Clase 9 Programación No Lineal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clase 9 Programación No Lineal"

Transcripción

1 Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases Optimización Claudio Seebach No Lineal 1 Programación No Lineal 1. Optimización de una función sin restricciones (a) Condiciones Necesarias y Suficientes para extremos (b) Métodos de búsqueda de soluciones i. Método de Newton ii. Método del Gradiente o de Cauchy. Optimización de una función con restricciones (a) Caso 1: Problema Unidimensional (b) Caso : Restricciones de igualdad i. Caso general con restricciones de igualdad ii. Interpretación de los multiplicadores de Lagrange 3. Restricciones de desigualdad Apuntes de Clases Optimización Claudio Seebach No Lineal

2 Optimización de una función sin restricciones f(x) función diferenciable P ) min f(x) x R n x = (x 1, x,..., x n ) es mínimo local si: f( x) f( x + h) h = (h 1, h,..., h n ) tal que h j es suficientemente pequeño para todo j. x es un mínimo local si el valor de f( x) en cada punto del entorno o vecindad de x no es menor a f( x). Apuntes de Clases Optimización Claudio Seebach No Lineal 3 Condiciones Necesarias y suficientes para extremos Teorema 1 (Condición necesaria de 1 er orden). Si x R n es un punto mínimo local de f(x), entonces debe cumplirse que f( x) = 0, es decir, f( x 1, x,..., x n ) x i = 0 i = 1,..., n. Esta condición es necesaria, pero no suficiente para un mínimo También la satisfacen otros puntos extremos: Máximos Puntos de inflexión Para que x sea un punto mínimo, debe cumplirse una segunda condición necesaria. Apuntes de Clases Optimización Claudio Seebach No Lineal 4

3 Condiciones Necesarias para Extremos Teorema (Condición necesaria de do orden) Si x R n es un punto mínimo local de f(x), y f(x) es dos veces diferenciable, entonces debe cumplirse que f( x) = 0 (1 er orden) y que la matriz Hessiana D f( x) sea semidefinida positiva ( do orden). Apuntes de Clases Optimización Claudio Seebach No Lineal 5 Condiciones Suficientes para Extremos Teorema 3 (Condición suficiente de do orden) Si x verifica: f( x) = 0 y D f( x) es definida positiva, entonces x es un punto mínimo local estricto de f( x). Mínimo local estricto Apuntes de Clases Optimización Claudio Seebach No Lineal 6

4 Derivación Condiciones de Segundo Orden La expansión de Taylor de la función objetivo en torno al punto x es: f(x) = f( x) + (x x) f( x) + (x x)d f( x)(x x) T + R ( x) qué condición debe satisfacer x para ser punto mínimo local? En la vecindad de x, R ( x) es un orden de magnitud más pequeño que el término de do orden podemos ignorarlo para un análisis de optimalidad local. En un punto mínimo, el gradiente de la función en el punto debe ser nulo. Apuntes de Clases Optimización Claudio Seebach No Lineal 7 Derivación Condiciones de Segundo Orden Para que f( x) sea menor a la función objetivo evaluada en cualquier x en la vecindad de x, debe suceder que f( x) f(x) = f( x) + (x x)d f( x)(x x) T + R (x). Es decir: (x x)d f( x)(x x) T = ( x)d f( x)( x) T 0 Esto equivale a que la matriz D f( x) sea semidefinida positiva: xd f( x) x T 0, x Si es definida positiva esto se cumple estrictamente: xd f( x) x T > 0, x Apuntes de Clases Optimización Claudio Seebach No Lineal 8

5 Ejemplo de Problema No Lineal Irrestricto Ejemplo 1 Considere el problema P ) min x 1 x x + x 1 + x s.a. (x 1, x ) R Apuntes de Clases Optimización Claudio Seebach No Lineal 9 Ejemplo de Problema No Lineal Irrestricto Las condiciones de primer orden son: f x 1 = x + x 1 = 0 f x = x 1 + 4x = 0 f(x) = 0 x 1 = 1, x = 1. El Hessiano de la función objetivo en (1, 1): f f H = x 1 x 1 x f f x x 1 x (1,1) = [ 4 H es definida positiva en todo D, y en particular en (1, 1) El punto corresponde a un mínimo único global estricto de P ) ]. Apuntes de Clases Optimización Claudio Seebach No Lineal 10

