Análisis aplicado. Direcciones de descenso.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis aplicado. Direcciones de descenso."

Transcripción

1 José Luis Morales jmorales Departamento de Matemáticas. ITAM

2 El problema por resolver.

3 El problema por resolver. Problemas reales que se pueden formular como: minimizar f (x), f : R n R, en donde f es una función con derivadas continuas de orden 2.

4 El problema por resolver. Problemas reales que se pueden formular como: minimizar f (x), f : R n R, en donde f es una función con derivadas continuas de orden 2. Soluciones locales débiles: x R n, tal que existe una vecindad N(x ;ρ) f (x ) f (x), x N(x ;ρ)

5 El problema por resolver. Problemas reales que se pueden formular como: minimizar f (x), f : R n R, en donde f es una función con derivadas continuas de orden 2. Soluciones locales débiles: x R n, tal que existe una vecindad N(x ;ρ) f (x ) f (x), x N(x ;ρ) Optimización diferenciable.

6 El problema por resolver. Problemas reales que se pueden formular como: minimizar f (x), f : R n R, en donde f es una función con derivadas continuas de orden 2. Soluciones locales débiles: x R n, tal que existe una vecindad N(x ;ρ) f (x ) f (x), x N(x ;ρ) Optimización diferenciable. Aproximaciones para x.

7 Importancia del gradiente. Funciones cuadráticas f (x) = a + b T x xt Ax, f : R n R, A simétrica. f (x) = b + Ax

8 Ejemplo f (x) = x x 2 2, x T 0 = (1,1), p 0 = f (x 0 ) nbis α f (x 0 + αp 0 ) f (x 0 )

9 Definición de dirección de descenso

10 Definición de dirección de descenso Descenso a primer orden. Sea p k R n f (x k + αp k ) = f (x k ) + αp T k f (x k) + O(α 2 ), α > 0.

11 Definición de dirección de descenso Descenso a primer orden. Sea p k R n f (x k + αp k ) = f (x k ) + αp T k f (x k) + O(α 2 ), α > 0. Supongamos que p T k f (x k) < 0.

12 Definición de dirección de descenso Descenso a primer orden. Sea p k R n f (x k + αp k ) = f (x k ) + αp T k f (x k) + O(α 2 ), α > 0. Supongamos que p T k f (x k) < 0. Entonces existe α tal que para toda α < α f (x k + αp k ) < f (x k ). Definición: p k es dirección de descenso para f en el punto x k si y sólo si p T k f (x k) < 0.

13 Interpretación del gradiente Considerar el siguiente problema min p p T f (x k ), p 2 = 1, f (x k ) 0. El problema anterior es equivalente a resolver min θ = p 2 f (x k ) 2 cos θ Por lo tanto p = f (x k) f (x k ) 2. es la solución.

14 Ejemplo. Consideremos las direcciones siguientes en el punto x = (1,1) T : Naturalmente f (x) ˆp = f (x) p N pˆ N = p N = ˆp T f (x) < pˆ T N f (x) = Sin embargo, p N consigue un descenso de 11 unidades con α = 1. La dirección p alcanza un descenso de unidades con α =.0545 (el valor óptimo de α).

15 Conclusiones.

16 Conclusiones. Descenso monótono en f. x k+1 = x k + α k p k. Contraejemplos. Construir teoría.

17 Conclusiones. Descenso monótono en f. x k+1 = x k + α k p k. Contraejemplos. Construir teoría. La diferenciabilidad de f permite usar el teorema de Taylor para hacer análisis.

18 Conclusiones. Descenso monótono en f. x k+1 = x k + α k p k. Contraejemplos. Construir teoría. La diferenciabilidad de f permite usar el teorema de Taylor para hacer análisis. La diferenciabilidad de f proporciona una dirección natural de descenso.

19 Conclusiones. Descenso monótono en f. x k+1 = x k + α k p k. Contraejemplos. Construir teoría. La diferenciabilidad de f permite usar el teorema de Taylor para hacer análisis. La diferenciabilidad de f proporciona una dirección natural de descenso. Otras direcciones de descenso: p T f (x k ) < 0.

