Pasos en el Método Simplex

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pasos en el Método Simplex"

Transcripción

1 Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 48 Pasos en el Método Simplex El método Simplex está compuesto por tres pasos: Paso Inicial Paso Iterativo Prueba de Optimalidad No óptima Fin Solución Óptima Apuntes de Clases Optimización Claudio Seebach Programación Lineal 49

2 Pasos en el Método Simplex Los tres pasos son: 1. Paso inicial: Determinar una solución factible en un vértice. 2. Prueba de optimalidad: La solución factible en un vértice es óptima cuando ninguna de las soluciones en vértices adyacentes a ella sean mejores.. Paso iterativo: Traslado a una mejor solución factible en un vértice adyacente (repetir las veces que sea necesario). Apuntes de Clases Optimización Claudio Seebach Programación Lineal 50 Ejercicio Simplex Recordemos el ejemplo de las planchas de aluminio: P ) min 800x 1 600x 2 s.a 15x 1 + 5x x x , x 1 + 0, x 2 15 x 1, x 2 0 Introducir tres variables de holgura: P ) min 800x 1 600x 2 s.a. 15x 1 + 5x 2 + x = 600 (minutos disponibles) 7x x 2 + x 4 = 60 (m 2 de aluminio) 0, x 1 + 0, x 2 + x 5 = 15 (lts de pintura) x 1, x 2 0 x, x 4, x 5 0 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 51

3 Ejercicio Simplex 1. Paso Inicial: Determinar una solución inicial factible. Si todas las restricciones son desigualdades de menor o igual, todas las variables son no negativas y todos los recursos disponibles son no negativos, existe una solución factible trivial: Asignar un valor cero a cada una de las variables originales. Tipo 2 x 1 = x 2 =0 Tipo 1 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 52 Ejercicio Simplex Las variables básicas son x, x 4, x 5 y las no básicas son x 1, x 2. En formato tableau: x 1 x 2 x x 4 x 5 v.b x x 4 0, 0, x Los coeficientes de la última fila se denominan costos reducidos La casilla inferior derecha del tableau indica el inverso aditivo del valor de la función objetivo. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 5

4 Ejercicio Simplex 2. Prueba de Optimalidad: Si el valor de Z puede mejorar (en este caso disminuir) al hacer que una de las variables no básicas crezca. Esto se puede verificar observando la última fila del tableau (Z): si todos los valores son positivos o cero, estamos en el óptimo, de lo contrario regresamos al paso iterativo. Tanto la variable x 1 como x 2 mejoran la función objetivo si aumentan en una unidad ya que sus coeficientes en la fila de la función objetivo son estrictamente negativos, por lo que nos convendrá que una de ellas (cualquiera) entre a la base. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 54 Ejercicio Simplex. Paso Iterativo:.1 Parte I: Determinar la variable no básica que entra a la base. Típicamente se escoge la variable cuyo coeficiente en la función objetivo sea el más negativo. Sin embargo podría escogerse cualquier variable con costo reducido negativo y el método igual convergería. En nuestro ejemplo, la variable que más aporta a la función objetivo es x 1, por lo que ésta será la variable entrante. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 55

5 Ejercicio Simplex.2 Parte II: Se determina la variable básica que sale de la base: Se elige la variable básica que primero alcanza el valor cero cuando se incrementa la variable básica entrante. La variable saliente es x, de min{ , 60 7, 15 0, } = 40.. Parte III: Se determina la nueva solución básica factible. x 1 x 2 x x 4 x 5 v.b. El nuevo tableau es: El nuevo valor óptimo es x x x Apuntes de Clases Optimización Claudio Seebach Programación Lineal 56 Ejercicio Simplex Tipo 2 x 1 = 40 x 2 = 0 µ 2 = -. µ = 5. Tipo 1 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 57

6 Ejercicio Simplex Aún existe una variable no básica cuyo costo reducido es negativo: x 2. Esta variable reduce en 1000 la función objetivo por cada unidad que aumente su valor, por lo que conviene que entre a la base. por qué una unidad extra del producto 2 agrega sólo $ 1000 a la función objetivo siendo que su utilidad era $600? Dada la combinación actual de productos, y nula disponibilidad de recursos del tipo 1 (tiempo), cada unidad extra del producto 2 exige dejar de producir 1 de unidad del producto 1. La utilidad neta es $600 1 $800, esto es $1000. La variable que sale de la base es x 5 : { } 40 min 1, 50 5, 1 = {120, 0, 15} = 15 5 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 58 Ejercicio Simplex El tableau siguiente es: x 1 x 2 x x 4 x 5 v.b x x x Tipo 2 x 2 = 15 µ = 20 µ 5 = x 1 = 5 Tipo 1 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 59