6 Ejemplo de Problema No Lineal Irrestricto Ejemplo Considere la función f(x, y) = x 3 + y Apuntes de Clases Optimización Claudio Seebach No Lineal 11 Ejemplo de Problema No Lineal Irrestricto La matriz Hessiana está dada por D f(x, y) = Observamos que 1 = 6x y que = 0. [ ] 6x Existe alguna región en que f(x, y) sea positiva definida? No. Existe alguna región en que f(x, y) sea semidefinida positiva? Sí, x 0 Existe alguna región en que f(x, y) sea semidefinida negativa? Sí, x 0 No se puede garantizar la existencia de un mínimo o máximo local. Apuntes de Clases Optimización Claudio Seebach No Lineal 1

7 Ejemplo de Problema No Lineal Irrestricto Ejemplo 3 Considere el problema P ) min x Apuntes de Clases Optimización Claudio Seebach No Lineal 13 Ejemplo de Problema No Lineal Irrestricto Tenemos que: En x = 0, f (x) = 0 y f (x) = 0. f (x) = 4x 3 f (x) = 1x El punto cumple con la condición necesaria de orden. De esta información no se podría inferir nada más, pero: f (x) = 1x 0 x f(x) es convexa Además es diferenciable, entonces x = 0 es un punto mínimo local de P ). f(x) f( x) + f ( x)(x x) x R, x = 0 : f(x) f(0) + f (0)(x 0) f(0) f(x) x R. Así, x = 0 es un punto mínimo global de P ), único, pues x 0 x 4 > 0. Apuntes de Clases Optimización Claudio Seebach No Lineal 14

8 Métodos de Resolución de Problemas No Lineales Hay problemas donde resolver f(x) = 0 es muy difícil Alternativa: métodos numéricos y/o iterativos Búsqueda unidireccional Método de Newton Método del Gradiente o de Cauchy Apuntes de Clases Optimización Claudio Seebach No Lineal 15 Método de Newton Método para funciones dos veces diferenciables Puede usarse para funciones de múltiples variables P ) de una sola variable: min f(x) con f (x) y f (x) conocidas. Sea x k un punto factible Se puede aproximar f(x) entorno a x k, a través de una expansión de Taylor de do grado: q k (x) = f(x k ) + f (x k )(x x k ) + 1 f (x k )(x x k ) Apuntes de Clases Optimización Claudio Seebach No Lineal 16

9 Aproximación de Segundo Orden Apuntes de Clases Optimización Claudio Seebach No Lineal 17 Método de Newton q(x) es una buena aproximación de segundo grado para f(x) ya que: 1. q(x k ) = f(x k ). q (x k ) = f (x k ) 3. q (x k ) = f (x k ) Si f (x k ) > 0 q(x) es convexa, y si f (x k ) < 0 q(x) es cóncava. Resolvemos min q(x), en vez de min f(x). Condición de 1 er orden: dq k dx = f (x k ) + f (x k )(x x k ) = 0 Despejando, y definiendo un nuevo x k+1 nos queda: x k+1 = x k f (x k ) f (x k ). Apuntes de Clases Optimización Claudio Seebach No Lineal 18

10 Esquema del Método de Newton 1. Comenzar con un x 0 cualquiera. Minimizar q k (x) y obtener un nuevo x k+1 usando: x k+1 = x k f (x k ) f (x k ) 3. Verificar si las iteraciones convergen según algún criterio: Por ejemplo si (x k x k+1 ) 0 o si (f(x k ) f(x k+1 )) 0. o volver al punto. con x k+1 4. Finalizar con x k como solución óptima y f(x k ) valor óptimo Apuntes de Clases Optimización Claudio Seebach No Lineal 19 Interpretación del Método de Newton Condición de 1 er orden para un extremos de f(x) f(x) = 0 el método de Newton busca raíces def (x) Gráficamente, el método consiste en que en el espacio de la derivada de f(x) se trace una recta que pase por el punto (x k, f (x k )) y que tenga pendiente f (x k ), es decir y f (x k ) = (x x k )f (x k ). Luego, el punto de intersección de esta recta con el eje x determinará x k+1, es decir, igualando y = 0. Apuntes de Clases Optimización Claudio Seebach No Lineal 0