20 Conclusiones. Descenso monótono en f. x k+1 = x k + α k p k. Contraejemplos. Construir teoría. La diferenciabilidad de f permite usar el teorema de Taylor para hacer análisis. La diferenciabilidad de f proporciona una dirección natural de descenso. Otras direcciones de descenso: p T f (x k ) < 0. Condiciones de optimalidad: Si x es un minimizador local de f entonces f (x ) = 0. Tarea.

Análisis aplicado. Descenso suficiente.

Análisis aplicado. Descenso suficiente. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. El problema por resolver. El problema por resolver. Problemas reales que se pueden formular como: minimizar

Más detalles

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM

Análisis aplicado. José Luis Morales. Departamento de Matemáticas. ITAM Departamento de Matemáticas. ITAM. 2011. Consideraciones http://allman.rhon.itam.mx/ jmorales Temas del curso + bibliografía. Exámenes, proyectos. Aprender haciendo Trabajo individual Consideraciones http://allman.rhon.itam.mx/

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

1 Funciones de Varias Variables y Diferenciabilidad

1 Funciones de Varias Variables y Diferenciabilidad 1 Funciones de Varias Variables y Diferenciabilidad (a) Definición: Diferenciabilidad Sea una función f : Ω R n R m, donde Ω es un abierto en R n, y x 0 Ω. Decimos que f es diferenciable en x 0 si existe

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

Método de Gradientes Conjugados.

Método de Gradientes Conjugados. Método de Gradientes Conjugados. Lourdes Fabiola Uribe Richaud & Juan Esaú Trejo Espino. Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas February 17, 2015 1 Método de Direcciones

Más detalles

Minimización de una forma cuadrática sobre una recta (ejercicios)

Minimización de una forma cuadrática sobre una recta (ejercicios) Minimización de una forma cuadrática sobre una recta (ejercicios) Objetivos. Dada una forma cuadrática positiva definida, encontrar su mínimo sobre una recta dada. Mostrar que en el punto mínimo el gradiente

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1 Funciones de mérito José Francisco Tudón Maldonado Mario Roberto Urbina Núñez 9 de abril de 011 1 Introducción Las funciones de mérito surgen para determinar en un algoritmo que resuelve un problema de

Más detalles

Métodos de gradiente. Métodos de Krylov

Métodos de gradiente. Métodos de Krylov Métodos de gradiente. Métodos de Krylov Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2012-2013 (UPV) Métodos de gradiente. Métodos de Krylov Curso

Más detalles

Clase 5: Multiplicadores de Lagrange

Clase 5: Multiplicadores de Lagrange OPT Clase 5: Multiplicadores de Lagrange 1 Clase 5: Multiplicadores de Lagrange Ignacio Ramírez 29 de agosto de 2016 1. Introducción Consideremos un problema con restricciones, en principio de igualdad,

Más detalles

Multiplicadores de Lagrange y dualidad

Multiplicadores de Lagrange y dualidad Multiplicadores de Lagrange y dualidad Problemas con solo restricciones de igualdad Sea x* un mínimo local y regular ( : son linealmente independientes), entonces existen tales que: Interpretación y ejemplos.

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

MATEMÁTICAS II Notas de clase

MATEMÁTICAS II Notas de clase MATEMÁTICAS II Notas de clase Ramón Espinosa Departamento de Matemáticas, ITAM Resumen El propósito de estas notas es presentar algunos temas que se ven en el curso de Matemáticas II en el ITAM. En particular

Más detalles

GRADIENTE CONJUGADO. May 15, 2018 DWIN ANCIZAR DIAZ ZAPATA (UNIVERSIDAD NACIONAL GRADIENTE DECONJUGADO COLOMBIA )

GRADIENTE CONJUGADO. May 15, 2018 DWIN ANCIZAR DIAZ ZAPATA (UNIVERSIDAD NACIONAL GRADIENTE DECONJUGADO COLOMBIA ) GRADIENTE CONJUGADO EDWIN ANCIZAR DIAZ ZAPATA UNIVERSIDAD NACIONAL DE COLOMBIA May 15, 2018 May 15, 2018 1 / 37 A definida positiva x t Ax > 0 x 0 Definamos producto interno x, y A = x t Ay x es un vector

