acerca al mínimo. Usando k como indicador de las iteraciones: Θ k+1 = Θ k + η k d k (6.2) El próximo punto tiene que satisfacer (para minimizar): E(Θ k+1 ) = Θ k + η k d k < E(Θ k )

6 Introducción a la optimización

7 Optimización basada en derivados: La diferencia principal entre los diferentes algoritmos es el procedimiento para calcular las direcciones necesarias para la minimización (d k ) y la determinación del óptimo tamaño de cada paso a seguir (η k ).

8 Métodos para calcular d k basado en : El gradiente de una función diferenciable (E) en el puntoθ es el vector de primeros derivados parciales de E que apunta en dirección al máximo incremento de E y cuya magnitud es la máxima tasa de cambio. g(θ) = E(Θ) = [ E(Θ)/ E(Θ 1 ),..., E(Θ)/ E(Θ n )] g(θ now ) = E(Θ now ) contorno Θ now

9 Métodos para calcular d k basado en : Dado que Φ(η) = E(Θ + ηd) en el cual ζ es el ángulo entre los vectores g y d. Se puede encontrar el valor óptimo de η seleccionando el mínimo de los posibles valores de Φ(η) en una dirección especifica d: η = η* = arg min Φ(η) (6.4) Como se puede apreciar en Fig. 6.2 el mínimo en la dirección inicial d seria el valor η que llegara al punto C. Entonces η* = arg min Φ(η) = arg min E(Θ + ηd)

10 Introducción a la optimización

11 Optimización basada en derivados: Para ser direcciones de descenso el cambio de la función E con respecto a η tiene que ser negativa indicando que E se tiende a minimizar con el cambio de η: Entonces: de( θnow + ηd) φ'(0) = dη η = 0 < 0 Φ'(0) = g T d = g T d cos(ζ(θ now )) < 0 (6.7) g(θ now ) = E(Θ now ) Θ now ζ(θ now ) contorno Posibles direcciones de d Θ next

12 Optimización basada en derivados: Los métodos para el descenso basado en gradiente tienen la siguiente forma general: Θ next = Θ now ηgg (6.9) Claramente cuando d = -Gg la condición (6.7) se mantiene. Dependiendo del método a seguir la matriz G va a causar la deflexión (transformación) del gradiente g y del ángulo ζ.

13 Optimización basada en derivados: Para encontrar el mínimo se quiere encontrar un Θ next que cumpla con que el gradiente sea cero (e.g. un punto estacionario como un mínimo o máximo): g(θ next ) = ( E(Θ)/ Θ) Θ=Θnext = 0 (6.10) Θ now g now = Ε(Θ now ) d E(Θ) Ε(Θ) Θ now Θ next Θ next

14 El método de descenso mas rápido: En el caso que G = I (matriz de identidad) tenemos que: Θ next = Θ now + ηd = Θ now ηgg = Θ now ηg Esto indica que no hay deflexión entre d y el negativo del gradiente g. Visto desde la perspectiva global ir en la dirección de -g puede que no nos lleve a la mínima deseada. Solo si los contornos son esféricos este método nos lleva a la mínima global.

15 Θ next1 Θ next2 g next2

16 El método clásico de Newton: El método de Newton busca el punto mínimo basado en una aproximación cuadrática de la función objetiva E.

17 El método clásico de Newton: Basado en la expansión de Taylor de E(Θ) (6.13): E(Θ) ~ E(Θ now ) + g T (Θ -Θ now ) + 1/2(Θ -Θ now ) T H(Θ -Θ now ) En el cual H es la matriz Hessian consistente del los 2 ndo derivados de E(Θ). Se diferencia (6.13) y se asigna el valor 0 para obtener su mínimo: 0 = g T + H(Θ -Θ now ) (6.14) Si existe el inverso de H es que hay una solución mínima de E(Θ): Θ min = Θ now - H -1 g (6.15)

18 El método clásico de Newton: El paso - H -1 g se denomina el paso de Newton. Hay muchas modificaciones del método de Newton. Entre ellas están: Variar adaptativamente el largo del paso usando η Θ min = Θ now -ηh -1 g (6.17)

19 El método clásico de Newton: Si H no es positive definite se puede agregar una matriz P para hacer que H sea positive definite (o Hermitian) [2] Modificar H al sumarle una matriz P (método Levenberg- Marquart) de tipo positive definite, si P = λi Θ min = Θ now -η(h + λi) -1 g (6.19)

20 El método clásico de Newton: Hay muchos otros aspectos de este tema como condiciones de terminación, optimizaciones y métodos estocásticos (favor ver [1] para mas información).

