Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM"

Transcripción

1 Departamento de Matemáticas. ITAM

2 Consideraciones jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual

3 Consideraciones jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual

4 Consideraciones jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual

5 Consideraciones jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual

6 Consideraciones jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual

7 Consideraciones jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual

8 El problema por resolver minimizar sujeta a f (x) l x u en donde f es una función 2 veces continuamente diferenciable. La notación x u indica x i u i, i = 1,...,n

9 Dificultades técnicas (casos reales) No es posible encontrar una solución en forma cerrada. f no convexa el número de variables, n 10 6 algoritmos: {x k }, k = 0,1,... calcular/aproximar: f (x), f (x), 2 f (x) x N : aproximación a un minimizador local x.

10 Dificultades técnicas (casos reales) No es posible encontrar una solución en forma cerrada. f no convexa el número de variables, n 10 6 algoritmos: {x k }, k = 0,1,... calcular/aproximar: f (x), f (x), 2 f (x) x N : aproximación a un minimizador local x.

11 Dificultades técnicas (casos reales) No es posible encontrar una solución en forma cerrada. f no convexa el número de variables, n 10 6 algoritmos: {x k }, k = 0,1,... calcular/aproximar: f (x), f (x), 2 f (x) x N : aproximación a un minimizador local x.

12 Dificultades técnicas (casos reales) No es posible encontrar una solución en forma cerrada. f no convexa el número de variables, n 10 6 algoritmos: {x k }, k = 0,1,... calcular/aproximar: f (x), f (x), 2 f (x) x N : aproximación a un minimizador local x.

13 Dificultades técnicas (casos reales) No es posible encontrar una solución en forma cerrada. f no convexa el número de variables, n 10 6 algoritmos: {x k }, k = 0,1,... calcular/aproximar: f (x), f (x), 2 f (x) x N : aproximación a un minimizador local x.

14 Dificultades técnicas (casos reales) No es posible encontrar una solución en forma cerrada. f no convexa el número de variables, n 10 6 algoritmos: {x k }, k = 0,1,... calcular/aproximar: f (x), f (x), 2 f (x) x N : aproximación a un minimizador local x.

15 Dificultades técnicas (casos reales) No es posible encontrar una solución en forma cerrada. f no convexa el número de variables, n 10 6 algoritmos: {x k }, k = 0,1,... calcular/aproximar: f (x), f (x), 2 f (x) x N : aproximación a un minimizador local x.

16 Optimización con restricciones generales minimizar f (x) x R n sujeta a c(x) 0, Reformulación con variables de holgura minimizar x R n, s R m f (x) sujeta a c(x) s = 0, s 0 L k : T 2 minimizar x R n f (x) (c(x) s) λ k + µ k c(x) s sujeta a s 0 λ vector de multiplicadores de Lagrange, µ parámetro de penalización. µ k.

17 Optimización con cotas simples. minimizar f (x), x R n sujeta a l x u. Alternativas Métodos de puntos interiores. Métodos basados en conjuntos activos. Métodos estudiados en el curso de programación lineal.

18 Estadística Conjunto de observaciones: {x i, i = 1,2,...,n}. Función de distribución de probabilidades: f (k,λ;x) = λk Γ(k) xk 1 e λx, Γ(k) = 0 s k 1 e s ds Estimar los parámetros (k,λ) a partir de las observaciones siguiendo el principio de máxima verosimilitud. maximizar k,λ n f (k,λ;x i ) i=1

19 Estadística Conjunto de observaciones: {x i, i = 1,2,...,n}. Función de distribución de probabilidades: f (k,λ;x) = λk Γ(k) xk 1 e λx, Γ(k) = 0 s k 1 e s ds Estimar los parámetros (k,λ) a partir de las observaciones siguiendo el principio de máxima verosimilitud. maximizar k,λ n f (k,λ;x i ) i=1

20 Estadística Conjunto de observaciones: {x i, i = 1,2,...,n}. Función de distribución de probabilidades: f (k,λ;x) = λk Γ(k) xk 1 e λx, Γ(k) = 0 s k 1 e s ds Estimar los parámetros (k,λ) a partir de las observaciones siguiendo el principio de máxima verosimilitud. maximizar k,λ n f (k,λ;x i ) i=1

