Análisis aplicado. Descenso suficiente.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis aplicado. Descenso suficiente."

Transcripción

1 José Luis Morales jmorales Departamento de Matemáticas. ITAM

2 El problema por resolver.

3 El problema por resolver. Problemas reales que se pueden formular como: minimizar f (x), f : R n R, en donde f es una función con derivadas continuas de orden 2.

4 El problema por resolver. Problemas reales que se pueden formular como: minimizar f (x), f : R n R, en donde f es una función con derivadas continuas de orden 2. Optimización diferenciable.

5 Cuantificar descenso. f (x k + αp k ) f (x k ) = αp T k f (x k) + O(α 2 ), α > 0. Supongamos que p k es una dirección de descenso: f k p k < 0. Entonces es posible encontrar α k > 0 tal que f (x k+1 ) = f (x k + α k p k ) < f (x k ). Notación: al escalar α k se le llama el paso Riesgos

6 Cuantificar descenso. f (x k + αp k ) f (x k ) = αp T k f (x k) + O(α 2 ), α > 0. Supongamos que p k es una dirección de descenso: f k p k < 0. Entonces es posible encontrar α k > 0 tal que f (x k+1 ) = f (x k + α k p k ) < f (x k ). Notación: al escalar α k se le llama el paso Riesgos Pasos cortos: α k 0 = f (x k ) f (x k+1 ) 0.

7 Cuantificar descenso. f (x k + αp k ) f (x k ) = αp T k f (x k) + O(α 2 ), α > 0. Supongamos que p k es una dirección de descenso: f k p k < 0. Entonces es posible encontrar α k > 0 tal que f (x k+1 ) = f (x k + α k p k ) < f (x k ). Notación: al escalar α k se le llama el paso Riesgos Pasos cortos: α k 0 = f (x k ) f (x k+1 ) 0. Direcciones poco productivas. Ejemplo p T k f (x k) 0 = f (x k ) f (x k+1 ) 0

8 Contraejemplo A. Descenso insuficiente. (Pasos cortos.) Sea f (x) = x 2 con punto inicial x 0 = 2. La dirección de descenso siempre es p k = 1 con pasos α k = 2 k+1 {x k } = {2, 3 2, 5 4, 9 8,... } = {1 + 2 k }. f (x k ) decrece monótonamente y converge a 1, que no es un mínimo de f.

9 Contraejemplo B. Descenso insuficiente. (Direcciones zigzagueantes.) Sea f (x) = x 2 con punto inicial x 0 = 2. Las direcciones de descenso son p k = ( 1) k+1 con pasos α k = 2 + 3(2 k 1 ) {x k } = {2, 3 2, 5 4, 9 8,...} = {( 1)k (1 + 2 k ) f (x k ) decrece monótonamente y converge a 1, que no es un mínimo de f. La sucesión {x k } diverge y tiene dos puntos de acumulación.

10 Pasos cortos. Pasos cortos, descenso insuficiente f(x) = x x

11 Direcciones improductivas. 4 Direcciones zigzagueantes, descenso insuficiente f(x) = x x

12 Métodología para generar direcciones de descenso. Modelos locales: minimizar m(p) = f (x k ) + p T f (x k ) pt B k p,

13 Métodología para generar direcciones de descenso. Modelos locales: minimizar m(p) = f (x k ) + p T f (x k ) pt B k p, Método del gradiente B k = I, p k = f (x k )

14 Métodología para generar direcciones de descenso. Modelos locales: minimizar m(p) = f (x k ) + p T f (x k ) pt B k p, Método del gradiente B k = I, p k = f (x k ) Método de Newton ( 2 f (x k ) spd) B k = 2 f (x k ), p k = [ 2 f (x k )] 1 f (x k )

15 Métodología para generar direcciones de descenso. Modelos locales: minimizar m(p) = f (x k ) + p T f (x k ) pt B k p, Método del gradiente B k = I, p k = f (x k ) Método de Newton ( 2 f (x k ) spd) B k = 2 f (x k ), p k = [ 2 f (x k )] 1 f (x k ) Métodos cuasi-newton (B k spd) B k 2 f (x k ), p k = B 1 k f (x k)

16 Métodología para calcular los pasos Búsqueda lineal: Si p k es una dirección de descenso, entonces α k = arg min f (x k + αp k ), α (0,1]. En la práctica, búsqueda lineal inexacta, α k es una aproximación al primer minimizador local de f (x k + αp k ).