21 Referencias: [1] Jang, J.-S.R. et al, Neuro-Fuzzy and Soft Computing, Prentice Hall, 1997 [2]

MÉTODOS INDIRECTOS PRIMER ORDEN

MÉTODOS INDIRECTOS PRIMER ORDEN MÉODOS INDIRECOS PRIMER ORDEN Una buena dirección de búsqueda debe reducir la función objetivo tal que si 0 es el punto original y es el nuevo punto entonces: f ( ) f ( 2 ) Una dirección s se llama dirección

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Introducción al algoritmo de máxima pendiente. Análisis de estabilidad y convergencia

Introducción al algoritmo de máxima pendiente. Análisis de estabilidad y convergencia 4.3 Algoritmo de máxima pendiente Introducción al algoritmo de máxima pendiente Aplicación al filtro de Wiener Análisis de estabilidad y convergencia Otras técnicas de optimización Newton-Raphson Levemberg-Marquardt

Más detalles

[ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13]

[ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13] [ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13] Este método se aplica al ajuste de los reguladores de un regulador digital de turbinas hidráulicas.

Más detalles

Apuntes de Computación Científica I 1. Optimización

Apuntes de Computación Científica I 1. Optimización Apuntes de Computación Científica I Optimización 1. Optimización Maximización (de beneficios, flujo,...) o minimización (de costes, recursos, error,...) de una función f(x) Maximizar f(x) es minimizar

Más detalles

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES.

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES. Universidad del Atlántico Revista Del Programa De Matemáticas Páginas: 40 54 Facultad de Ciencias Básicas c Programa de Matemáticas Vol. IV, No 1, (2017) APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE

Más detalles

Least Squared Methods for System Identification. 1. Modelamiento de datos - Least Squared Estimator

Least Squared Methods for System Identification. 1. Modelamiento de datos - Least Squared Estimator 16/4/2011 UNIVERSIDAD TECNICA FEDERICO SANTA MARIA DEPARTAMENTO DE ELECTRONICA ELO325 SoftComputing y Aplicaciones Least Squared Methods for System Identification Tomás Arredondo Vidal - 1. Modelamiento

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Detección Multiusuario para DS-CDMA basado en SVM

Detección Multiusuario para DS-CDMA basado en SVM 9 Otra técnica basada en el aprendizaje y más conocida que la anterior es la basada en. Vamos a realizar una pequeña comparativa teórica de sobre ambas técnicas de clasificación. Estudiaremos los conceptos

Más detalles

Optimización en Ingeniería

Optimización en Ingeniería Optimización en Ingeniería Departamento de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: ccoello@cs.cinvestav.mx El Método de Marquardt Algoritmo Paso 1:

Más detalles

1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE

1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE Practica 1: INTRODUCCIÓN AL USO DE LA HOJA DE CALCULO EXCEL COMO HERRAMIENTA PARA DESARROLLAR PROBLEMAS EN INGENIERÍA. SOLVER, REGRESION LINEAL MULTIPLE I. INTRODUCCION Las planillas de cálculo se han

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa:

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa: Aplicaciones de la Optimización Convea al análisis de redes Bibliograía optimización convea: Nonlinear Programming: nd Edition. by Dimitri P. Bertseas. ISBN: - 88659--. Publication: 999 Conve Optimization,

Más detalles

Análisis aplicado. Direcciones de descenso.

Análisis aplicado. Direcciones de descenso. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. El problema por resolver. El problema por resolver. Problemas reales que se pueden formular como: minimizar

Más detalles

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM Departamento de Matemáticas. ITAM. 2011. Consideraciones http://allman.rhon.itam.mx/ jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual Consideraciones http://allman.rhon.itam.mx/

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Análisis aplicado. Descenso suficiente.