11 Interpretación del Método de Newton f (x) x k+ x k+1 x k x y = f (x) y f (x k ) = (x x k )f (x k ). Apuntes de Clases Optimización Claudio Seebach No Lineal 1 Observaciones al Método de Newton El método busca puntos extremos sean estos mínimos o máximos. Para distinguir hay que mirar el signo de la a derivada en cada punto: Deberá ser positivo al buscar mínimos y negativo al buscar máximos. Este método no garantiza convergencia: Apuntes de Clases Optimización Claudio Seebach No Lineal

12 Ejemplo de Método de Newton Ejemplo 4 Considere el problema min x 3 1x + 60x Apuntes de Clases Optimización Claudio Seebach No Lineal 3 Ejemplo de Método de Newton Ejemplo 4 Considere el problema min x 3 1x + 60x 7. Podemos ver que la primera y segunda derivada corresponden a f (x) = 6x 4x + 60 f (x) = 1x 4 respectivamente. Por lo tanto, si x > 3, 5 f (x) > 0,luego, f(x) es estrictamente convexa. Y si x < 3, 5 f (x) < 0, por lo que f(x) es estrictamente cóncava. Por lo tanto, x = 3, 5 corresponde a un punto de inflexión. Aplicando el método de Newton, con x 0 = 4 (cercano al punto crítico x = 3, 5), sucede lo siguiente: x k+1 = x k 6x k 4x k x k 4 = 1x k 4x k 6x k + 4x k 60 6(x k 7) = 6x k 60 6(x k 7) Apuntes de Clases Optimización Claudio Seebach No Lineal 4

13 Ejemplo de Método de Newton Por lo tanto, x k+1 = x k 10 (x k 7) Iterando vemos que el método converge a x k = 5, k x k 4 6 7, 5, 65 5, que corresponde a un mínimo pues f (x) en el punto es positiva. Ahora, cambiando el punto inicial a x 0 = 3 y volvemos a aplicar el método, vemos que éste converge a x k =, k x k 3 1 1, 8 1, 988 1, 999 que corresponde a un máximo pues f (x) en el punto es negativa. Apuntes de Clases Optimización Claudio Seebach No Lineal 5 Ejemplo de Método de Newton Ejemplo 5 Considere el problema min x3 4 7x 8 + ln x sujeto a x > 0. Apuntes de Clases Optimización Claudio Seebach No Lineal 6

14 Ejemplo de Método de Newton Ejemplo 5 Considere el problema min x3 4 7x 8 + ln x sujeto a x > 0. Derivando encontramos f (x) = 3 4 x 7 4 x + 1 x f (x) = 3 x x x k+1 = x k (3 4 x 7 4 x + 1 x ) ( 3 x ). Es fácil ver que 3 4 x 7 4 x + 1 x = 0 puede escribirse x como (x )(x 1)(3x + ) = 0, x 0 expresión que muestra claramente las raíces de la función objetivo. Iterando con el método desde dos puntos iniciales diferentes obtenemos los siguientes resultados: x 0 = 0, 5 0, 765 0, , 9954 x 0 = 3, 305, 051, 001. El primero de éstos corresponde a un máximo local mientras el segundo a un mínimo local. Apuntes de Clases Optimización Claudio Seebach No Lineal 7

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

Ejercicios de optimización sin restricciones

Ejercicios de optimización sin restricciones Ejercicios de optimización sin restricciones Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Curso 5/6 Indica la dirección que el método de Newton (sin modificaciones calcularía

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización con restricciones de igualdad Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización con restricciones de igualdad 1

Más detalles

Ceros de Funciones: Multivariable

Ceros de Funciones: Multivariable Ceros de Funciones: Multivariable Prof. Marlliny Monsalve 1 1 Postgrado en Ciencias de la Computación Universidad Central de Venezuela Análisis Numérico May 19, 2015 Prof. Monsalve (UCV) Ceros Multivariable

Más detalles

Multiplicadores de Lagrange y dualidad

Multiplicadores de Lagrange y dualidad Multiplicadores de Lagrange y dualidad Problemas con solo restricciones de igualdad Sea x* un mínimo local y regular ( : son linealmente independientes), entonces existen tales que: Interpretación y ejemplos.