21 Estadística Conjunto de observaciones: {x i, i = 1,2,...,n}. Función de distribución de probabilidades: f (k,λ;x) = λk Γ(k) xk 1 e λx, Γ(k) = 0 s k 1 e s ds Estimar los parámetros (k,λ) a partir de las observaciones siguiendo el principio de máxima verosimilitud. maximizar k,λ n f (k,λ;x i ) i=1

22 Reconstrucción de imágenes (deconvolución) Ax = y, A R n n A modela la distorsión; A muy mal condicionada. x es la imagen real. y es la imagen nublada minimizar x R n Ax y δ x 2 2, Ejemplo: A R ; x R

23 Ajuste de parámetros Modelo lineal Ax = y, A R m n, m > n A es de rango completo; x es el vector de parámetros; y es el vector de observaciones. y no está en el espacio generado por las columnas de A. Obtener un vector x sparse. Minimizar el número de parámetros. minimizar x R n Ax y δ x 1,

24 Ajuste de parámetros Modelo lineal Ax = y, A R m n, m > n A es de rango completo; x es el vector de parámetros; y es el vector de observaciones. y no está en el espacio generado por las columnas de A. Obtener un vector x sparse. Minimizar el número de parámetros. minimizar x R n Ax y δ x 1,

25 Ajuste de parámetros Modelo lineal Ax = y, A R m n, m > n A es de rango completo; x es el vector de parámetros; y es el vector de observaciones. y no está en el espacio generado por las columnas de A. Obtener un vector x sparse. Minimizar el número de parámetros. minimizar x R n Ax y δ x 1,

26 Objetivos generales Formular y resolver problemas reales utilizando métodos de optimización. Estudiar algoritmos que resuelven eficientemente el problema de optimización sin restricciones. Un algoritmo genera una sucesión de aproximaciones {x k } k=0 x, x es un minimizador local de f. Teoría de convergencia global: x 0 cualquier aproximación inicial. Teoría de convergencia local. Tasa cuadrática/superlineal.

27 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

28 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

29 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

30 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

31 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

32 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

33 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

34 Contenido 1 Motivación y antecedentes 2 Fundamentos. Caracterización de una solución. 3 Algoritmos I: búsquedas lineales. Análisis de convergencia. 4 Algoritmos II: regiones de confianza. Análisis de convergencia. 5 Gradiente conjugado. Análisis de convergencia. 6 Métodos de Newton prácticos. 7 Métodos quasi-newton. Análisis de convergencia.

35 Motivación y antecedentes 1 Teorema de Taylor en varias variables. 2 Diferenciabilidad. Diferencias finitas. Diferenciación automática. 3 Propiedades teóricas de matrices simétricas. 4 Cálculo de valores y vectores propios de una matriz simétrica. 5 Matrices de rango 1. Fórmula de Sherman-Morrison-Woodbury. 6 Normas matriciales. Propiedades de normas. 7 Método de Newton y variantes. Análisis de convergencia local.

36 Direcciones de descenso f (x k + αp) = f (x k ) + α f (x k ) T p + α 21 2 pt 2 f (x k + θαp)p 0 < θ < 1, α > 0. p T k f k < 0, Modelo local cuadrático de f : m k (x k + p) = f k + p T f k pt B k p en donde B k es simétrica positiva definida. p k = argmin p m k (x k + p)

37 Propiedades de m k m k es una función diferenciable estrictamente convexa. Condición de optimalidad (KKT) Unicidad de la solución m k (p) = B k p k + f k = 0. p k = B 1 k f k. Descenso p T k f k = f T k B 1 k f k < 0.

38 Direcciones de descenso II Modelo local cuadrático de f : p T k f k < 0. m k (x k + p) = f k + p T f k pt B k p, en donde B k es simétrica (B k = 2 f (x)) p k = argmin p k m k (x k + p)

Análisis aplicado. Direcciones de descenso.

Análisis aplicado. Direcciones de descenso. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. El problema por resolver. El problema por resolver. Problemas reales que se pueden formular como: minimizar

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Análisis aplicado. Descenso suficiente.