Análisis aplicado. Descenso suficiente. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. El problema por resolver. El problema por resolver. Problemas reales que se pueden formular como: minimizar

Más detalles

Modelos Lineales Generalizados

Modelos Lineales Generalizados Modelos Lineales Generalizados 1 DefinicióndeunMLG Y1,Y2,...,Yn,conmediasµ1,µ2,...,µn,Yi, i=1,...,n,tienefdpmiembrodela familia exponencial a un parámetro, con las siguientes propiedades: 1.LadistribucióndecadaunodelosYi,paratodoi,estáenlaformacanónica,i.e.:

Más detalles

Un Método de Búsqueda Lineal Inexacta

Un Método de Búsqueda Lineal Inexacta Un Método de Búsqueda Lineal Inexacta Iván de Jesús May Cen imaycen@hotmail.com Facultad de Matemáticas, Universidad Autónoma de Yucatán Junio de 2008 Resumen Se presenta un método de búsqueda lineal inexacta

Más detalles

TEMA 5.6 PROGRAMACIÓN NO LINEAL

TEMA 5.6 PROGRAMACIÓN NO LINEAL TEMA 5.6 PROGRAMACIÓN NO LINEAL 5.6.. INTRODUCCIÓN 5.6.. CONCEPTOS BÁSICOS 5.6.. MÉTODO O DE NEWTON ONSN SIN RESTRICCIONES S 5.6.4. MÉTODO DE NEWTON CON RESTRICCIONES. FUNCIONES DE PENALIZACIÓN. INTRODUCCIÓN

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

Optimización en Ingeniería

Optimización en Ingeniería Optimización en Ingeniería Departamento de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: ccoello@cs.cinvestav.mx Métodos para Optimizar Funciones de Varias

Más detalles

ALN - Curso 2007 Gradiente Conjugado

ALN - Curso 2007 Gradiente Conjugado ALN - Curso 27 Gradiente Conjugado Cecilia González Pérez Junio 27 Métodos Iterativos Pueden ser: Métodos estacionarios Métodos no estacionarios Métodos no estacionarios hacen uso de información, evaluada

Más detalles

Ejercicios de optimización sin restricciones

Ejercicios de optimización sin restricciones Ejercicios de optimización sin restricciones Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Curso 5/6 Indica la dirección que el método de Newton (sin modificaciones calcularía

Más detalles

Ceros de Funciones: Multivariable

Ceros de Funciones: Multivariable Ceros de Funciones: Multivariable Prof. Marlliny Monsalve 1 1 Postgrado en Ciencias de la Computación Universidad Central de Venezuela Análisis Numérico May 19, 2015 Prof. Monsalve (UCV) Ceros Multivariable

Más detalles

c j (x) 0 j D c j (x) = 0 j I

c j (x) 0 j D c j (x) = 0 j I INTRODUCCIÓN A LA OPTIMIZACIÓN 1. Introducción 1.1. Generalidades. Dado un conjunto X y una función f : X R (la funciónobjetiva), se desea determinar x X tal que, para todo x X valga f(x) f(x ). La variable

Más detalles

Matemáticas de la Especialdiad

Matemáticas de la Especialdiad Matemáticas de la Especialdiad Ingeniería Eléctrica Grado en Ingeniería Industrial. Curso 2013/2014 Segundo semestre; 4,5 créditos ECTS Programa Fundamentos de los métodos numéricos en la ingeniería Conceptos

Más detalles

Matemáticas de la Especialdiad

Matemáticas de la Especialdiad Matemáticas de la Especialdiad Ingeniería Eléctrica Grado en Ingeniería Industrial. Curso 2014/2015 Segundo semestre, 4,5 créditos ECTS Programa Fundamentos de los métodos numéricos en la ingeniería Conceptos

Más detalles

Matemáticas de la Especialdiad

Matemáticas de la Especialdiad Matemáticas de la Especialdiad Ingeniería Eléctrica Grado en Ingeniería en Tecnologías Industriales. Curso 2015-2016-3º Segundo semestre, 4,5 créditos ECTS Programa Fundamentos de los métodos numéricos

Más detalles

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1 Funciones de mérito José Francisco Tudón Maldonado Mario Roberto Urbina Núñez 9 de abril de 011 1 Introducción Las funciones de mérito surgen para determinar en un algoritmo que resuelve un problema de