Más detalles

Ejercicios de optimización sin restricciones

Ejercicios de optimización sin restricciones Ejercicios de optimización sin restricciones Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Curso 5/6 Indica la dirección que el método de Newton (sin modificaciones calcularía

Más detalles

Introducción a la Programación Matemática. Yolanda Hinojosa

Introducción a la Programación Matemática. Yolanda Hinojosa Introducción a la Programación Matemática Yolanda Hinojosa Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO. Decanato de Ciencias y Tecnología Licenciatura en Ciencias Matemáticas ROSMARY MONTERO

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO. Decanato de Ciencias y Tecnología Licenciatura en Ciencias Matemáticas ROSMARY MONTERO UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO Decanato de Ciencias y Tecnología Licenciatura en Ciencias Matemáticas MÉTODO DE DESCENSO CON UNA NUEVA BÚSQUEDA LINEAL PARA RESOLVER PROBLEMAS DE OPTIMIZACIÓN

Más detalles

Un Método de Búsqueda Lineal Inexacta

Un Método de Búsqueda Lineal Inexacta Un Método de Búsqueda Lineal Inexacta Iván de Jesús May Cen imaycen@hotmail.com Facultad de Matemáticas, Universidad Autónoma de Yucatán Junio de 2008 Resumen Se presenta un método de búsqueda lineal inexacta

Más detalles

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U.

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U. Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 Continuidad de Funciones en Varias Variables 1. Continuidad Definición 1.1. Sean U R n abierto, a U y f : U R una función real de varias

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

Programación lineal. Estimar M. Ejemplos.

Programación lineal. Estimar M. Ejemplos. Departamento de Matemáticas. ITAM. 2010. Los problemas P y P minimizar x c T x sujeta a Ax = b, x 0, b 0 minimizar c T x + M(y 1 + y 2 + + y m ) x sujeta a Ax + y = b, x 0, y 0. Cómo estimar M? Resultado

Más detalles

OPTIMIZACION MATEMATICA (4,5 Créditos)

OPTIMIZACION MATEMATICA (4,5 Créditos) DEPARTAMENTO ECONOMIA FINANCIERA Y CONTABILIDAD I LICENCIATURA EN ADMINISTRACION Y DIRECCION DE EMPRESAS Plan 2000 OPTIMIZACION MATEMATICA (4,5 Créditos) Código 628 Profesora: Eva Mª. del Pozo García Asignatura

Más detalles

Tema 7: Programación matemática

Tema 7: Programación matemática Tema 7: Programación matemática Formulación general: Optimizar f( x) sujeto a x X f : D R n R..................................................................... función objetivo x = (x 1, x 2,..., x

Más detalles

Soluciones del capítulo 9 Optimización Estática

Soluciones del capítulo 9 Optimización Estática Soluciones del capítulo 9 Optimización Estática Héctor Lomelí y Beatriz Rumbos 6 de febrero de 00 9 Sean A y B dos subconjuntos convexos de R n : b Sea A + B = {a + b : a A y b B} y sean x, y A + B Se

Más detalles

Optimización con restricciones de desigualdad. Yolanda Hinojosa

Optimización con restricciones de desigualdad. Yolanda Hinojosa Optimización con restricciones de desigualdad Yolanda Hinojosa Contenido Optimización no lineal con restricciones de desigualdad. Condiciones necesarias y suficientes de óptimo Análisis de sensibilidad.

Más detalles

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre Departamento de Métodos Cuantitativos en Economía y Gestión Universidad de Las Palmas de G.C. MATEMATICAS III (Lic. en Economía. 14/7/4) Convocatoria adelantada de Septiembre 1. (*) Sea f(x, y) : { ax

Más detalles

Análisis de Sensibilidad

Análisis de Sensibilidad IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 5 Contenidos

Más detalles

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA P P 1 0 A P 1 P (x (x 2 ) (0) (1) (x 1 )

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Héctor Manuel Mora Escobar. Dpto. Matemáticas, U. Nacional, Bogotá.