Análisis aplicado. Descenso suficiente. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. El problema por resolver. El problema por resolver. Problemas reales que se pueden formular como: minimizar

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1 Funciones de mérito José Francisco Tudón Maldonado Mario Roberto Urbina Núñez 9 de abril de 011 1 Introducción Las funciones de mérito surgen para determinar en un algoritmo que resuelve un problema de

Más detalles

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR Optimización bajo Incertidumbre 0. Revisión Carlos Testuri Germán Ferrari Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR 2003-17 Contenido 1 Revisión Probabilidad

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

OPTIMIZACION MATEMATICA (4,5 Créditos)

OPTIMIZACION MATEMATICA (4,5 Créditos) DEPARTAMENTO ECONOMIA FINANCIERA Y CONTABILIDAD I LICENCIATURA EN ADMINISTRACION Y DIRECCION DE EMPRESAS Plan 2000 OPTIMIZACION MATEMATICA (4,5 Créditos) Código 628 Profesora: Eva Mª. del Pozo García Asignatura

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal PROGRAMA DE CURSO Código MA1003 Nombre del Curso Cálculo en varias variables Unidades Docentes Cátedra Auxiliares Trabajo Personal 10 3 2 5 Requisitos Requisitos específicos Carácter del curso MA1002,

Más detalles

2 OBJETIVOS TERMINALES. Como resultado del proceso de aprendizaje activo del curso, el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES. Como resultado del proceso de aprendizaje activo del curso, el estudiante estará en capacidad de: MATERIA: Matemáticas para Economía CÓDIGO: 08307 REQUISITOS: Cálculo integral (08301), Teoría de Probabilidades (08131) PROGRAMAS: Economía y Negocios Internacionales, Economía con énfasis en Políticas

Más detalles

Programación lineal. Estimar M. Ejemplos.

Programación lineal. Estimar M. Ejemplos. Departamento de Matemáticas. ITAM. 2010. Los problemas P y P minimizar x c T x sujeta a Ax = b, x 0, b 0 minimizar c T x + M(y 1 + y 2 + + y m ) x sujeta a Ax + y = b, x 0, y 0. Cómo estimar M? Resultado

Más detalles

PROGRAMA DE CURSO. Código Nombre MA2001 Cálculo en Varias Variables. Nombre en Inglés Multivariable calculus SCT ,0 2,0 5,0

PROGRAMA DE CURSO. Código Nombre MA2001 Cálculo en Varias Variables. Nombre en Inglés Multivariable calculus SCT ,0 2,0 5,0 Código Nombre MA2001 Cálculo en Varias Variables PROGRAMA DE CURSO Nombre en Inglés Multivariable calculus es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0

Más detalles

Programa de la asignatura Curso: 2010 / 2011 (4911)MATEMÁTICAS EMPRESARIALES (4911)

Programa de la asignatura Curso: 2010 / 2011 (4911)MATEMÁTICAS EMPRESARIALES (4911) Programa de la asignatura Curso: 2010 / 2011 (4911)MATEMÁTICAS EMPRESARIALES (4911) PROFESORADO Profesor/es: JESUS FRANCISCO ALEGRE MARTINEZ - correo-e: jfalegre@ubu.es FICHA TÉCNICA Titulación: PROGRAMA

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Unidad didáctica 1. Introducción a las funciones de varias variables 9. Objetivos de la Unidad... 11

Unidad didáctica 1. Introducción a las funciones de varias variables 9. Objetivos de la Unidad... 11 ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a las funciones de varias variables 9 Objetivos de la Unidad... 11 1. Conceptos básicos de topología en R n... 12 1.1.

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

2 Prueba de desarrollo. -Independencia lineal. -Ejemplos de independencia lineal. -Aplicaciones a la Economía.

2 Prueba de desarrollo. -Independencia lineal. -Ejemplos de independencia lineal. -Aplicaciones a la Economía. Asignatura de: ECONOMÍA MATEMÁTICA I CALENDARIZACIÓN DE CONTENIDOS Modalidad Presencial 018 Asignatura: Al finalizar la asignatura, el de analizar el álgebra lineal, cálculo diferencial, integrales múltiples,

Más detalles

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es.

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es. Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es Entonces, Λ = Y0 J 1 = f g f Λ g = 0 Esta ecuación satisface las condiciones necesarias

Más detalles

Optimización en Ingeniería

Optimización en Ingeniería Optimización en Ingeniería Departamento de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: ccoello@cs.cinvestav.mx El Método de Marquardt Algoritmo Paso 1:

Más detalles

Min 2x x 2 2 2x 1 x 2 6x 2 4x 1 s.a. x x 2 2 = 1 x 1, x 2 0

Min 2x x 2 2 2x 1 x 2 6x 2 4x 1 s.a. x x 2 2 = 1 x 1, x 2 0 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Ampliación de la Investigación Operativa. Curso 2001/2002 Segundo de la Diplomatura de Estadística Examen de Septiembre. Fecha: 10-9-2002 1. Dado el