Más detalles

Algoritmo de la gradiente descendente

Algoritmo de la gradiente descendente Universidad TELESUP Ingeniería de Sistemas Ciclo 2017-I Algoritmo de la gradiente descendente Gradiente descendente es un algoritmo que nos permite resolver el problema de minimización de una función genérica

Más detalles

Geometría de Señales Espacios de Hilbert y aproximaciones

Geometría de Señales Espacios de Hilbert y aproximaciones Geometría de Señales Espacios de Hilbert y aproximaciones Temario Teorema de Parseval y Conservación de la Norma. Aproximaciones por proyección Ejemplos Teorema de Parseval Sea x la representación de un

Más detalles

CONTENIDO Prefacio CAPITULO 1: Qué es la investigación de operaciones? CAPITULO 2: Introducción a la programación lineal...

CONTENIDO Prefacio CAPITULO 1: Qué es la investigación de operaciones? CAPITULO 2: Introducción a la programación lineal... CONTENIDO Prefacio XV CAPITULO 1: Qué es la investigación de operaciones? 1 1.1 Modelos de investigación de operaciones 1 1.2 Solución del modelo de investigación de operaciones.. 4 1.3 Modelos de colas

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Plan de Estudios 1994

Plan de Estudios 1994 LINEA DE ESTUDIO: MÉTODOS CUANTITATIVOS Programa de la asignatura: MATEMÁTICAS II Objetivo El estudiante establecerá las funciones de varias variables, así como su derivación y aplicaciones a la economía.

Más detalles

Estimación Máxima Verosimilitud

Estimación Máxima Verosimilitud Estimación Máxima Verosimilitud Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Outline Motivación 1 Motivación 2 3 4 5 Estrategias generales de estimación Hay

Más detalles

Identificación Paramétrica

Identificación Paramétrica Identificación Paramétrica Métodos para la Obtención de un Modelo Discreto Un modelo, incluyendo el ruido o perturbación, a tiempo discreto puede ser representado por la siguiente i ecuación Donde: ( )

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

El Perceptrón Multicapa

El Perceptrón Multicapa El Perceptrón Multicapa N entradas M neuronas de salida L: neuronas en la capa oculta E = 1 p M ( zi ( k) yi ( k) ) k = 1 i= 1 Implementación de la función XOR Regiones de clasificación en función del

Más detalles

Material para exámen final

Material para exámen final Cálculo 3, FAMAT-UG, aug-dic, 2006 Material para exámen final Fecha del exámen: 5 dic, 2006 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso 2009-2010) Cuarto Curso de Ingeniero Industrial Optimización y Sistemas de Ecuaciones no Lineales FUNCIONES CONVEXAS. CRITERIOS DE OPTIMALIDAD Un problema

Más detalles

Gradiente conjugado. Miguel Vargas-Félix. CIMAT, August 26, /24

Gradiente conjugado. Miguel Vargas-Félix.  CIMAT, August 26, /24 Gradiente conjugado Miguel Vargas-Félix miguelvargas@cimat.mx http://www.cimat.mx/~miguelvargas CIMAT, August 26, 2015 1/24 Método de gradiente conjugado Es un método iterativo para minimizar funciones

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Introducción. 2.2 Transformaciones de coordenadas: matriz de rotación y ángulos de Euler.

Introducción. 2.2 Transformaciones de coordenadas: matriz de rotación y ángulos de Euler. Agosto 2011 Introducción El análisis cinemático directo nos permite determinar en donde se encuentra el elemento terminal del robot (mano) si se conoce la posición de todas las articulaciones. 15 50 Posición?

Más detalles

Algoritmos de Búsqueda Informados. Tomas Arredondo Vidal 16/6/2010

Algoritmos de Búsqueda Informados. Tomas Arredondo Vidal 16/6/2010 Algoritmos de Búsqueda Informados Tomas Arredondo Vidal 16/6/2010 Algoritmos de Búsqueda Informados Contenidos Best-first search Greedy best-first search A * search Heurísticas Búsqueda local Best-first

Más detalles

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de

Más detalles

UNIDAD TEMÁTICA XIII

UNIDAD TEMÁTICA XIII FUNCIONES DE UNA SOLA VARIABLE UNIDAD TEMÁTICA XIII XIII.1 INTRODUCCIÓN Las funciones de una variable son las más simples dentro del análisis funcional, y mediante ellas se puede describir muchos problemas

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es.