17 Método de máximo descenso EJEMPLO: Método de máximo descenso para cuadráticas estrictamente convexas: f (x) = a + b T x xt Ax, A spd. Escoger x 0 una aproximación inicial. Desde k = 0 hasta convergencia p k α k x k+1 = f k = arg min f (x k + αp k ) α = x k + α k p k α k = f T k f k f T k A f k

18 Método de Nelder-Mead. x 0 = (1, 1) T 2 x x

19 Método de gradiente. x 0 = (1, 1) T 2 x x

20 Método de gradiente. x 0 = (1.8, 0.1) T 2 x x

Análisis aplicado. Direcciones de descenso.

Análisis aplicado. Direcciones de descenso. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. El problema por resolver. El problema por resolver. Problemas reales que se pueden formular como: minimizar

Más detalles

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM Departamento de Matemáticas. ITAM. 2011. Consideraciones http://allman.rhon.itam.mx/ jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual Consideraciones http://allman.rhon.itam.mx/

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Un Método de Búsqueda Lineal Inexacta

Un Método de Búsqueda Lineal Inexacta Un Método de Búsqueda Lineal Inexacta Iván de Jesús May Cen imaycen@hotmail.com Facultad de Matemáticas, Universidad Autónoma de Yucatán Junio de 2008 Resumen Se presenta un método de búsqueda lineal inexacta

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Análisis aplicado. Ax = b. Gradiente conjugado.

Análisis aplicado. Ax = b. Gradiente conjugado. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. Cuadráticas estrictamente convexas. φ(x) = 1 2 xt Ax b T x, A R n n minimizar φ(x) Ax = b. Cuadráticas estrictamente

Más detalles

Método de Gradientes Conjugados.

Método de Gradientes Conjugados. Método de Gradientes Conjugados. Lourdes Fabiola Uribe Richaud & Juan Esaú Trejo Espino. Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas February 17, 2015 1 Método de Direcciones

Más detalles

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES.

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES. Universidad del Atlántico Revista Del Programa De Matemáticas Páginas: 40 54 Facultad de Ciencias Básicas c Programa de Matemáticas Vol. IV, No 1, (2017) APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE

Más detalles

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso 2009-2010) Cuarto Curso de Ingeniero Industrial Optimización y Sistemas de Ecuaciones no Lineales FUNCIONES CONVEXAS. CRITERIOS DE OPTIMALIDAD Un problema

Más detalles

Ejercicios de optimización sin restricciones

Ejercicios de optimización sin restricciones Ejercicios de optimización sin restricciones Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Curso 5/6 Indica la dirección que el método de Newton (sin modificaciones calcularía

Más detalles

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1 Funciones de mérito José Francisco Tudón Maldonado Mario Roberto Urbina Núñez 9 de abril de 011 1 Introducción Las funciones de mérito surgen para determinar en un algoritmo que resuelve un problema de

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Minimización de una forma cuadrática sobre una recta (ejercicios)

Minimización de una forma cuadrática sobre una recta (ejercicios) Minimización de una forma cuadrática sobre una recta (ejercicios) Objetivos. Dada una forma cuadrática positiva definida, encontrar su mínimo sobre una recta dada. Mostrar que en el punto mínimo el gradiente

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

MÉTODOS MATEMÁTICOS (Curso ) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla

MÉTODOS MATEMÁTICOS (Curso ) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla MÉTODOS MATEMÁTICOS (Curso 2006-2007) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla LECCIÓN 6: OPTIMIZACIÓN NO LINEAL 1. Funciones convexas. Criterios

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

310. T. P. Versión 1 Trabajo Práctico 1/5 Lapso

310. T. P. Versión 1 Trabajo Práctico 1/5 Lapso 310. T. P. Versión 1 Trabajo Práctico 1/5 UNIVERSIDAD NACIONAL ABIERTA ÁREA DE INGENIERÍA CARRERA INGENIERÍA DE SISTEMAS TRABAJO PRÁCTICO: ASIGNATURA: OPTIMIZACIÓN NO LINEAL CÓDIGO: 310 FECHA DE ENTREGA

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

Ceros de Funciones: Multivariable

Ceros de Funciones: Multivariable Ceros de Funciones: Multivariable Prof. Marlliny Monsalve 1 1 Postgrado en Ciencias de la Computación Universidad Central de Venezuela Análisis Numérico May 19, 2015 Prof. Monsalve (UCV) Ceros Multivariable

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos.

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos. Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria.. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice

Más detalles

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal PROGRAMA DE CURSO Código MA1003 Nombre del Curso Cálculo en varias variables Unidades Docentes Cátedra Auxiliares Trabajo Personal 10 3 2 5 Requisitos Requisitos específicos Carácter del curso MA1002,

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Tema 7: Programación matemática

Tema 7: Programación matemática Tema 7: Programación matemática Formulación general: Optimizar f( x) sujeto a x X f : D R n R..................................................................... función objetivo x = (x 1, x 2,..., x

Más detalles

ALN - Curso 2007 Gradiente Conjugado

ALN - Curso 2007 Gradiente Conjugado ALN - Curso 27 Gradiente Conjugado Cecilia González Pérez Junio 27 Métodos Iterativos Pueden ser: Métodos estacionarios Métodos no estacionarios Métodos no estacionarios hacen uso de información, evaluada

Más detalles

Ecuaciones Diferenciales Ordinarias y Simulación con Matlab

Ecuaciones Diferenciales Ordinarias y Simulación con Matlab Ecuaciones Diferenciales Ordinarias y Simulación con Matlab L. Héctor Juárez Valencia y M a Luisa Sandoval Solís Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, D. F., México

Más detalles

Relación de ejercicios 5

Relación de ejercicios 5 Relación de ejercicios 5 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 51 Halla un intervalo, para el cero más próximo al origen,

Más detalles

EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS

EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 23 de abril de 2011 Contenidos 1 Métodos iterativos para sistemas lineales Técnicas

Más detalles

Técnicas de optimización. Introducción.

Técnicas de optimización. Introducción. Técnicas de optimización. Introducción. Diego A. Patino Pontificia Universidad Javeriana 18 de julio de 2016 1/ 20 Definición Composición Tipos de problemas Ejemplos 2/ 20 Qué es optimización? 3/ 20 Qué

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO. Decanato de Ciencias y Tecnología Licenciatura en Ciencias Matemáticas ROSMARY MONTERO

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO. Decanato de Ciencias y Tecnología Licenciatura en Ciencias Matemáticas ROSMARY MONTERO UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO Decanato de Ciencias y Tecnología Licenciatura en Ciencias Matemáticas MÉTODO DE DESCENSO CON UNA NUEVA BÚSQUEDA LINEAL PARA RESOLVER PROBLEMAS DE OPTIMIZACIÓN

Más detalles

Métodos Numéricos I. Curso Colección de Problemas Capítulo 3. Ecuaciones no lineales. Iteración funcional HOJA 1

Métodos Numéricos I. Curso Colección de Problemas Capítulo 3. Ecuaciones no lineales. Iteración funcional HOJA 1 HOJA 1 1. Determinase que la función f(x) = x 3 + 4x 2 10 tiene una única raíz α en I = [1; 2]. Estime teóricamente cuántas iteraciones serán necesarias utilizando el método de bisección, para hallar un