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Matemáticas de la Especialidad de Ingeniería Mecánica

Matemáticas de la Especialidad de Ingeniería Mecánica Matemáticas de la Especialidad de Ingeniería Mecánica Módulo 1: Introducción Plan 2010: Programa curso 2013 14 Clase 01 Introducción a la asignatura. Introducción a Matlab. Clases 02, 03 Primer ejemplo

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

PROGRAMA DE CURSO. Código Nombre MA3711 Optimización Matemática Nombre en Inglés Mathematical Optimization SCT

PROGRAMA DE CURSO. Código Nombre MA3711 Optimización Matemática Nombre en Inglés Mathematical Optimization SCT PROGRAMA DE CURSO Código Nombre MA3711 Optimización Matemática Nombre en Inglés Mathematical Optimization SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3

Más detalles

Introducción a la Programación Matemática. Yolanda Hinojosa

Introducción a la Programación Matemática. Yolanda Hinojosa Introducción a la Programación Matemática Yolanda Hinojosa Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación

Más detalles

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2007 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA

PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2007 DIURNO INGENIERÍA DE SISTEMAS ASIGNATURA PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2007 DIURNO INGENIERÍA DE SISTEMAS SEMESTRE ASIGNATURA 7mo OPTIMIZACIÓN NO LINEAL CÓDIGO HORAS MAT-30935

Más detalles

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles

MASTER FINANZAS DE EMPRESA

MASTER FINANZAS DE EMPRESA MASTER FINANZAS DE EMPRESA Materia Carácter Créditos 4 Matemáticas aplicadas a las finanzas Obligatorio Código 607620 Presenciales 4 No presenciales Curso Primero Trimestre 1 Idioma Español 0 Departamento

Más detalles

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES.

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES. Universidad del Atlántico Revista Del Programa De Matemáticas Páginas: 40 54 Facultad de Ciencias Básicas c Programa de Matemáticas Vol. IV, No 1, (2017) APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE

Más detalles

Métodos de gradiente. Métodos de Krylov

Métodos de gradiente. Métodos de Krylov Métodos de gradiente. Métodos de Krylov Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2012-2013 (UPV) Métodos de gradiente. Métodos de Krylov Curso

Más detalles

Método de Gradientes Conjugados.

Método de Gradientes Conjugados. Método de Gradientes Conjugados. Lourdes Fabiola Uribe Richaud & Juan Esaú Trejo Espino. Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas February 17, 2015 1 Método de Direcciones

Más detalles

Ejercicios de optimización sin restricciones

Ejercicios de optimización sin restricciones Ejercicios de optimización sin restricciones Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Curso 5/6 Indica la dirección que el método de Newton (sin modificaciones calcularía

Más detalles

Algoritmos con restricción

Algoritmos con restricción Algoritmos con restricción El problema general de programación no lineal con restricciones se define como sigue: Maximizar (o minimizar z = f(x g(x 0 Las condiciones X 0 de no negatividad forman parte

Más detalles

Clase 6: Multiplicadores de Lagrange II

Clase 6: Multiplicadores de Lagrange II ONO Clase 6: Multiplicadores de Lagrange II 1 Clase 6: Multiplicadores de Lagrange II Ignacio Ramírez 31 de agosto de 2016 Estos apuntes son preliminares y en buena parte están incompletos, pero sirven

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa:

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa: Aplicaciones de la Optimización Convea al análisis de redes Bibliograía optimización convea: Nonlinear Programming: nd Edition. by Dimitri P. Bertseas. ISBN: - 88659--. Publication: 999 Conve Optimization,

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

Guía de asignatura. Información general. Cálculo II. Asignatura. Código. Tipo de asignatura Obligatoria X Electiva. Obligatoria profesional

Guía de asignatura. Información general. Cálculo II. Asignatura. Código. Tipo de asignatura Obligatoria X Electiva. Obligatoria profesional Guía de asignatura Formato institucional Rev. Abril 2013 Información general Asignatura Código Cálculo II 73210017 Tipo de asignatura Obligatoria X Electiva Tipo de saber Básico X Obligatoria profesional

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS. Módulo: FORMACIÓN FUNDAMENTAL

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS. Módulo: FORMACIÓN FUNDAMENTAL MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS Código:603356 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: Obligatorio

Más detalles

DATOS DE LA ASIGNATURA

DATOS DE LA ASIGNATURA FACULTAD DE DERECHO Y CIENCIAS ECONÓMICAS Y EMPRESARIALES GRADO DE ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS CURSO 2012/13 ASIGNATURA: DATOS DE LA ASIGNATURA Denominación: Código: 100104 Plan de estudios:

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Multiplicadores de Lagrange y dualidad

Multiplicadores de Lagrange y dualidad Multiplicadores de Lagrange y dualidad Problemas con solo restricciones de igualdad Sea x* un mínimo local y regular ( : son linealmente independientes), entonces existen tales que: Interpretación y ejemplos.