7 Ejercicio Simplex Prueba de optimalidad: todos los costos reducidos no básicos son positivos, por lo que estamos en una solución óptima. Por lo tanto, la solución obtenida es la siguiente: x 1 = 5 x 2 = 15 x = 0 (Restricción activa) x 4 = 175 (Holgura de aluminio) x 5 = 0 (Restricción activa) Y el valor óptimo es -$7.000 (este valor calza con lo que se esperaba: ). Apuntes de Clases Optimización Claudio Seebach Programación Lineal 60 Ejercicio Simplex La optimalidad de esta solución es evidente si uno transforma este tableau en el problema de minimización correspondiente: P ) min 20x x s.a x x 5 x 5 = x + x x 5 = 175 x x + 5x 5 = 15 x 1, x 2 0 x, x 4, x 5 0 Dado que las variables deben ser no negativas, el valor óptimo no puede ser inferior a -$ Basta hacer x = x 5 = 0 para obtener una solución factible que alcanza la cota mínima para el valor óptimo Apuntes de Clases Optimización Claudio Seebach Programación Lineal 61

8 Ejercicio Simplex El tableau final entrega los multiplicadores asociados a cada uno de los recursos necesarios para producir planchas de aluminio. µ 1 y µ 2 son los multiplicadores asociados a la no negatividad de las variables x 1 y x 2, mientras que µ, µ 4 y µ 5 los multiplicadores asociados a las restricciones de minutos de trabajo, m 2 de material y litros de pintura, respectivamente. Los costos reducidos indican que si x aumenta en una unidad, la función objetivo empeora en $20. Es decir, µ = 20. Análogamente, µ 4 = 0 y µ 5 = 1666, 6 lo que es consistente con nuestros resultados previos. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 62 Solución Básica Factible Inicial El método Simplex requiere de una solución inicial factible básica (SIFB) para comenzar a iterar. En cualquier problema de programación lineal en forma estándar con b 0, es fácil identificar una SIFB: Definir el conjunto de variables básicas como el conjunto de holguras de las restricciones: x holguras = b, y las demás variables originales (no básicas) iguales a cero. Los problemas que tienen restricciones de igualdad o desigualdades, tal que al asignar un valor cero a las variables originales del problema no se obtiene un punto factible del dominio. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 6

9 Solución Básica Factible Inicial En el ejemplo del aluminio, supongamos ahora que estamos forzados a utilizar al menos 15 lts de pintura. El problema en forma estándar sería entonces: min 800x 1 600x 2 s.a 15x 1 + 5x 2 + x = 600 7x x 2 + x 4 = 60 0, x 1 + 0, x 2 x 5 = 15 x i 0, i {1, 2,, 4, 5} en que x y x 4 son variables de holgura y x 5 es de exceso. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 64 Solución Básica Factible Inicial Como podemos ver, no el problema no posee una SIFB trivial: Tipo 2 D (0,0) no es factible Tipo 1 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 65

10 Primera Fase Solución: resolver el problema en dos fases: En la primera fase se usa el Simplex para determinar una SIFB En la segunda fase se usa el método Simplex a partir de la SIFB encontrada. En la primera fase se procurará inventar una solución básica al problema que sea evidente: Agregará una variable artificial y i no negativa en cada una de las restricciones que no cumpla con el formato estándar. Esto genera inmediatamente una SBIF del nuevo problema. Cualquier solución a este nuevo problema sólo será factible en el problema original si todas las variables artificiales son nulas. Reemplazar, sólo durante la primera fase del algoritmo, la función objetivo del problema original por: min i y i Apuntes de Clases Optimización Claudio Seebach Programación Lineal 66 Primera Fase Supongamos que el problema original es el siguiente: El problema queda: min min c x s.a. A 1 x b 1 A 2 x b 2 A x = b x 0 y i + y i y i a 2 y i a s.a. A 1 x + h 1 = b 1 A 2 x e 2 + a 2 = b 2 A x + a = b x, h 1, e 2, a 2, a 0 La SIFB de este problema es evidente: h 1, a 2 y a como el conjunto de variables básicas. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 67