Héctor Manuel Mora Escobar. Dpto. Matemáticas, U. Nacional, Bogotá. OPTIMIZACIÓN NO DIFERENCIABLE Héctor Manuel Mora Escobar Dpto. Matemáticas, U. Nacional, Bogotá hmora@matematicas.unal.edu.co I CONGRESO DE OPTIMIZACIÓN DPTO. DE MATEMÁTICAS UNIVERSIDAD DEL CAUCA 4-6 septiembre

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Introducción a la optimización. Tomás Arredondo Vidal 7/4/09

Introducción a la optimización. Tomás Arredondo Vidal 7/4/09 Introducción a la optimización Tomás Arredondo Vidal 7/4/09 Esta charla trata de lo siguiente: Algunos aspectos de la optimización basada en derivados. Optimización basada en derivados: La optimización

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

CONTROL ÓPTIMO: TIEMPO DISCRETO

CONTROL ÓPTIMO: TIEMPO DISCRETO Notas sobre Teoría de Control, curso 2014 2015 Master en Modelización e Investigación Matemática, Estadística y Computación CONTROL ÓPTIMO: TIEMPO DISCRETO EDUARDO MARTÍNEZ En multitud de ocasiones la

Más detalles

Análisis convexo, cálculo diferencial y aplicaciones

Análisis convexo, cálculo diferencial y aplicaciones Análisis convexo, cálculo diferencial y aplicaciones Juan PEYPOUQUET Universidad Técnica Federico Santa María V-Escuela 2016 Valparaíso, 11 al 21 de octubre FUNCIONES CONVEXAS Funciones convexas Una función

Más detalles

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso 2009-2010) Cuarto Curso de Ingeniero Industrial Optimización y Sistemas de Ecuaciones no Lineales FUNCIONES CONVEXAS. CRITERIOS DE OPTIMALIDAD Un problema

Más detalles

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative

Más detalles

Se desea resolver el problema. P : mín f(x) (5.1)

Se desea resolver el problema. P : mín f(x) (5.1) Capítulo 5 Teoría Lagrangiana 5.1. Condiciones para problemas con restricciones de igualdad. Se desea resolver el problema P : mín f(x) (5.1) s.a : h i (x) = 0 i = 1, 2..., m donde f : IR n IR y h i :

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa:

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa: Aplicaciones de la Optimización Convea al análisis de redes Bibliograía optimización convea: Nonlinear Programming: nd Edition. by Dimitri P. Bertseas. ISBN: - 88659--. Publication: 999 Conve Optimization,

Más detalles

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos:

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos: A. Vectores ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos, Superficies en el espacio Para terminar el 3 de septiembre.. Sean v = (0,, ) y w = (,, 4)

Más detalles

Replicación aproximada de derivados de electricidad en mercados incompletos

Replicación aproximada de derivados de electricidad en mercados incompletos Replicación aproximada de derivados de electricidad en mercados incompletos Seminario DERIVEX Alvaro J. Riascos Villegas Universidad de los Andes y Quantil Octubre 24 de 2012 Alvaro J. Riascos Villegas

Más detalles

Clase 4: Diferenciación

Clase 4: Diferenciación Clase 4: Diferenciación C.J Vanegas 27 de abril de 2008 1. Derivadas Parciales Recordemos que la definición de derivada parcial: sea fa R R, definida sobre un f(x) f(x 0 ) intervalo abierto A. f es derivable

Más detalles

Índice. 1 Extremos relativos. 2 Funciones convexas y extremos

Índice. 1 Extremos relativos. 2 Funciones convexas y extremos Índice Funciones de varias variables reales I Extremos y diferenciabilidad José Manuel Mira Ros 1 Extremos relativos Condiciones necesarias para las diferenciales primera y segunda Condiciones suficientes

Más detalles

Optimización en Ingeniería

Optimización en Ingeniería Optimización en Ingeniería Departamento de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: ccoello@cs.cinvestav.mx Métodos para Optimizar Funciones de Varias

Más detalles

5.2 Análisis de sensibilidad: el teorema de la función implícita

5.2 Análisis de sensibilidad: el teorema de la función implícita 5.2 Análisis de sensibilidad: el teorema de la función implícita En un problema paramétrico de optimización, el análisis de sensibilidad consiste en el estudio del comportamientodelasfuncionesdedecisiónylafuncióndevalorfrenteacambiosenelvalordelosparámetros.