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b,el procedimiento de la bisección genera una sucesión (s n ) n convergente siendo s n a n b n ytal 2 que si lim s n s se cumple que f s y n s n

Más detalles

Clase 6: Multiplicadores de Lagrange II

Clase 6: Multiplicadores de Lagrange II ONO Clase 6: Multiplicadores de Lagrange II 1 Clase 6: Multiplicadores de Lagrange II Ignacio Ramírez 31 de agosto de 2016 Estos apuntes son preliminares y en buena parte están incompletos, pero sirven

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

PROGRAMA DE CURSO. Código Nombre MA2001 Cálculo en Varias Variables. Nombre en Inglés Multivariable calculus SCT ,0 2,0 5,0

PROGRAMA DE CURSO. Código Nombre MA2001 Cálculo en Varias Variables. Nombre en Inglés Multivariable calculus SCT ,0 2,0 5,0 Código Nombre MA2001 Cálculo en Varias Variables PROGRAMA DE CURSO Nombre en Inglés Multivariable calculus es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0

Más detalles

Universidad Autónoma del Estado de México Licenciatura en Matemáticas Programa de Estudios: Introducción a la Optimización

Universidad Autónoma del Estado de México Licenciatura en Matemáticas Programa de Estudios: Introducción a la Optimización Universidad Autónoma del Estado de México Licenciatura en Matemáticas 2003 Programa de Estudios: Introducción a la Optimización I. Datos de identificación Licenciatura Matemáticas 2003 Unidad de aprendizaje

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas ITESM Métodos Iterativos para Resolver Sistemas Lineales Álgebra Lineal - p. 1/30 En esta lectura veremos

Más detalles

Métodos matemáticos: Análisis funcional

Métodos matemáticos: Análisis funcional Métodos matemáticos: Análisis funcional Conceptos y resultados fundamentales Curso 2011/2012 Aquí encontrarás los Teoremas hay que saber para el primer parcial ( 1) así como las definiciones, problemas

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE CELULARES U OTROS EQUIPOS DE COMUNICACION

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES

METODOS DE SOLUCION DE SISTEMAS DE ECUACIONES Jacobi El método de Jacobi es un proceso simple de iteraciones de punto fijo en la solución de raíces de una ecuación. La iteración de punto fijo tiene dos problemas fundamentales : Algunas veces no converge

Más detalles

Práctico de Optimización

Práctico de Optimización Práctico de Optimización Modelado de Redes de Telecomunicaciones 24 de mayo de 2011 1. Repaso Minimización sin restricciones de una función cuadrática. Encontrar el gradiente, el Hessiano, los puntos estacionarios

Más detalles

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011 Método de Newton Cálculo numérico. Notas de clase. 25 de abril, 2011 La resolución de sistemas de ecuaciones algebraicas no lineales de la forma F(x) = 0, F : R n R n, (1) en donde F es una función continua

Más detalles

Aplicaciones de la optimización. Algoritmos para la eliminación de ruido

Aplicaciones de la optimización. Algoritmos para la eliminación de ruido Aplicaciones de la optimización. Algoritmos para la eliminación de ruido Contenidos Método del gradiente para problemas sin restricciones. Un ejemplo general Eliminación de ruido en imágenes Método del

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa:

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa: Aplicaciones de la Optimización Convea al análisis de redes Bibliograía optimización convea: Nonlinear Programming: nd Edition. by Dimitri P. Bertseas. ISBN: - 88659--. Publication: 999 Conve Optimization,

Más detalles

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Ejercicio 1. Resolver los siguientes sistemas

Más detalles

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo).