11 Primera Fase Es posible aplicar Simplex directamente comenzando en dicha SIBF. Se pueden dar dos casos: 1. En la solución óptima a este problema todos los elementos y i tanto de a 2 como de a son nulos, entonces basta eliminar las variables artificiales del problema y utilizar la solución óptima como SIFB para el problema original. 2. La solución óptima contempla algún y i > 0 significa que no es posible encontrar una solución en que todos los y i sean nulos. Esto indica que el dominio del problema original no admite soluciones factibles, es decir, es vacío. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 68 Primera Fase En una primera fase, nos interesa resolver el siguiente problema: min y s.a 15x 1 + 5x 2 + x = 600 7x x 2 + x 4 = 60 0, x 1 + 0, x 2 x 5 + y = 15 x i 0, i {1, 2,, 4, 5} y 0 Su tableau asociado es el siguiente: x 1 x 2 x x 4 x 5 y v.b x x 4 0, 0, y Apuntes de Clases Optimización Claudio Seebach Programación Lineal 69

12 Primera Fase Es útil incluir una fila adicional en la parte inferior del tableau con la función objetivo original. Esto facilita la transición entre la Fase 1 y la Fase 2, en la que se vuelve a la función objetivo original. La función objetivo de la Fase I está en la penúltima fila. La SBIF corresponde a x = 600, x 4 = 60, y = 15. variables (no básicas) son cero. Las demás Hay que ajustar la función objetivo en el tableau para que contenga sólo ceros en las columnas asociadas a las variables básicas: x 1 x 2 x x 4 x 5 y v.b x x 4 0, 0, y 0, 0, Apuntes de Clases Optimización Claudio Seebach Programación Lineal 70 Primera Fase La solución anterior no es óptima: x 1 y x 2 tienen costo reducido negativo Después de una iteración de Simplex en el pivote destacado se alcanza el siguiente tableau: x 1 x 2 x x 4 x 5 y v.b x x , 5 y , Apuntes de Clases Optimización Claudio Seebach Programación Lineal 71

13 Primera Fase Gráficamente Tipo 2 (0,45) D Tipo 1 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 72 Primera Fase La solución básica anterior aún no es factible para el problema original pues y aún es positiva. La solución no es óptima para la Fase I: el costo reducido de la variable x 1 es negativo ( 20 ). Una iteración adicional y obtenemos: x 1 x 2 x x 4 x 5 y v.b x x x La solución básica alcanzada es óptima para la Fase I, ya que todas las variables artificiales han salido de la base. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 7

14 Primera Fase Gráficamente Tipo 2 (0,45) (10,40) D Tipo 1 Apuntes de Clases Optimización Claudio Seebach Programación Lineal 74 Fin Primera Fase A través de operaciones fila transformamos el problema de la Fase I en el siguiente: min y s.a x x x y = 250 x x x 5 10 y = 40 x x 4 20 x y = 10 x i 0, i {1, 2,, 4, 5} y 0 La solución óptima prescinde de la variable y. La solución básica factible alcanzada es: x 1 = 10, x 2 = 40, x = 250, x 4 = x 5 = 0 y es factible para el problema original. Basta eliminar la variable artificial y y reemplazar la función objetivo por la original para poder comenzar la segunda fase. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 75

15 Transición Fase I a Fase II Las v. b. x 1, x 2 de esta solución aparecen en la función objetivo original: min 800x 1 600x 2 Es necesario realizar operaciones adicionales para que la función objetivo quede expresada sólo en función de las variables no básicas. Esto se obtiene gracias a mantener durante la primera fase la última fila del tableau con la función objetivo original. Basta reemplazar el valor de las v. b. en la función objetivo original: f(x 1, x 2 ) = 800x 1 600x 2 = 800( x x 5 20 y ) 600( x 4 10 x y ) = x x y Esto es la expresión que aparece en la última fila del tableau. Apuntes de Clases Optimización Claudio Seebach Programación Lineal 76

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

4. Método Simplex de Programación Lineal

4. Método Simplex de Programación Lineal Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

Método Simplex: Encontrado una SBF

Método Simplex: Encontrado una SBF Método Simplex: Encontrado una SBF CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas () Método Simplex: Encontrado una SBF euresti@itesm.mx 1 / 31 Determinación de SBF Determinación de SBF El método

Más detalles

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la

Más detalles

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2 METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura

Más detalles

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)

Más detalles

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual 7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1 M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser

Más detalles

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización. Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este

Más detalles

Análisis de Sensibilidad de los Resultados

Análisis de Sensibilidad de los Resultados Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 22 Análisis de Sensibilidad de los Resultados ICS 02 Optimización Profesor : Claudio Seebach

Más detalles

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX 6. MÉTODO SIMPLEX El Método Simplex es un método analítico de solución de problemas de programación lineal capaz de resolver modelos más complejos que los resueltos mediante el método gráfico sin restricción

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para

Más detalles

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo.