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es. Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es Entonces, Λ = Y0 J 1 = f g f Λ g = 0 Esta ecuación satisface las condiciones necesarias

Más detalles

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES Jacobi El método de Jacobi es un proceso simple de iteraciones de punto fijo en la solución de raíces de una ecuación. La iteración de punto fijo tiene dos problemas fundamentales : Algunas veces no converge

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada CONTROL MODERNO Y ÓPTIMO (MT 227B) Clase09-03 Elizabeth Villota En esta parte presentaremos

Más detalles

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en:

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en: Introducción Eisten dos aproimaciones para resolver el problema de clasificación: Aproimación Generativa (vista en el Tema 3) Basada en: Modelar p(,w)=p( w)p(w) p( w) es la distribución condicional de

Más detalles

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 1. Semestre Otoño 007 Problema 1. Se desea encontrar una raíz de la función f(x) = cos (x) x.

Más detalles

Diseño por ubicación de polos

Diseño por ubicación de polos Control Automático Diseño por ubicación de polos Contenido Introducción Métodos para la ubicación de polos Realimentación de estado Modificación del lugar de las raíces Introducción Para diseñar un regulador

Más detalles

Redes de Neuronas de Base Radial

Redes de Neuronas de Base Radial Redes de Neuronas de Base Radial 1 Introducción Redes multicapa con conexiones hacia delante Única capa oculta Las neuronas ocultas poseen carácter local Cada neurona oculta se activa en una región distinta

Más detalles

Método de mínimos cuadrados (Continuación)

Método de mínimos cuadrados (Continuación) Clase No. 11: MAT 251 Método de mínimos cuadrados (Continuación) Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

4 IDENTIFICACIÓN DE MODELOS LINEALES DE LA PLANTA SOLAR

4 IDENTIFICACIÓN DE MODELOS LINEALES DE LA PLANTA SOLAR 4 IDENTIFICACIÓN DE MODELOS LINEALES DE LA PLANTA SOLAR Los sistemas de E/S quedan determinados por su función de transferencia, que puede expresarse como una función temporal (respuesta impulsional) o

Más detalles

Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014

Solemne 1. Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014 Curso: CII2750 Optimización Profesores: Paul Bosch, Juan Pablo Cavada Fernando Paredes, Pablo Rey Solemne 1 Fecha: Miércoles 7 de mayo de 2014 Semestre Otoño 2014 Problema 1 Una empresa importadora de

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

REDES NEURONALES ADAPTABLES

REDES NEURONALES ADAPTABLES REDES NEURONALES ADAPTABLES Unidad 3: Redes neuronales artificiales y modelos de entrenamiento SubTemas 3.2 Perceptron simple Arquitectura Regla delta Multi Layer Perceptrón 3.3 Redes Neuronales Adaptables

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2007 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2007 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2007 DIURNO INGENIERÍA DE SISTEMAS SEMESTRE ASIGNATURA 7mo OPTIMIZACIÓN NO LINEAL CÓDIGO HORAS MAT-30935

Más detalles

Optimización Fernando Berzal,

Optimización Fernando Berzal, Optimización Fernando Berzal, berzal@acm.org Backpropagation Convergencia del gradiente descendente Momentos Tasas de aprendizaje adaptativas rprop& rmsprop 1 En la práctica Algoritmo de aprendizaje de

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO

1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO Capítulo 1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO INTRODUCCIÓN 1.1. INTRODUCCIÓN Las técnicas de filtrado adaptativo han sido aplicadas con éxito a los sistemas de antenas adaptativas, a problemas

Más detalles

Capítulo 5: CONTROL INVERSO ADAPTATIVO

Capítulo 5: CONTROL INVERSO ADAPTATIVO Capítulo 5: CONTROL INVERSO INTRODUCCIÓN 5.. INTRODUCCIÓN Un sistema de control inverso adaptativo se muestra en la Figura 5. Si el controlador fuese ideal, su función de transferencia sería: C( z) M (

Más detalles

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal PROGRAMA DE CURSO Código MA1003 Nombre del Curso Cálculo en varias variables Unidades Docentes Cátedra Auxiliares Trabajo Personal 10 3 2 5 Requisitos Requisitos específicos Carácter del curso MA1002,