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo). En los ejercicios, cuando se hable de un entero (un número entero), se trata de un entero del lenguaje C. Por ejemplo, 10 20 es un número entero en el sentido matemático, pero muy posiblemente este entero

Más detalles

Métodos de gradiente. Métodos de Krylov

Métodos de gradiente. Métodos de Krylov Métodos de gradiente. Métodos de Krylov Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2012-2013 (UPV) Métodos de gradiente. Métodos de Krylov Curso

Más detalles

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1) CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de

Más detalles

Método de Newton Inexacto para Sistemas No Lineales de Gran Escala. NITSOL: Código en FORTRAN para estos problemas

Método de Newton Inexacto para Sistemas No Lineales de Gran Escala. NITSOL: Código en FORTRAN para estos problemas Método de Newton Inexacto para Sistemas No Lineales de Gran Escala. NITSOL: Código en FORTRAN para estos problemas Isidro A. Abelló Ugalde Seminario Semanal del Laboratorio de Cómputo Científico Posgrado

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

Inecuaciones Lineales en una Variable Real

Inecuaciones Lineales en una Variable Real en una Variable Real Carlos A. Rivera-Morales Matemática Preuniversitaria Tabla de Contenido Contenido : Contenido Discutiremos: resolver inecuaciones lineales en una variable real. : Contenido Discutiremos:

Más detalles

OPTIMIZACIÓN NO LINEAL UNIDIMENSIONAL

OPTIMIZACIÓN NO LINEAL UNIDIMENSIONAL de Abril de 208 OPTIMIZACIÓN NO LINEAL UNIDIMENSIONAL (Parte 2) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación No Lineal José Luis Quintero

Más detalles

Optimización en Ingeniería

Optimización en Ingeniería Optimización en Ingeniería Departamento de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: ccoello@cs.cinvestav.mx El Método de Marquardt Algoritmo Paso 1:

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Introducción al Cálculo Numérico

Introducción al Cálculo Numérico Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Cálculo del área de una superficie vía un Método no Monótono 1

Cálculo del área de una superficie vía un Método no Monótono 1 Cálculo del área de una superficie vía un Método no Monótono OE Mandrini, MC Maciel y MG Mendonça Resumen En este trabajo se presenta una forma novedosa de resolver un problema de optimización clásico

Más detalles

Héctor Manuel Mora Escobar. Dpto. Matemáticas, U. Nacional, Bogotá.

Héctor Manuel Mora Escobar. Dpto. Matemáticas, U. Nacional, Bogotá. OPTIMIZACIÓN NO DIFERENCIABLE Héctor Manuel Mora Escobar Dpto. Matemáticas, U. Nacional, Bogotá hmora@matematicas.unal.edu.co I CONGRESO DE OPTIMIZACIÓN DPTO. DE MATEMÁTICAS UNIVERSIDAD DEL CAUCA 4-6 septiembre

Más detalles

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0 CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo

Más detalles

Optimización con restricciones de desigualdad. Yolanda Hinojosa

Optimización con restricciones de desigualdad. Yolanda Hinojosa Optimización con restricciones de desigualdad Yolanda Hinojosa Contenido Optimización no lineal con restricciones de desigualdad. Condiciones necesarias y suficientes de óptimo Análisis de sensibilidad.

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain)

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) Ceros de funciones Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Índice Objetivos Esquemas iterativos

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

MATEMÁTICAS II Notas de clase

MATEMÁTICAS II Notas de clase MATEMÁTICAS II Notas de clase Ramón Espinosa Departamento de Matemáticas, ITAM Resumen El propósito de estas notas es presentar algunos temas que se ven en el curso de Matemáticas II en el ITAM. En particular

Más detalles

Guía para el Ejemplo 1 de otimización con restricciones de igualdad

Guía para el Ejemplo 1 de otimización con restricciones de igualdad Guía para el Ejemplo de otimización con restricciones de igualdad Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Trabajaremos resolviendo el siguiente problema de optimización

Más detalles

Práctica 8 Series de Fourier

Práctica 8 Series de Fourier MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge

Más detalles

CEROS DE FUNCIONES. Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC)