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo. EL MÉTODO SIMPLEX Hasta ahora, la única forma que conocemos de resolver un problema de programación lineal, es el método gráfico. Este método es bastante engorroso cuando aumenta el número de restricciones

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte. Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.

Más detalles

TEMA 3: EL MÉTODO SIMPLEX

TEMA 3: EL MÉTODO SIMPLEX TEMA 3: EL MÉTODO SIMPLEX El uso de este procedimiento gráfico para resolver problemas de PL queda limitado a problemas con dos variables de decisión, de manera que el problema pueda representarse en un

Más detalles

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX (2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Programación Lineal. Unidad 1 Parte 2

Programación Lineal. Unidad 1 Parte 2 Programación Lineal Unidad 1 Parte 2 Para la mayoría de los problemas modelados con programación lineal, el método gráfico es claramente inútil para resolverlos, pero afortunadamente y gracias a la dedicación

Más detalles

3. Métodos clásicos de optimización lineal

3. Métodos clásicos de optimización lineal 3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema

Más detalles

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:

Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo: Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS TEMA III MÉTODO SIMPLE. CONCEPTOS BÁSICOS MÉTODOS CUANTITATIVOS I TEMA III. MÉTODO SIMPLE. CONCEPTOS BÁSICOS INDICE.- FACTORES PRODUCTIVOS (A i )....- VECTOR EISTENCIAS (P o )....- TÉCNICA... 4.- PROCESO

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

Cómo resolver el Método Simplex, con penalizaciones, o gran M

Cómo resolver el Método Simplex, con penalizaciones, o gran M Cómo resolver el étodo Simple, con penalizaciones, o gran aterial de apoyo realizado por Sebastián Fellenberg C Estudiante de Ingeniería Industrial Universidad de las Américas Chile Introducción Antes

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Ejemplo : PROGRAMACIÓN LINEAL

Ejemplo : PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.

Más detalles

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex.

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex. Capitulo 2 Método Simplex Para explicar el método de generación de columnas se explicaran a continuación conceptos básicos de la programación lineal y el método simplex. En especial, el concepto de costo

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,...

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,... El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA 1. Sea el problema: Max. 3 x 1 + 4 x 2 + 2 x 3 + x 4 s.a. 4 x 1 + 3 x 2 + 4 x 3 + x 4 5 2 x 1 + x 2 + 5 x 3 + 2 x 4 6 x 1 6, 0 x 2 3, x 3 libre, x 4 0 a) Ponerlo

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional MÉTODO SIMPLE POFESOA: LILIANA DELGADO HIDALGO Lilianadelgado@correounivalleeduco Minimizar 4x + x Sueto a: x + x 4x + x 6 x + x 4 x, x Estandarización Tradicional Minimizar 4x + x Sueto a: x + x 4x +

Más detalles

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Instituto tecnológico de Minatitlán Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Alejandra de la cruz francisco Ingeniería en sistemas computacionales

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,

Más detalles

Tema # 7. método simplex matricial o revisado

Tema # 7. método simplex matricial o revisado IO04001 Investigación de Operaciones I Tema # 7 Solución de problemas mediante el método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex

Más detalles

Optimización lineal con R José R. Berrendero

Optimización lineal con R José R. Berrendero Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

PLs no acotados El método símplex en dos fases PLs no factibles. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

PLs no acotados El método símplex en dos fases PLs no factibles. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 PLs no acotados El método símplex en dos fases PLs no factibles Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs no acotados Necesidad de obtener un vértice

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

PROBLEMAS de Programación Lineal : Resolución Gráfica

PROBLEMAS de Programación Lineal : Resolución Gráfica PROBLEMAS de Programación Lineal : Resolución Gráfica Ej. (1.1) Mostrar gráficamente porque los 2 PL siguientes no tienen una Solución Optima y explicar la diferencia entre los dos. (C) (A) Max z = 2x

Más detalles

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

Programación Lineal con Matlab

Programación Lineal con Matlab Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22 Contenido 1 Programación Lineal Método gráfico

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Capítulo 4 Método Algebraico

Capítulo 4 Método Algebraico Capítulo 4 Método Algebraico Introducción En la necesidad de desarrollar un método para resolver problemas de programación lineal de más de dos variables, los matemáticos implementaron el método algebraico,