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Estéreo dinámico. Estéreo dinámico

Estéreo dinámico. Estéreo dinámico Estéreo dinámico 1 Vectores locales de desplazamiento Dada una secuencia de imagenes Tomadas a intervalos Movimiento absoluto: movimiento independiente de la cámara Movimiento relativo: movimiento debido

Más detalles

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1

Más detalles

Algoritmo de adaptación LMS

Algoritmo de adaptación LMS Algoritmo de adaptación LMS Alvaro Gómez & Pablo Musé {agomez, pmuse}@fing.edu.uy Departamento de Procesamiento de Señales Instituto de Ingeniería Eléctrica Facultad de Ingeniería Abril de 2018 Introducción

Más detalles

CAPÍTULO 3. Las redes neuronales artificiales, ANNs por sus siglas en inglés, son el resultado de varias

CAPÍTULO 3. Las redes neuronales artificiales, ANNs por sus siglas en inglés, son el resultado de varias CAPÍTULO 3 REDES NEURONALES ARTIFICIALES 3.1 Introducción Las redes neuronales artificiales, ANNs por sus siglas en inglés, son el resultado de varias décadas de investigaciones desarrolladas en torno

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

Anexo 1: Algoritmos de optimización para funciones con ruido

Anexo 1: Algoritmos de optimización para funciones con ruido Anexo : Algoritmos de optimización para funciones con ruido Introducción Los algoritmos que hemos visto hasta el momento no pueden ser implementados si el gradiente de la función objetivo no está disponible

Más detalles

Análisis de Datos. Red de función de base radial. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Red de función de base radial. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Red de función de base radial Profesor: Dr. Wilfrido Gómez Flores 1 Introducción Las funciones de base radial han sido utilizadas en diversas técnicas de reconocimiento de patrones como

Más detalles

ALGORITMOS DE FLUJO DE POTENCIA. Sistemas Eléctricos de Potencia Semestre Otoño 2007 Daniel Olivares Q.

ALGORITMOS DE FLUJO DE POTENCIA. Sistemas Eléctricos de Potencia Semestre Otoño 2007 Daniel Olivares Q. ALGORITMOS DE SOLUCIÓN DEL FLUJO DE POTENCIA Sistemas Eléctricos de Potencia Semestre Otoño 2007 Daniel Olivares Q. Modelamiento Previo (I) () Las Corrientes En términos de la matriz de admitancia En donde

Más detalles

Tema 2 Primeros Modelos Computacionales

Tema 2 Primeros Modelos Computacionales Universidad Carlos III de Madrid OpenCourseWare Redes de Neuronas Artificiales Inés M. Galván - José Mª Valls Tema 2 Primeros Modelos Computacionales 1 Primeros Modelos Computacionales Perceptron simple

Más detalles

Técnicas Avanzadas de Visión por Computador

Técnicas Avanzadas de Visión por Computador Técnicas Avanzadas de Visión por Computador Sistemas Informáticos Avanzados Índice Introducción. Registrado basado en grises. Funciones criterio. Métodos de minimización. Registrado multimodal. Registrado

Más detalles

0pWRGRVGH(UURUGH3UHGLFFLyQ3(0

0pWRGRVGH(UURUGH3UHGLFFLyQ3(0 0pWRGRVGH(UURUGH3UHGLFFLyQ3(0 Se selecciona una estructura de modelo 0, con modelos particulares 0 parametrizados con un S vector de parámetros θ ' R 0 { 0 } 0 = θ ' 0 Se disponen para la estimación de

Más detalles

Torque. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Mecánica - Tercero Medio. Logo-uach

Torque. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Mecánica - Tercero Medio. Logo-uach Liceo de Hombres Manuel Montt Mecánica - Tercero Medio SEMESTRE I 2018 (Momento de Torsión) Existen fuerzas que actúan sobre un cuerpo que pueden afectar su movimiento de traslación, es decir, el movimiento

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

Control Automático Introducción

Control Automático Introducción Control Automático Introducción Contenido Qué es control automático? Tareas y objetivos del control automático Estructuras de los circuitos de regulación Tipos de regulación Efecto de las perturbaciones