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal

PROGRAMA DE CURSO UNIDADES TEMÁTICAS. Cálculo en varias variables. Unidades Docentes Cátedra Auxiliares Trabajo Personal PROGRAMA DE CURSO Código MA1003 Nombre del Curso Cálculo en varias variables Unidades Docentes Cátedra Auxiliares Trabajo Personal 10 3 2 5 Requisitos Requisitos específicos Carácter del curso MA1002,

Más detalles

Clase 5: Multiplicadores de Lagrange

Clase 5: Multiplicadores de Lagrange OPT Clase 5: Multiplicadores de Lagrange 1 Clase 5: Multiplicadores de Lagrange Ignacio Ramírez 29 de agosto de 2016 1. Introducción Consideremos un problema con restricciones, en principio de igualdad,

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es.

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es. Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es Entonces, Λ = Y0 J 1 = f g f Λ g = 0 Esta ecuación satisface las condiciones necesarias

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Análisis de Sensibilidad de los Resultados

Análisis de Sensibilidad de los Resultados Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 22 Análisis de Sensibilidad de los Resultados ICS 02 Optimización Profesor : Claudio Seebach

Más detalles

PROGRAMA DE CURSO. Código Nombre MA2001 Cálculo en Varias Variables. Nombre en Inglés Multivariable calculus SCT ,0 2,0 5,0

PROGRAMA DE CURSO. Código Nombre MA2001 Cálculo en Varias Variables. Nombre en Inglés Multivariable calculus SCT ,0 2,0 5,0 Código Nombre MA2001 Cálculo en Varias Variables PROGRAMA DE CURSO Nombre en Inglés Multivariable calculus es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal 6 10 3,0 2,0

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Algoritmos con restricción

Algoritmos con restricción Algoritmos con restricción El problema general de programación no lineal con restricciones se define como sigue: Maximizar (o minimizar z = f(x g(x 0 Las condiciones X 0 de no negatividad forman parte

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul 1 Unidad V. (Capítulos 12 y 13 del texto) APLICACIONES DE LA DERIVADA 5.1 Función creciente y decreciente. 5.2 Extremos

Más detalles

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial

ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso ) Cuarto Curso de Ingeniero Industrial ECUACIONES DIFERENCIALES Y MÉTODOS NUMÉRICOS (Curso 2009-2010) Cuarto Curso de Ingeniero Industrial Optimización y Sistemas de Ecuaciones no Lineales FUNCIONES CONVEXAS. CRITERIOS DE OPTIMALIDAD Un problema

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1

José Francisco Tudón Maldonado Mario Roberto Urbina Núñez. Funciones de Mérito en Ecuaciones No Lineales. i=1 n. = r i (x) i=1 Funciones de mérito José Francisco Tudón Maldonado Mario Roberto Urbina Núñez 9 de abril de 011 1 Introducción Las funciones de mérito surgen para determinar en un algoritmo que resuelve un problema de

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

Resolución de Ecuaciones no lineales. Juan Manuel Rodríguez Prieto

Resolución de Ecuaciones no lineales. Juan Manuel Rodríguez Prieto Resolución de Ecuaciones no lineales Juan Manuel Rodríguez Prieto Resolución de Ecuaciones no lineales Objetivos Aprender a resolver ecuaciones de la forma: f () = 0 Donde f es una función no-lineal de

Más detalles

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

Fundamentos de Optimización

Fundamentos de Optimización Capítulo 1 Fundamentos de Optimización 1.1 Conceptos básicos La teoría de optimización clásica o programación matemática está constituida por un conjunto de resultados y métodos analíticos y numéricos

Más detalles

Un Método de Búsqueda Lineal Inexacta

Un Método de Búsqueda Lineal Inexacta Un Método de Búsqueda Lineal Inexacta Iván de Jesús May Cen imaycen@hotmail.com Facultad de Matemáticas, Universidad Autónoma de Yucatán Junio de 2008 Resumen Se presenta un método de búsqueda lineal inexacta

Más detalles

RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson

RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson. El método de Newton para la resolución de una ecuación f(x)=0. Sea f(x) una función continuamente diferenciable dos veces en el intervalo

Más detalles

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011 Método de Newton Cálculo numérico. Notas de clase. 25 de abril, 2011 La resolución de sistemas de ecuaciones algebraicas no lineales de la forma F(x) = 0, F : R n R n, (1) en donde F es una función continua

Más detalles

FUNDAMENTOS DE CONVEXIDAD (Parte 2)

FUNDAMENTOS DE CONVEXIDAD (Parte 2) 19 de Mayo de 2016 FUNDAMENTOS DE CONVEXIDAD (Parte 2) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación No Lineal José Luis Quintero 1 Puntos

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

1. Sensibilidad en caso de restricciones de igualdad

1. Sensibilidad en caso de restricciones de igualdad FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57B Optimización No Lineal. Semestre 2007-1 Profesor: Héctor Ramírez C. Auxiliar: Oscar Peredo. Clase Auxiliar #4 Análisis de Sensibilidad en Optimización

Más detalles

Breve sobre Kuhn-Tucker

Breve sobre Kuhn-Tucker Breve sobre Kuhn-Tucker Alejandro Lugon 20 de agosto de 2010 Resumen Se presentan a manera de manual de referencia los resultados relevantes para la solución de problemas de maximización usando los resultados

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Instituto tecnológico de Minatitlán. Investigación de operaciones. Ing. Erika Lissette Minaya mortera. Unidad 3: programación no lineal

Instituto tecnológico de Minatitlán. Investigación de operaciones. Ing. Erika Lissette Minaya mortera. Unidad 3: programación no lineal Instituto tecnológico de Minatitlán Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Alejandra de la cruz francisco Ingeniería en sistemas computacionales

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Hasta ahora, hemos estudiado como maximizar o minimizar una función sujeta a restricciones en forma de ecuaciones de igualdad.

Más detalles

Clase 3 Funciones lineal y cuadrática

Clase 3 Funciones lineal y cuadrática Clase 3 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Función lineal Definición Una relación de la forma f(x) = mx+n, donde m, n R, se llama función lineal

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos Ficha Técnica Titulación: Grado en Administración y Dirección de Empresas Plan BOE: BOE número 67 de 19 de marzo de 2014 Asignatura: Módulo: Métodos cuantitativos de la empresa Curso: 2º Créditos ECTS:

Más detalles

Tema 4: Programación lineal

Tema 4: Programación lineal Tema 4: Programación lineal 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX) que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Solución de ecuaciones algebraicas y trascendentes: Método de Aproximaciones sucesivas *

Solución de ecuaciones algebraicas y trascendentes: Método de Aproximaciones sucesivas * Solución de ecuaciones algebraicas y trascendentes: Método de Aproximaciones sucesivas * Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad

Más detalles

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p).

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p). 1 PROBLEMA.1 Convergencia de esquemas iterativos para una matriz tridiagonal. Se considera una matriz tridiagonal de 3x3 del tipo siguiente: 1 a 12 A = a 21 1 a 23 a 32 1 Se pide: 1. Estudiar si los métodos

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES

TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES TEOREMA DE TAYLOR y EXTREMOS SIN RESTRICCIONES Para una función de una variable puede construirse una mejor aproximación mediante una función cuadrática que mediante una función lineal, para las funciones

Más detalles

(2) Dada la matriz A 3 (a) Halla el polinomio caracter stico y comprueba que los autovalores son =y 2 =2. >Cuál de ellos es doble? (b) Determina l

(2) Dada la matriz A 3 (a) Halla el polinomio caracter stico y comprueba que los autovalores son =y 2 =2. >Cuál de ellos es doble? (b) Determina l Universidad Carlos III de Madrid Departamento de Econom a Examen nal de Matemáticas II. Septiembre de 26. IMPORTANTE: ffl DURACIÓN DEL EXAMEN: 2h. 3min. ffl NO se permite el uso de calculadoras. ffl Sólo

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain)

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) Ceros de funciones Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Índice Objetivos Esquemas iterativos

Más detalles

TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015

TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015 TEMA 1: ECONOMÍAS DE INTERCAMBIO October 6, 2015 1. Asignaciones Eficientes, equilibrios de Walras Una economía de intercambio está constituida por un conjunto de agentes {1, 2,..., I}, con sus relaciones

Más detalles

Ecuaciones Diferenciales Ordinarias (2)

Ecuaciones Diferenciales Ordinarias (2) MODELACION NUMERICA CON APLICACIONES EN INGENIERIA HIDRAULICA Y AMBIENTAL Ecuaciones Diferenciales Ordinarias (2) Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile

Más detalles

PRÁCTICA 6. Para encontrar los valores que optimizan este lagrangiano hay que resolver el sistema de ecuaciones formado por las CPO: 2,, 16

PRÁCTICA 6. Para encontrar los valores que optimizan este lagrangiano hay que resolver el sistema de ecuaciones formado por las CPO: 2,, 16 0,25 1.- Una empresa cua función de producción es 2 K L adquiere sus factores productivos a unos precios r1 w2. a) Determine el coste mínimo en el que debe incurrir para producir 16 ud. de output. Para

Más detalles

Funciones implícitas y su derivada

Funciones implícitas y su derivada Funciones implícitas su derivada 4 Al considerar la función con ecuación x 3x 5x f, es posible determinar f ( x ) con los teoremas enunciados anteriormente, a que f es una función dada implícitamente en

Más detalles

Matemáticas.

Matemáticas. euresti@itesm.mx El método gráfico de solución de problemas de programación lineal (PL) sólo aplica a problemas con dos variables de decisión; sin embargo, ilustra adecuadamente los conceptos que nos permitirán

Más detalles

Metodos Numéricos Tema: Solución de ecuaciones no lineales

Metodos Numéricos Tema: Solución de ecuaciones no lineales Metodos Numéricos Tema: Solución de ecuaciones no lineales Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Métodos numéricos Tema: Sistemas Lineales Contenido

Más detalles

Ejercicios - Resolución de problemas lineales. Método Simplex

Ejercicios - Resolución de problemas lineales. Método Simplex Ejercicios - Resolución de problemas lineales. Método Simplex Programación Matemática LADE Curso 8/9. Dado el problema lineal máx x x x + x s.a. x + x + x = 4 x + x 4 x justifica que el punto x = ( T es

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

CEROS DE FUNCIONES. Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC)

CEROS DE FUNCIONES. Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC) CEROS DE FUNCIONES Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (UPC) http://www-lacan.upc.edu Diseño de un colector solar Diseño óptimo de un colector solar plano para obtener

Más detalles

UNIDAD Nº3. Introducción a los métodos matemáticos de optimización

UNIDAD Nº3. Introducción a los métodos matemáticos de optimización UNIDAD Nº3 Introducción a los métodos matemáticos de optimización La eperimentación es una función vital en nuestra búsqueda de progreso, aunque el objetivo es a menudo, el descubrimiento de nuevos principios

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Subsección de Matemáticas Esquemas teóricos de la asignatura de las licenciaturas en Economía

Más detalles

Raíces de ecuaciones no lineales

Raíces de ecuaciones no lineales Raíces de ecuaciones no lineales Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

3.4 El Teorema de Taylor. Extremos relativos

3.4 El Teorema de Taylor. Extremos relativos 3.4. EL TEOREMA DE TAYLOR. EXTREMOS RELATIVOS 103 3.4 El Teorema de Taylor. Extremos relativos La derivación está directamente relacionada con la posibilidad de aproximar localmente funciones suficientemente

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN)

UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I (SOLUCIÓN) UNIVERSIDAD NACIONAL DE INGENIERÍA SEDE: UNI-NORTE PRIMER PARCIAL DE INVESTIGACIÓN DE OPERACIONES I Prof.: MSc. Ing. Julio Rito Vargas Avilés (SOLUCIÓN) I. Representar gráficamente la región determinada

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales 1 U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESOLUCIÓN DE SISTEMAS DE ECUACIONES

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

XII Olimpiada Colombiana de Matemática Universitaria

XII Olimpiada Colombiana de Matemática Universitaria XII Olimpiada Colombiana de Matemática Universitaria Ronda Final - Solucionario Abril 5 de 8 1. Como es conocido arctan 1 = π. Se denotan α = arctan, β = arctan 3. Calculando tan α+tan β tanα + β = 1 tan

Más detalles

Programación Dinámica

Programación Dinámica Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 30 Programación Dinámica ICS 1102 Optimización Profesor : Claudio Seebach 20 de noviembre

Más detalles

Programa de la asignatura Curso: 2010 / 2011 (4911)MATEMÁTICAS EMPRESARIALES (4911)

Programa de la asignatura Curso: 2010 / 2011 (4911)MATEMÁTICAS EMPRESARIALES (4911) Programa de la asignatura Curso: 2010 / 2011 (4911)MATEMÁTICAS EMPRESARIALES (4911) PROFESORADO Profesor/es: JESUS FRANCISCO ALEGRE MARTINEZ - correo-e: jfalegre@ubu.es FICHA TÉCNICA Titulación: PROGRAMA

Más detalles