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

1. Una brevísima introducción. 2. Ese trabalenguas llamado base... IN34A: Optimización Pag. 1

1. Una brevísima introducción. 2. Ese trabalenguas llamado base... IN34A: Optimización Pag. 1 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN4A: Clase Auxiliar Simplex Marcel Goic F. Esta es una versión bastante preliminar por lo que puede

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma:

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma: MATEMÁTICAS BÁSICAS SISTEMAS DE DESIGUALDADES SISTEMAS DE DOS INECUACIONES Y DOS INCÓGNITAS Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3)

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) 4 de Julio de 26 ASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela 4 de Julio de 26 MÉTODO SIMPLEX REVISADO

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

CONVEXIDAD: CONCEPTOS BÁSICOS

CONVEXIDAD: CONCEPTOS BÁSICOS CONVEXIDAD: CONCEPTOS BÁSICOS El estudio de la convexidad de conjuntos y funciones, tiene especial relevancia a la hora de la búsqueda de los óptimos de las funciones, así como en el desarrollo de los

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte 4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co En PL un sistema de producción se representa

Más detalles

EBook: Apuntes y Ejercicios Resueltos de Programación Lineal

EBook: Apuntes y Ejercicios Resueltos de Programación Lineal EBook: Apuntes y Ejercicios Resueltos de Programación Lineal www.gestiondeoperaciones.net Libro de Apuntes para estudiantes de Investigación Operativa que considera la revisión de modelos de Programación

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500

1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 1. RESOLVER el siguiente problema de programación lineal max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 x 2 0 2 RESOLVER el siguiente problema de P.L.: max z = 2x 1 + 3x 2 2x 3

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX

RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX RESOLVER PROBLEMA DE PROGRAMACIÓN LINEAL POR METODO SIMPLEX Prof. MSc. Julio Rito Vargas ================================================================================ Resolver por el método Simplex,

Más detalles

Programación Lineal. PL: Parte de la Programación Matemática donde tanto la función objetivo como las restricciones son funciones lineales.

Programación Lineal. PL: Parte de la Programación Matemática donde tanto la función objetivo como las restricciones son funciones lineales. Programación Lineal PL: Parte de la Programación Matemática donde tanto la función objetivo como las restricciones son funciones lineales. La importancia de esta técnica se debe a la aparición del método

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

La lección de hoy de febrero de Notación. Solución factible básica

La lección de hoy de febrero de Notación. Solución factible básica 1.3 1 de febrero de La lección de hoy Método simplex (continuación) Entregas: material de clase Nota: el diseño de esta presentación incluye animaciones que permiten verla en forma de diapositivas. Repaso

Más detalles

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones: MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez

MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez MÁXIMOS Y MINIMOS Marco Antonio Cruz Chávez UAEM Av. Universidad 11 Col. Chamilpa C.P. 61 Cuernavaca Morelos, México Agosto 18 del 334858@academ1.mor.itesm.mx Abstract. En este trabajo se presentan algunos

Más detalles

Problemas de transporte, asignación y trasbordo

Problemas de transporte, asignación y trasbordo Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado

Más detalles

SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN

SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN Observaciones: En la página de este blog titulada SUDOMATES se explica cómo se puede aprovechar la atracción de los sudokus entre muchos de nuestros alumnos, para

Más detalles

Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras

Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras Tercera edición Álgebra lineal y programación lineal Con aplicaciones a ciencias Administrativas, contables y financieras Francisco Soler Fajardo Fabio Molina Focazzio Lucio Rojas Cortés Contenido Introducción...XIX

Más detalles

CAPÍTULO 4. EL MÉTODO DEL SIMPLEX. 4.1. Introducción a los problemas de P.L...2. 4.2. Caracterización de los problemas de P.L...2

CAPÍTULO 4. EL MÉTODO DEL SIMPLEX. 4.1. Introducción a los problemas de P.L...2. 4.2. Caracterización de los problemas de P.L...2 CAPÍTULO 4. EL MÉTODO DEL SIMPLEX 4.1. Introducción a los problemas de P.L....2 4.2. Caracterización de los problemas de P.L....2 4.3. El algoritmo del Simple....7 4.3.1. Costes reducidos y test de optimalidad....

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

APLICACIONES DE AS: EJEMPLOS

APLICACIONES DE AS: EJEMPLOS APLICACIONES DE AS: EJEMPLOS ELISA SCHAEFFER Programa de Posgrado en Ingeniería de Sistemas (PISIS) elisa@yalma.fime.uanl.mx INVESTIGACIÓN DE OPERACIONES EJEMPLO: TRANSPORTE Tenemos dos fábricas farmaceúticas.

Más detalles