Más detalles

EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS

EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 23 de abril de 2011 Contenidos 1 Métodos iterativos para sistemas lineales Técnicas

Más detalles

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13

Programación Lineal. María Muñoz Guillermo Matemáticas I U.P.C.T. M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Programación Lineal María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Programación Lineal Matemáticas I 1 / 13 Qué es la Programación Lineal? Introducción La Programación

Más detalles

3. Métodos de resolución

3. Métodos de resolución 1 3. Métodos de resolución Ecuaciones algebraicas lineales Ecuaciones algebraicas no lineales Métodos para una variable Métodos para multivariable 2 Ecuaciones Algebraicas Lineales No lineales Interval

Más detalles

ELO-325 Introducción a SoftComputing y Aplicaciones. Optimización Sin Derivados. Dr. Tomás Arredondo Vidal. 1er Semestre 2007

ELO-325 Introducción a SoftComputing y Aplicaciones. Optimización Sin Derivados. Dr. Tomás Arredondo Vidal. 1er Semestre 2007 ELO-325 Introducción a SoftComputing y Aplicaciones Optimización Sin Derivados Dr. Tomás Arredondo Vidal 1er Semestre 2007 Todos los métodos a discutir tienen las siguientes características comunes: No

Más detalles

Programa de Asignatura

Programa de Asignatura Departamento de Ingeniería Industrial Programa: Ingeniería Mecatrónica Plan 007- Asignatura: Análisis numérico y programación Clave: 9957 Semestre: VI Tipo: Obligatoria H. Teoría: H Práctica: 3 HSM: 5

Más detalles

SOLUCIÓN EN DIFERENCIAS FINITAS DE LA ECUACIÓN DE RICHARDS APLICANDO EL GRADIENTE CONJUGADO PARA PROBLEMAS NO LINEALES

SOLUCIÓN EN DIFERENCIAS FINITAS DE LA ECUACIÓN DE RICHARDS APLICANDO EL GRADIENTE CONJUGADO PARA PROBLEMAS NO LINEALES SOLUCIÓN EN DIFERENCIAS FINITAS DE LA ECUACIÓN DE RICHARDS APLICANDO EL GRADIENTE CONJUGADO PARA PROBLEMAS NO LINEALES LMA Juan Carlos Mota Escamilla Dr. Carlos Alberto Chávez García I CONGRESO NACIONAL

Más detalles

Teoría de redes y optimización en redes

Teoría de redes y optimización en redes Teoría de redes y optimización en redes Pedro Sánchez Martín Contenidos Definiciones básicas Árbol generador mínimo de expansión Camino mínimo Algoritmo Dkstra Algoritmo Bellman-Ford Fluo máximo Fluo de

Más detalles

4.5 Algoritmo RLS (Recursive Least Squares)

4.5 Algoritmo RLS (Recursive Least Squares) 4.5 Algoritmo RLS (Recursive Least Squares) Método de mínimos cuadrados (LS) Ecuaciones normales Pseudoinversa Variantes del LS Algoritmo RLS (Recursive Least Squares) Introducción Cálculo recursivo de

Más detalles

Universidad De San Buenaventura CALI Guía de Métodos Numéricos Ingeniería Multimedia

Universidad De San Buenaventura CALI Guía de Métodos Numéricos Ingeniería Multimedia MÉTODO DE BISECCIÓN El método de bisección, es un algoritmo de búsqueda de raíces, que trabaja dividiendo el intervalo a la mitad y seleccionando el subintervalo que posee la raíz. Si la función es continua

Más detalles

ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES

ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES ANEXO II.- TEORÍA SOBRE REDES NEURONALES ARTIFICIALES 1. Concepto de red neuronal artificial Una red neuronal artificial (RNA) es un modelo matemático que intenta reproducir el modo de funcionamiento y

Más detalles

OTRAS CONSIDERACIONES. Introducción a las Redes Neuronales Artificiales

OTRAS CONSIDERACIONES. Introducción a las Redes Neuronales Artificiales OTRAS CONSIDERACIONES! Estrategias para generalización Existen diversas estrategias para mejorar la generalización: 1) Teoría de Regularización: Agregar una penalidad para lograr mejorar la forma de la

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain)

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) Ceros de funciones Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Índice Objetivos Esquemas iterativos

Más detalles