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS. Módulo: FORMACIÓN FUNDAMENTAL

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS. Módulo: FORMACIÓN FUNDAMENTAL MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS Código:603356 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: Obligatorio

Más detalles

Análisis Matemático I: Cálculo diferencial

Análisis Matemático I: Cálculo diferencial Contents : Cálculo diferencial Universidad de Murcia Curso 2007-2008 Contents 1 Objetivos Definir, entender y aplicar el concepto de función derivable. Estudiar la relación entre derivabilidad, crecimiento,

Más detalles

CAPÍTULO 3. GRASP (Greedy Randomized Adaptive Search Procedures). Los problemas de optimización surgen de las situaciones de aplicación práctica.

CAPÍTULO 3. GRASP (Greedy Randomized Adaptive Search Procedures). Los problemas de optimización surgen de las situaciones de aplicación práctica. CAPÍTULO 3 GRASP (Greedy Randomized Adaptive Search Procedures). Los problemas de optimización surgen de las situaciones de aplicación práctica. Estos problemas se aplican en distintas áreas, tales como:

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Resolución numérica de ecuaciones no lineales

Resolución numérica de ecuaciones no lineales Resolución numérica de ecuaciones no lineales Javier Segura Cálculo Numérico I. Tema 2. J. Segura (Universidad de Cantabria) Ecuaciones no lineales CNI 1 / 36 Contenidos: 1 Métodos básicos Bisección Método

Más detalles

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 7 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08- Guía Semana 7 Teorema de la función inversa. Sea f : Ω Ê N Ê N, Ω abierto, una función de clase

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Ecuaciones Diferenciales Ordinarias y Simulación con Matlab

Ecuaciones Diferenciales Ordinarias y Simulación con Matlab Ecuaciones Diferenciales Ordinarias y Simulación con Matlab L. Héctor Juárez Valencia y M a Luisa Sandoval Solís Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, D. F., México

Más detalles

Sobre las desigualdades de Bell, un teorema de von Neumann y la diferenciabilidad de ciertas funciones de correlación

Sobre las desigualdades de Bell, un teorema de von Neumann y la diferenciabilidad de ciertas funciones de correlación Sobre las desigualdades de Bell, un teorema de von Neumann y la diferenciabilidad de ciertas funciones de correlación Alejandro Cabrera Universidade Federal do Rio de Janeiro Encuentro Argentino de Mecánica

Más detalles

Múltiple Opción. Respuestas. Sean {a n } y {b n } dos sucesiones A A D C E. Para cada a R +, el área encerrada A D B C D

Múltiple Opción. Respuestas. Sean {a n } y {b n } dos sucesiones A A D C E. Para cada a R +, el área encerrada A D B C D Universidad de la República - Facultad de Ingeniería - IMERL Cálculo Solución - Examen 2 de julio de 206 Múltiple Opción Respuestas Sean {a n } y {b n } dos sucesiones... 2 3 4 5 A A D C E Para cada a

Más detalles

PROGRAMA. Asignatura MAT 215 CALCULO EN VARIAS VARIABLES"

PROGRAMA. Asignatura MAT 215 CALCULO EN VARIAS VARIABLES Facultad de Ciencias Instituto de Matemática http://ima.ucv.cl Blanco Viel 596, Cerro Barón, Valparaíso Casilla 4059, Valparaíso Chile Tel: (56-32) 2274001 Fax:(56-32) 2274041 CARLOS MARTINEZ YAÑEZ, Secretario

Más detalles

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES.

APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE PARA OPTIMIZAR FUNCIONES DE VARIAS VARIABLES. Universidad del Atlántico Revista Del Programa De Matemáticas Páginas: 40 54 Facultad de Ciencias Básicas c Programa de Matemáticas Vol. IV, No 1, (2017) APLICACIÓN DEL MÉTODO DE DESCENSO DE MAYOR PENDIENTE

Más detalles

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR

Optimización bajo Incertidumbre. 0. Revisión. Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR Optimización bajo Incertidumbre 0. Revisión Carlos Testuri Germán Ferrari Depto. Investigación Operativa. Instituto de Computación. Facultad de Ingeniería, UdelaR 2003-17 Contenido 1 Revisión Probabilidad

Más detalles

Aproximaciones de funciones y problemas de extremos

Aproximaciones de funciones y problemas de extremos Aproximaciones de funciones y problemas de extremos José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 5.- Aproximaciones de funciones y problemas de extremos 1 Teorema de

Más detalles

Teorema de Cambio de Variables para Integrales Dobles

Teorema de Cambio de Variables para Integrales Dobles Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:

Más detalles

Transformaciones Lineales

Transformaciones Lineales Transformaciones Lineales En lo que sigue denotaremos por K al conjunto R ó C Definición Sean V y W dos K-ev (espacios vectoriales sobre K Se llama transformación lineal de V en W a toda función T : V

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.