CEROS DE FUNCIONES. Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC) CEROS DE FUNCIONES Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC) http://www-lacan.upc.edu Diseño de un colector solar Diseño óptimo de un colector solar plano para obtener

Más detalles

TEMA 5.6 PROGRAMACIÓN NO LINEAL

TEMA 5.6 PROGRAMACIÓN NO LINEAL TEMA 5.6 PROGRAMACIÓN NO LINEAL 5.6.. INTRODUCCIÓN 5.6.. CONCEPTOS BÁSICOS 5.6.. MÉTODO O DE NEWTON ONSN SIN RESTRICCIONES S 5.6.4. MÉTODO DE NEWTON CON RESTRICCIONES. FUNCIONES DE PENALIZACIÓN. INTRODUCCIÓN

Más detalles

Optimización. Dr. Félix Calderon Solorio

Optimización. Dr. Félix Calderon Solorio Optimización Dr. Félix Calderon Solorio 15 de junio de 2018 Índice general Búsqueda uní dimensional 1 1.1. Búsqueda exhaustiva............................... 1 1.1.1. Ejemplo..................................

Más detalles

Métodos iterativos para resolver sistemas de ecuaciones lineales

Métodos iterativos para resolver sistemas de ecuaciones lineales Clase No. 8 (Parte 1): MAT 251 Métodos iterativos para resolver sistemas de ecuaciones lineales Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Estudio unificado de métodos de alto orden para ecuaciones no lineales

Estudio unificado de métodos de alto orden para ecuaciones no lineales XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 pp. 1 6) Estudio unificado de métodos de alto orden para ecuaciones no lineales

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

Soluciones del capítulo 9 Optimización Estática

Soluciones del capítulo 9 Optimización Estática Soluciones del capítulo 9 Optimización Estática Héctor Lomelí y Beatriz Rumbos 6 de febrero de 00 9 Sean A y B dos subconjuntos convexos de R n : b Sea A + B = {a + b : a A y b B} y sean x, y A + B Se

Más detalles

Método de Cauchy Relajado y Método de Cauchy-Barzilai-Borwein

Método de Cauchy Relajado y Método de Cauchy-Barzilai-Borwein UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO Decanato de Ciencias y Tecnología Licenciatura en Ciencias Matemáticas Método de Cauchy Relajado y Método de Cauchy-Barzilai-Borwein Trabajo Especial de Grado

Más detalles

MÉTODO DE NEWTON RAPHSON

MÉTODO DE NEWTON RAPHSON Consiste en elegir un punto inicial cualquiera Po como aproximación de la raíz. Una buena aproximación inicial es aquella para la cual resulta válida la desigualdad: (Po) f (Po) > 0 Es importante tener

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

Facultad de Física. Métodos Numéricos

Facultad de Física. Métodos Numéricos Facultad de Física Métodos Numéricos Dr. Antonio Marín Hernández Centro de Investigación en Inteligencia Artificial Universidad Veracruzana Sebastían Camacho # 5 Xalapa, Veracruz lineales 1. Método de

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y

5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y 5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 5.1.1. El problema de la tangente. Derivada. Pierre de Fermat tenía una

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Introducción a la optimización. Tomás Arredondo Vidal 7/4/09

Introducción a la optimización. Tomás Arredondo Vidal 7/4/09 Introducción a la optimización Tomás Arredondo Vidal 7/4/09 Esta charla trata de lo siguiente: Algunos aspectos de la optimización basada en derivados. Optimización basada en derivados: La optimización

Más detalles

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 9 de Septiembre de 7 Soluciones. ( puntos Tu empresa proporciona automóviles a algunos de sus

Más detalles

f(x(t), y(t), z(t)) = k

f(x(t), y(t), z(t)) = k Plano tangente a cuádrica Cada una de las supercies cuádricas es el lugar geométrico de los punto del espacio que satisfacen una ecuación polinomial en tres variables, el problema de dar un método para

Más detalles