Más detalles

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011 Método de Newton Cálculo numérico. Notas de clase. 25 de abril, 2011 La resolución de sistemas de ecuaciones algebraicas no lineales de la forma F(x) = 0, F : R n R n, (1) en donde F es una función continua

Más detalles

Programa de Asignatura

Programa de Asignatura Departamento de Ingeniería Industrial Programa: Ingeniería Mecatrónica Plan 007- Asignatura: Análisis numérico y programación Clave: 9957 Semestre: VI Tipo: Obligatoria H. Teoría: H Práctica: 3 HSM: 5

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización

Dualidad. Dpto. Ingeniería Industrial, Universidad de Chile. 22 de abril de IN3701, Optimización Contenidos Motivación y Representación de Poliedros IN3701, Optimización 22 de abril de 2009 Contenidos Motivación y Representación de Poliedros Contenidos 1 Motivación 2 y Representación de Poliedros

Más detalles

Ceros de Funciones: Multivariable

Ceros de Funciones: Multivariable Ceros de Funciones: Multivariable Prof. Marlliny Monsalve 1 1 Postgrado en Ciencias de la Computación Universidad Central de Venezuela Análisis Numérico May 19, 2015 Prof. Monsalve (UCV) Ceros Multivariable

Más detalles

MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS

MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS GUIA DOCENTE DE LA ASIGNATURA Matemáticas Empresariales Curso 2015-2016 MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Ampliación de Matemáticas PROFESORES Matemáticas Empresariales 1º 2º 6 Obligatoria DIRECCIÓN

Más detalles

Lecciones de Análisis Matemático II

Lecciones de Análisis Matemático II Índice general Prólogo I 1. Preliminares sobre funciones de varias variables 1 1.1. Introducción................................ 1 1.2. Funciones de una variable........................ 2 1.3. Funciones

Más detalles

Clase 5: Multiplicadores de Lagrange

Clase 5: Multiplicadores de Lagrange OPT Clase 5: Multiplicadores de Lagrange 1 Clase 5: Multiplicadores de Lagrange Ignacio Ramírez 29 de agosto de 2016 1. Introducción Consideremos un problema con restricciones, en principio de igualdad,

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática 19 de junio de 006 Ejercicio 1 3 pt. Considera la función fx, y = x y en la región factible R = {x, y R : x 1 + y 1; y x 1

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

Material para exámen final

Material para exámen final Cálculo 3, FAMAT-UG, aug-dic, 2006 Material para exámen final Fecha del exámen: 5 dic, 2006 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA 1. Números naturales, enteros y racionales. Principio de inducción. Divisibilidad y algoritmo

Más detalles

Optimización con restricciones de desigualdad. Yolanda Hinojosa

Optimización con restricciones de desigualdad. Yolanda Hinojosa Optimización con restricciones de desigualdad Yolanda Hinojosa Contenido Optimización no lineal con restricciones de desigualdad. Condiciones necesarias y suficientes de óptimo Análisis de sensibilidad.

Más detalles

CAL2 - Cálculo 2

CAL2 - Cálculo 2 Unidad responsable: 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2017 GRADO EN INGENIERÍA

Más detalles

Matemáticas Empresariales (Curso )

Matemáticas Empresariales (Curso ) GUIA DOCENTE DE LA ASIGNATURA Matemáticas Empresariales (Curso 2012-2013) MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Ampliación de Matemáticas 1º 2º 6 Obligatoria Empresariales Matemáticas PROFESORES

Más detalles

CD - Cálculo Diferencial

CD - Cálculo Diferencial Unidad responsable: 200 - FME - Facultad de Matemáticas y Estadística Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2017 GRADO EN MATEMÁTICAS (Plan 2009). (Unidad docente

Más detalles

Práctico de Optimización

Práctico de Optimización Práctico de Optimización Modelado de Redes de Telecomunicaciones 24 de mayo de 2011 1. Repaso Minimización sin restricciones de una función cuadrática. Encontrar el gradiente, el Hessiano, los puntos estacionarios

Más detalles

GUÍA DOCENTE MATEMÁTICAS II

GUÍA DOCENTE MATEMÁTICAS II GUÍA DOCENTE 2017-2018 MATEMÁTICAS II 1. Denominación de la asignatura: MATEMÁTICAS II Titulación GRADO EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS Código 5541 2. Materia o módulo a la que pertenece la asignatura:

Más detalles

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES BADAJOZ CURSO 05-06

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES BADAJOZ CURSO 05-06 ASIGNATURA: MATEMATICAS Titulación: LICENCIATURA EN ADMINISTRACION Y DIRECCION DE EMPRESAS Curso: Temporalidad 1 : Créditos: Totales Teóricos Prácticos 1º ANUAL 12 Profesorado: Apellidos, Nombre: Alvarez

Más detalles

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN PROGRAMACIÓN NO LINEAL Conceptos generales INTRODUCCIÓN Una suposición importante de programación lineal es que todas sus funciones Función objetivo y funciones de restricción son lineales. Aunque, en

Más detalles

GRADO EN ADE CURSO

GRADO EN ADE CURSO GRADO EN ADE CURSO 2013-2014 Asignatura Optimización Matemática Código Módulo Formación Obligatoria Materia Ampliación de Matemáticas Carácter Obligatorio Créditos 6 Presenciales 3 No presenciales 3 Curso

Más detalles

Geometría y Poliedros

Geometría y Poliedros IN3701, Optimización 3 de agosto de 2009 Contenidos 1 Definiciones Básicas Definición 2.1 S R n es un poliedro si S = {x R n : Ax b} para algún A R m n, b R m. Definición 2.2 S R n es acotado si existe

Más detalles

MA4301 ANÁLISIS NUMÉRICO Nombre en Inglés NUMERICAL ANALYSIS

MA4301 ANÁLISIS NUMÉRICO Nombre en Inglés NUMERICAL ANALYSIS PROGRAMA DE CURSO Código Nombre MA4301 ANÁLISIS NUMÉRICO Nombre en Inglés NUMERICAL ANALYSIS SCT es Docentes Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3 5 Requisitos Carácter

Más detalles

1 El modelo de programación no lineal 1. 2 Modelos de optimización en redes 197 BIBLIOGRAFÍA 349 ÍNDICE ALFABÉTICO 351

1 El modelo de programación no lineal 1. 2 Modelos de optimización en redes 197 BIBLIOGRAFÍA 349 ÍNDICE ALFABÉTICO 351 ÍNDICE PRÓLOGO IX 1 El modelo de programación no lineal 1 1.1 El modelo de programación no lineal............. 7 1.2 Funciones convexas y generalizaciones............ 25 1.3 Condiciones de óptimo en programación

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Ejercicios Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

ALN - Curso 2007 Gradiente Conjugado

ALN - Curso 2007 Gradiente Conjugado ALN - Curso 27 Gradiente Conjugado Cecilia González Pérez Junio 27 Métodos Iterativos Pueden ser: Métodos estacionarios Métodos no estacionarios Métodos no estacionarios hacen uso de información, evaluada

Más detalles

DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS

DIRECCIÓN COMPLETA DE CONTACTO PARA TUTORÍAS GUIA DOCENTE DE LA ASIGNATURA Matemáticas Empresariales MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Ampliación de Matemáticas 1º 2º 6 Obligatoria Empresariales Matemáticas PROFESORES DIRECCIÓN COMPLETA

Más detalles

Matrices ortogonales y descomposición QR

Matrices ortogonales y descomposición QR Matrices ortogonales y descomposición QR Problemas para examen Agradezco a Aldo Iván Leal García por varias correcciones importantes. Invertibilidad por la izquierda y por la derecha (repaso) 1. Conceptos

Más detalles

1. Límites de sucesiones en R n

1. Límites de sucesiones en R n 1. Límites de sucesiones en R n Definición 1 (Límite de una sucesión). Dada {A k } k=1 = {a1 k,... an k } Rn decimos que el límite de A k cuando k tiende a infinito es L si: lím A k = L ε > 0, N N : A

Más detalles

MA37A. Optimización con restricciones: Gradiente Reducido. Oscar Peredo. 14 de Octubre del 2008

MA37A. Optimización con restricciones: Gradiente Reducido. Oscar Peredo. 14 de Octubre del 2008 MA37A Sesión #5 Optimización con restricciones: Gradiente Reducido Oscar Peredo 14 de Octubre del 2008 Esquema 1 Explicación del Método del Gradiente Reducido 2 Problema Ejemplo 3 Implementación en Octave

Más detalles

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas

UNIVERSIDAD DE LOS LLANOS Facultad de Ciencias Básicas e Ingeniería Programa Ingeniería de Sistemas CURSO: OPTIMIZACIÓN 1 SEMESTRE: VII 2 CODIGO: 602704 3 COMPONENTE: 4 CICLO: 5 AREA: Profesional 6 FECHA DE AROBACIÓN: 7 NATURALEZA: Teórica 8 CARÁCTER: Obligatorio 9 CREDITOS (RELACIÓN): 3 (1-1) 10 INTENSIDAD

Más detalles

Análisis convexo, cálculo diferencial y aplicaciones

Análisis convexo, cálculo diferencial y aplicaciones Análisis convexo, cálculo diferencial y aplicaciones Juan PEYPOUQUET Universidad Técnica Federico Santa María V-Escuela 2016 Valparaíso, 11 al 21 de octubre FUNCIONES CONVEXAS Funciones convexas Una función

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

Héctor Manuel Mora Escobar. Dpto. Matemáticas, U. Nacional, Bogotá.

Héctor Manuel Mora Escobar. Dpto. Matemáticas, U. Nacional, Bogotá. OPTIMIZACIÓN NO DIFERENCIABLE Héctor Manuel Mora Escobar Dpto. Matemáticas, U. Nacional, Bogotá hmora@matematicas.unal.edu.co I CONGRESO DE OPTIMIZACIÓN DPTO. DE MATEMÁTICAS UNIVERSIDAD DEL CAUCA 4-6 septiembre

Más detalles

MODELOS MATEMATICOS. Despacho B3-134, Teléfono: Tutorías: Martes y Miércoles de a 12.

MODELOS MATEMATICOS. Despacho B3-134, Teléfono: Tutorías: Martes y Miércoles de a 12. MODELOS MATEMATICOS Profesor: David Pérez Castrillo Despacho B3-134, Teléfono: 581-1405 Tutorías: Martes y Miércoles de 10.30 a 12. Método de evaluación: La nota final será la media de la nota obtenidad

Más detalles

Matemáticas Empresariales Curso

Matemáticas Empresariales Curso GUIA DOCENTE DE LA ASIGNATURA Matemáticas Empresariales Curso 2015-2016 MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Ampliación de Matemáticas 1º 2º 6 Obligatoria Matemáticas Empresariales DIRECCIÓN COMPLETA

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. Junio de 2011. Apellidos: Nomre: DNI: Titulación: Grupo: DURACIÓN DEL EXAMEN: 2h NO se permite el uso de calculadoras.

Más detalles

PROGRAMACIÓN DE ASIGNATURAS

PROGRAMACIÓN DE ASIGNATURAS PROGRAMACIÓN DE ASIGNATURAS Asignatura: MA2119 Análisis Matemático Profesor/a: D. José Miguel Serradilla Curso: 2003 / 2004. Cuatrimestre: Primero. Departamento: Ingeniería Informática. Grupos: 2IT1, 2IT2.

Más detalles

Tema 12: Ecuaciones diferenciales de primer orden Métodos elementales de integración. Teoremas de existencia y unicidad. Aplicaciones.

Tema 12: Ecuaciones diferenciales de primer orden Métodos elementales de integración. Teoremas de existencia y unicidad. Aplicaciones. Álgebra Tema 1: Fundamentos Lógica matemática. Teoría de conjuntos. Tema 2: Combinatoria Combinatoria. Conjuntos parcialmente ordenados. Tema 3: Sistemas de ecuaciones lineales Eliminación gaussiana. Sistemas

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

c j (x) 0 j D c j (x) = 0 j I

c j (x) 0 j D c j (x) = 0 j I INTRODUCCIÓN A LA OPTIMIZACIÓN 1. Introducción 1.1. Generalidades. Dado un conjunto X y una función f : X R (la funciónobjetiva), se desea determinar x X tal que, para todo x X valga f(x) f(x ). La variable

Más detalles