Más detalles

CONVERGENCIA GLOBAL DE UN ALGORITMO DE DESCENSO MULTIDIRECCIONAL PARA UN PROBLEMA DE ESTIMACION DE PARAMETROS EN EDP

CONVERGENCIA GLOBAL DE UN ALGORITMO DE DESCENSO MULTIDIRECCIONAL PARA UN PROBLEMA DE ESTIMACION DE PARAMETROS EN EDP CONVERGENCIA GLOBAL DE UN ALGORITMO DE DESCENSO MULTIDIRECCIONAL PARA UN PROBLEMA DE ESTIMACION DE PARAMETROS EN EDP Mauricio Carrillo Oliveros Prof. Guía: Juan Alfredo Gómez Universidad de la Frontera,

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

GRADO EN ADE CURSO

GRADO EN ADE CURSO GRADO EN ADE CURSO 2013-2014 Asignatura Optimización Matemática Código Módulo Formación Obligatoria Materia Ampliación de Matemáticas Carácter Obligatorio Créditos 6 Presenciales 3 No presenciales 3 Curso

Más detalles

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos.

Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria. Teorema de los valores extremos. Funciones de dos variables:extremos locales de funciones de dos variables. Condición necesaria.. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice

Más detalles

INTRODUCCIÓN A LA OPTIMIZACIÓN CON ALGORITMOS

INTRODUCCIÓN A LA OPTIMIZACIÓN CON ALGORITMOS INTRODUCCIÓN A LA OPTIMIZACIÓN CON ALGORITMOS 1 Índice 1. Minimización irrestricta 6 1.1. Condiciones de Optimalidad............................. 6 1.2. Métodos de descenso.................................

Más detalles

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal PROGRAMA DE CURSO Código MA1003 Nombre del Curso Cálculo en varias variables Unidades Docentes Cátedra Auxiliares Trabajo Personal 10 3 2 5 Requisitos Requisitos específicos Carácter del curso MA1002,

Más detalles

El Teorema de la función implicita versión para funciones f : R R

El Teorema de la función implicita versión para funciones f : R R Funciones de R n en R 1 El Teorema de la función implicita versión para funciones f : R R Teorema 1. Considere la función y = f(x). Sea (x 0, y 0 ) R 2 un punto tal que F (x 0, y 0 ) = 0. Suponga que la

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

Estadística Bayesiana

Estadística Bayesiana Universidad Nacional Agraria La Molina 2017-1 Teoría de la decisión Riesgo de Bayes La teoría de decisión es un área de suma importancia en estadística ya que muchos problemas del mundo real pueden tomar

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Análisis aplicado. Ax = b. Gradiente conjugado.

Análisis aplicado. Ax = b. Gradiente conjugado. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. Cuadráticas estrictamente convexas. φ(x) = 1 2 xt Ax b T x, A R n n minimizar φ(x) Ax = b. Cuadráticas estrictamente

Más detalles

Unidad didáctica 1. Introducción a las funciones de varias variables 9. Objetivos de la Unidad... 11

Unidad didáctica 1. Introducción a las funciones de varias variables 9. Objetivos de la Unidad... 11 ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a las funciones de varias variables 9 Objetivos de la Unidad... 11 1. Conceptos básicos de topología en R n... 12 1.1.

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

Estimadores Bayes y Minimax.

Estimadores Bayes y Minimax. 1 Estimadores Bayes y Minimax. Graciela Boente 1 1 Universidad de Buenos Aires and CONICET, Argentina X T = θ P θ con T τ. Definición L(θ,d) pérdida la distribución de X T = θ es la distribución a priori

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles