El transistor MOS. Fundamentos Físicos y Tecnológicos de la Informática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El transistor MOS. Fundamentos Físicos y Tecnológicos de la Informática"

Transcripción

1 Fundamentos Físicos y Tecnológicos de la Informática El transistor MOS - El transistor MOS como conmutador: inversor MOS. Función de transferencia. - Retardos de propagación. - Puerta de transmisión: nmos, pmos y MOS. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas Informáticos Universidad Politécnica de Madrid

2 Inversor MOS (I) Es una de las puertas más sencillas y a la vez la más utilizada en los circuitos digitales. S V ent T 2 (pmos) D D T 1 (nmos) S v ss -I ds V +I ds Facultad de Informática, UPM. 2

3 Función de transferencia del inversor, característica D (I) Es la curva que refleja la variación que experimenta la tensión de ida del inversor en función de las variaciones de la tensión de entrada (V ent ) del mismo. Inversor Ideal. La función de transferencia de un inversor MOS presenta la transición cuando la tensión de entrada alcanza el 50% del valor de y ocurre de forma instantánea. Inversor MOS real. La función de transferencia de un inversor MOS real presenta un perfil que se obtiene a partir de las curvas características de los dos transistores que lo lo forman. Facultad de Informática, UPM. 3

4 Función de transferencia del inversor, característica D (II) Inversor ideal Inversor MOS real V V V ent /2 V V ent DD /2 Facultad de Informática, UPM. 4

5 Función de transferencia del inversor, característica D (III) Relacionaremos las tensiones de entrada y ida del inversor con las curvas características de ambos transistores. Iremos determinando los puntos de trabajo de los dos transistores para unos mismos valores de la entrada. El funcionamiento de los dos transistores no es independiente y exige que se cumpla: I dsn = -I dsp V dsn -V dsp = -V SS Facultad de Informática, UPM. 5

6 Función de transferencia del inversor, característica D (IV) Además, la relación entre V ent y V con los parámetros V gs y V gd es la siguiente: Transistor nmos V gs = V ent - V SS V ds = V - V SS Transistor pmos V gs = V ent - V ds = V - Facultad de Informática, UPM. 6

7 Función de transferencia del inversor, característica D (V) Solución gráfica a partir de las curvas características I ds nmos 5V 4V 3V 2V 1V -1V -2V V ds -3V -4V pmos -5V Facultad de Informática, UPM. 7

8 Función de transferencia del inversor, característica D (VI) I ds V ent = V +V gs p DD= -3V+5V= 2V 5V Ahora para el pmos cada curva representa los distintos valores V ds + para un valor constante V gs 5V 4V nmos V ent = V +V gs n SS= = V +V gs p DD V = V +V ds n SS = pmos 4V 3V = V ds p + V ent = V gs n +V SS= 3V 2V = 2V+0V= 2V 2V 1V 1V V (0V)= 5V V (5V)= 0V V ds 1V 2V 3V 4V 5V V (3V)= 0.5V V (2V)= 2.9V V (1V)= 4.8V V (4V)= 0.1V Facultad de Informática, UPM. 8

9 Función de transferencia del inversor, característica D (VII) V 5V V ent que permite obtener V tn V ent V 0V 5V 1V 4.8V 2V 2.9V 3V 0.5V 4V 0.1V 5V 0V 4V 3V 2V 1V V ent que permite obtener V tp 1V V ent 2V 3V 4V 5V Facultad de Informática, UPM. 9

10 Inversor MOS. Zonas de funcionamiento de los transistores (I) p ON n OFF p ON n ON p OFF n ON V En la zona A se cumple: V = A B D En la zona E se cumple: V = 0 /2 β n β p V ss = GND E /2 V ent Facultad de Informática, UPM. 10

11 Inversor MOS. Zonas de funcionamiento de los transistores (II) Zona A (0 V ent < V tn ). Transistor nmos V gs = V ent zona de corte (V gs < V tn ) Transistor pmos V gs = V ent - transistor con canal formado (V gs < V tp ) V gs = V ent - V ds =V - zona lineal (V gs -V tp < V ds ) Facultad de Informática, UPM. 11

12 Inversor MOS. Zonas de funcionamiento de los transistores (III) Zona B (V tn < V ent < /2). Transistor nmos V gs = V ent transistor con canal formado (V gs >V tn ) V gs = V ent ; V ds = V Si V ent V tn < V zona saturada Si V ent V tn > V zona lineal Transistor pmos V gs = V ent - transistor con canal formado (V gs < V tp ) V gs = V ent - ; V ds = V - Si V ent V tn < V zona lineal Si V ent V tn > V zona saturada Facultad de Informática, UPM. 12

13 Inversor MOS. Zonas de funcionamiento de los transistores (IV) Punto (V ent = /2). Al igual que en la zona B ambos transistores tendrán canal formado. La zona exacta de funcionamiento dependerá de la tensión de ida V. Si para un inversor siendo V ent = /2 se cumple que que β n =β p entonces también se cumplirá que: V = /2 Facultad de Informática, UPM. 13

14 Inversor MOS. Zonas de funcionamiento de los transistores (V) Zona D ( /2< V ent +V tp ). Transistor nmos V gs = V ent transistor con canal formado (V gs >V tn ) V gs = V ent ; V ds = V Si V ent V tn < V zona saturada Si V ent V tn > V zona lineal Transistor pmos V gs = V ent - transistor con canal formado (V gs < V tp ) V gs = V ent - ; V ds = V - Si V ent V tn < V zona lineal Si V ent V tn > V zona saturada Facultad de Informática, UPM. 14

15 Inversor MOS. Zonas de funcionamiento de los transistores (VI) Zona E (V ent > /2+ V tp ). Transistor nmos V gs = V ent transistor con canal formado (V gs > V tn ) V gs = V ent V ds = V zona lineal (V gs -V tn > V ds ) Transistor pmos V gs = V ent - zona de corte (V gs >V tp ) Facultad de Informática, UPM. 15

16 Inversor MOS. Zonas de funcionamiento de los transistores (VII) En general, depende de las tensiones umbral para ambos transistores (V tn, V tp ) y de la geometría de sus canales. Zona ondición pmos nmos Salida A 0 V ent < V tn Lineal orte V = B V tn < V ent < /2 Lin/Sat Lin/Sat V ent = /2 Lin/Sat Lin/Sat V V ent excepto si: β n =β p D /2<V ent < +V tp Lin/Sat Lin/Sat E V ent > /2+ V tp orte Lineal V = 0V Facultad de Informática, UPM. 16

17 Inversor MOS. Zonas de funcionamiento de los transistores (VIII) 50/1 5/1 V 1 (W n /L n )/(W p /L p )=0.1 Relación resistencia de canal y perfil de la curva V V ent 5/1 V 2 (W n /L n )/(W p /L p )= 1 V 3 V 2 V 1 5/1 5/1 50/1 V 3 (W n /L n )/(W p /L p )= 10 uanto menor sea el cociente entre las relaciones de aspecto de los transistores nmos y pmos, la curva estará más desplazada hacia la derecha. V ent Facultad de Informática, UPM. 17

18 Retardo del inversor MOS Está asociado a la inercia eléctrica inherente al circuito del inversor y estará determinada por su característica R. Este comportamiento se debe a que en la ida del inversor siempre habrá una carga capacitiva. Dentro de esta carga capacitiva podrían considerarse las capacidades db y sb (ver diagrama de capacidades del transistor MOS). Pero por ser éstas muy pequeñas en relación a las capacidades de puerta en las idas, no serán tomadas en cuenta para analizar los retardos. Facultad de Informática, UPM. 18

19 Tiempos de transición en la ida del inversor MOS (I) Transición alta-baja Instante inicial t= t 1 V = ondensador 1 cargado. ondensador 2 descargado. v DD v DD 2 = p (pmos) Transición baja-alta V Instante inicial t= t 2 V = 0 v ent ondensador 1 descargado. ondensador 2 cargado. V SS V SS 1 = p (nmos) Facultad de Informática, UPM. 19

20 Tiempos de transición en la ida del inversor MOS (II) Transición alta-baja i = i + ds 2 i 1 constante 2 dv DD dt dv = v v R n SS + 1 dv dv dt SS R p i 2 2 dv dt v v R SS 2 = + n 1 dv dt R n i 1 1 V dv dt 2 1 dv dt = v v R n SS V SS i ds V SS Facultad de Informática, UPM. 20

21 Tiempos de transición en la ida del inversor MOS (III) Transición alta-baja ( + ) 1 2 dv dt = v v R n SS R p i 2 2 v SS = 0V V v ( t) = V DD e t t τ 1 HL R n i ds i 1 1 V SS V SS Facultad de Informática, UPM. 21

22 Tiempos de transición en la ida del inversor MOS (IV) Transición baja-alta i 1 = i 2 i ds constante -I ds 1 dv dv dt SS = 2 dv DD dt dv + v DD v R p R p i 2 2 V dv dt v v R DD 1 = p 2 dv dt R n i dv dt + 2 dv dt = v DD v R p V SS V SS Facultad de Informática, UPM. 22

23 Tiempos de transición en la ida del inversor MOS (V) Transición baja-alta ( ) dv dt = v DD v R p R p -I ds i 2 2 v SS = 0V V v ( t) t t = V e τ DD 1 2 LH R n V SS i 1 V SS 1 Facultad de Informática, UPM. 23

24 Tiempos de transición en la ida del inversor MOS (VI) V ent onsideramos que la transición se ha completado tras un tiempo igual a 4τ t 1 t 2 4τ HL 4τ LH Facultad de Informática, UPM. 24 t

25 Tiempos de transición en la ida del inversor MOS (VII) Obtenemos en ambos casos la expresión de un circuito R donde el valor de la capacidad es la suma de éstas (paralelo de dos capacidades). Transición alta-baja τ LH = R p ( )= 2 R p p t LH = 4 τ LH = 8 R p p onstante de tiempo o constante R. Transición alta-baja τ HL = R n ( )= 2 R n p Tiempo de transición t HL = 4 τ HL = 8 R n p Facultad de Informática, UPM. 25

26 Retardos de propagación del inversor MOS (I) El retardo de propagación se calcula a partir del punto en que V ent haya alcanzado el 50% de su transición hasta que V haya alcanzado también el punto de 50%. Por regla general R p R n por tanto: t plh t phl Facultad de Informática, UPM. 26

27 Retardos de propagación del inversor MOS (II) 0.5V DD = V DD t t τ 1 e HL e x = 0.5 x = ln 2 = t = 0.693τ t + phl HL 1 0.5V DD 1 t t2 = x V τ DD e e LH = 0.5 x = ln 2 = t = 0.693τ t + plh LH 2 Facultad de Informática, UPM. 27

28 Puerta de transmisión (I) Es una estructura formada por un transistor (pmos o nmos). Tiene por misión transmitir una señal de un lado a otro de la misma cuando la entrada de control () conectada al terminal de puerta esté adecuadamente activada. G G Puerta de transmisión pmos Puerta de transmisión nmos Facultad de Informática, UPM. 28

29 Puerta de transmisión (II) Puerta pmos. Si V g = Transistor en corte. Entrada y ida desconectadas. Si V g = V SS Transistor activo Si además V ent = V = Si además V ent = V SS V = -V t = V t Facultad de Informática, UPM. 29

30 Puerta de transmisión (III) Puerta nmos. Si V g = 0V Transistor en corte. Entrada y ida desconectadas. Si V g = 5V Transistor activo Si además V ent = V = -V t Si además V ent = V SS V = V SS Facultad de Informática, UPM. 30

31 Puerta de transmisión (IV) Las puertas de transmisión pmos degradan los valores lógicos bajos, mientras que las puertas de transmisión nmos degradan los valores lógicos altos. Este efecto se debe a que se requiere un voltaje umbral entre puerta y sustrato por lo que la señal transmitida disminuirá en V t Además, a cada transistor en on le corresponde una resistencia R on y una capacidad de puerta/canal g en todo momento. Facultad de Informática, UPM. 31

32 Puerta de transmisión (V) Restricciones. La entrada de una puerta de transmisión no debe ser atacada por la ida de otra puerta de transmisión del mismo tipo, puesto que la degradación se superpone. GND GND V t GND GND -V t GND 2Vt GND GND -2V t Facultad de Informática, UPM. 32

33 Restricciones. Puerta de transmisión (VI) El número de puertas de transmisión conectadas en serie no debe exceder de 4. La razón está en que cada puertas contribuye a un tiempo de retardo proporcional a R on g. El retardo final será proporcional al cuadrado del número de puertas (n 2 ). R on R on R on R on GND GND g g g g En caso de tener que utilizar más de 4 puertas, se procede a subdividirlas en grupos de 4 e intercalar entre ellas un inversor. Facultad de Informática, UPM. 33

34 Puerta de transmisión MOS G V ent V V V V ent V pmos nmos Situación 0 x x sin canal sin canal Desconexión canal estrangulado canal pleno 0 canal pleno canal estrangulado G onexión por nmos onexión por pmos Facultad de Informática, UPM. 34

35 ircuitos lógicos elementales MOS (V) Puertas triestado. Un par de transistores (uno pmos y otro nmos, que comparten una misma señal de control ) sirven para aislar la puerta del resto de un circuito cuando se activa dicha señal de control. Red pmos Red pmos v v Red nmos Red nmos Facultad de Informática, UPM. 35

V DD. -I ds. V sal. +I ds. v ss. Es una de las puertas más sencillas y a la vez la más utilizada en los circuitos digitales. T 2.

V DD. -I ds. V sal. +I ds. v ss. Es una de las puertas más sencillas y a la vez la más utilizada en los circuitos digitales. T 2. TENOLOGÍA DE OMPUTADORES Tema 4 aracterización y Modelado de Dispositivos MOS (/) Agustín Álvarez Marquina Inversor MOS (I) () Es una de las puertas más sencillas y a la vez la más utilizada en los circuitos

Más detalles

Tecnología de Computadores

Tecnología de Computadores Tecnología de Computadores TEMA 4: Caracterización y modelado de dispositivos MOS Curso 2004-05 Grupo de Tecnología a de Computadores. DATSI-FI FI-UPM, Consuelo Gonzalo Martín n (GRUPO 22M) Índice 4.1

Más detalles

PARTE II. TÉCNICAS DE DISEÑO DE CIRCUITOS INTEGRADOS A NIVEL DE LAYOUT

PARTE II. TÉCNICAS DE DISEÑO DE CIRCUITOS INTEGRADOS A NIVEL DE LAYOUT PARTE II. TÉCNICAS DE DISEÑO DE CIRCUITOS INTEGRADOS A NIVEL DE LAYOUT TEMA 4. Caracterización y modelado de dispositivos MOS Curso 04/05 1 Tema 4: Caracterización y modelado de dispositivos MOS 4.0 Introducción

Más detalles

Tema 7: Circuitos Digitales MOS

Tema 7: Circuitos Digitales MOS Tema 7: Circuitos Digitales MOS Contenidos del tema: Introdución a los circuitos digitales. Variables y operadores lógicos Características estáticas y dinámicas de los circuitos digitales Análisis de Inversores

Más detalles

El Transistor MOS: Estructura Física y Modelos de Circuito

El Transistor MOS: Estructura Física y Modelos de Circuito El Transistor MOS: Estructura Física y Modelos de ircuito B.1-1 Estructura del Transistor NMOS Transistor NMOS de enriquecimiento: B.1-1 aracterísticas físicas Transistor NMOS ox Leff L LD, ox t ox B.1-3

Más detalles

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones TRANSISTOR MOSFET MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones Estructura

Más detalles

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación.

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Lecturas recomendadas: Circuitos Microelectrónicos, 4ª ed. Cap.5, Sedra/Smith. Ed. Oxford Circuitos Microelectrónicos,

Más detalles

PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS

PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS PARAMETROS CARACTERISTICOS DE LA FAMILIA CMOS 1 CIRCUITOS DIGITALES ESCALA DE INTEGRACION SSI MSI LSI VLSI ULSI TECNOLOGIA DE FABRICACION FAMILIAS LOGICAS 2 ESCALAS DE INTEGRACION Puertas/mm 2 SSI (Small

Más detalles

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA

TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA TEMA 3.1 MOSFET TEMA 3 TRANSISTOR MOS FUNDAMENTOS DE ELECTRÓNICA 18 de abril de 2015 TEMA 3.1 MOSFET Introducción Regiones de operación Efecto Early Efecto Body 2 TEMA 3.1 MOSFET Introducción Regiones

Más detalles

Clase CMOS: El inversor 22 de Junio de 2017

Clase CMOS: El inversor 22 de Junio de 2017 66.25 - Dispositivos Semiconductores - 2do Cuat. 2011 Clase 20-1 Clase 20 1 - CMOS: El inversor 22 de Junio de 2017 Contenidos: 1. Introducción a la electrónica digital: el inversor 2. El inversor MOS

Más detalles

Inversor con Carga Resisitiva Inversor con Carga Saturada Tiempos de transición. Compuertas NMOS. INEL Electrnica Digital.

Inversor con Carga Resisitiva Inversor con Carga Saturada Tiempos de transición. Compuertas NMOS. INEL Electrnica Digital. .. Compuertas NMOS INEL 4207 - Electrnica Digital Manuel Toledo Enero 27, 2014 Manuel Toledo Compuertas NMOS 1/ 25 Outline.1 Inversor con Carga Resisitiva.2 Inversor con Carga Saturada.3 Tiempos de transición

Más detalles

Tema 7: Familias Lógicas.

Tema 7: Familias Lógicas. Tema 7: Familias Lógicas. 7.1 Objetivos Contenidos 7. Curva de Transferencia y Respuesta Temporal 7.3 Familia RTL 7.4 Familia TTL. NAN- 7.5 Familia NMOS 7.6 Familia CMOS 1 7.1 Objetivos Las distintas puertas

Más detalles

Fundamentos del transitor MOSFET

Fundamentos del transitor MOSFET Fundamentos del transitor MOSFET Lección 04.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Aplicaciones con transistor MOSFET

Aplicaciones con transistor MOSFET Aplicaciones con transistor MOSFET Lección 04.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

normalmente abiertos N M O S V TN > 0 P M O S V TP < 0

normalmente abiertos N M O S V TN > 0 P M O S V TP < 0 Transistores de Efecto de Campo de Compuerta Aislada IGFET o MOSFET enriquecimiento normalmente abiertos P M O S V TP < 0 N M O S V TN > 0 enriquecimiento NMOS V T > 0 PMOS V T < 0 zona resistiva i D =

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente ontinua - arga y descarga de una capacidad a través de una resistencia. Agustín Álvarez Marquina Departamento de Arquitectura y

Más detalles

No pase esta hoja hasta que se le indique

No pase esta hoja hasta que se le indique FUNDMENTOS FÍSIOS Y TENOLÓGIOS DE L INFORMÁTI EXMEN DE PRÁTIS DE LORTORIO JULIO 2016 RITERIO DE LIFIIÓN Pregunta con respuesta correcta: Pregunta con respuesta incorrecta: Pregunta con más de una respuesta:

Más detalles

Seminario de Dispositivos Semiconductores 2do Cuatrimestre de Fig. 1 M1 VDD. Fig. 2

Seminario de Dispositivos Semiconductores   2do Cuatrimestre de Fig. 1 M1 VDD. Fig. 2 Guía de Ejercicios Nº7 CMOS 1) Cómo son las tensiones V DS en el circuito de dos transistores n-mosfet de la Fig. 1? V DS1 = V DS2 V DS1 > V DS2 V DS1 < V DS2 M1 VDD VG M2 Fig. 1 2) A qué tensión final

Más detalles

Tema 5. Familias CMOS. Introducción Puertas lógicas Parámetros característicos Subfamilias CMOS Compatibilidad entre familias

Tema 5. Familias CMOS. Introducción Puertas lógicas Parámetros característicos Subfamilias CMOS Compatibilidad entre familias Tema 5. Familias CMOS Introducción Puertas lógicas Parámetros característicos Subfamilias CMOS Compatibilidad entre familias Teoría Bibliografía Principios y aplicaciones digitales. Malvino. Ed. Marcombo.

Más detalles

TEMA 9: TECNOLOGÍA DIGITAL.

TEMA 9: TECNOLOGÍA DIGITAL. TEMA 9: TECNOLOGÍA DIGITAL. 9.1. Puertas lógicas. Definición y representación de las puertas. PUERTA OR PUERTA AND INVERSOR PUERTA NOR PUERTAS NAND PUERTA XOR (operador ) 9.2. Implementación de una puerta

Más detalles

No pase esta hoja hasta que se le indique

No pase esta hoja hasta que se le indique FUNDMENTOS FÍSIOS Y TENOLÓGIOS DE L INFORMÁTI EXMEN DE PRÁTIS DE LORTORIO ENERO 2016 RITERIO DE LIFIIÓN Pregunta con respuesta correcta: Pregunta con respuesta incorrecta: Pregunta con más de una respuesta:

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

PRACTICA Nº3: FAMILIAS LOGICAS

PRACTICA Nº3: FAMILIAS LOGICAS PRACTICA Nº3: FAMILIAS LOGICAS El objetivo de esta práctica es comprobar el funcionamiento de los inversores básicos bipolar y MOS, observando sus características de transferencia y midiendo sus parámetros.

Más detalles

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS

1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS 1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) INTRODUCCIÓN: Son dispositivos de estado sólido Tienen tres o cuatro terminales Es el campo eléctrico el que controla el flujo de cargas El

Más detalles

MATERIAL COMPLEMENTARIO TEMA I Niveles de abstracción en la descripción de sistemas digitales

MATERIAL COMPLEMENTARIO TEMA I Niveles de abstracción en la descripción de sistemas digitales MATERIAL COMPLEMENTARIO TEMA I Niveles de abstracción en la descripción de sistemas digitales Niveles de Abstracción en la Descripción de Sistemas Digitales 1 Metodologías de Diseño y Herramientas de CAD

Más detalles

APELLIDOS: NOMBRE: DNI/NIE:

APELLIDOS: NOMBRE: DNI/NIE: APELLIDOS: NOMBRE: DNI/NIE: Lea con atención los enunciados de los ejercicios. En caso de duda, pregunte al profesor. Explique claramente los pasos que realice en las deducciones matemáticas. Cualquier

Más detalles

Preguntas de Test de Laboratorio del Segundo Parcial

Preguntas de Test de Laboratorio del Segundo Parcial Preguntas de Test de Laboratorio del Segundo Parcial DATSI, Tecnología de Computadores. 17 de diciembre de 2013 Se incluirán algunas de las preguntas de este test en el examen de laboratorio del segundo

Más detalles

Equilibrio de retardos en NOR2. Reequilibrio de retardos en la puerta NOR2.

Equilibrio de retardos en NOR2. Reequilibrio de retardos en la puerta NOR2. TECNOLOGÍA DE COMPUTADORE Tema 6 istemas combinacionales estáticos y dinámicos Agustín Álvarez Marquina istemas combinacionales estáticos y dinámicos i (I) ubsistemas de conmutación por asignación de fuentes

Más detalles

Guía de Ejercicios N o 4: Transistor MOS

Guía de Ejercicios N o 4: Transistor MOS Guía de Ejercicios N o 4: Transistor MOS Datos generales: ε 0 = 8,85 10 12 F/m, ε r (Si) = 11,7, ε r (SiO 2 ) = 3,9, n i = 10 10 /cm 3, φ(n, p = n i ) = 0 V. 1. En un transistor n-mosfet, a) La corriente

Más detalles

Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º. Microelectrónica I 2010/ Circuito digital básico: El inversor CMOS.

Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º. Microelectrónica I 2010/ Circuito digital básico: El inversor CMOS. Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 2010/11 Resumen TEMA 3. 3.1 Circuito digital básico: El inversor CMOS. El inversor El inversor CMOS es el bloque básico en el

Más detalles

Ecuaciones Transistor MOS

Ecuaciones Transistor MOS arámetros generales: Ecuaciones Transistor MOS Rev 1, Fernando Silveira, Mayo 8 µ: Movilidad de los portadores (electrones para nmos y huecos para pmos) C ox : Capacidad del óxido por unidad de área (igual

Más detalles

5.4. Tecnologías digitales

5.4. Tecnologías digitales 5.4. Tecnologías digitales 5.4.1. Familias lógicas [ Wakerly 3.2 pág. 84] 5.4.2. ógica CMOS 5.4.2.1.Transistores MOS [ Wakerly 3.3.2 pág. 86] 5.4.2.2.Circuitos básicos en CMOS [ Wakerly 3.3.3-3.3.6 pág.

Más detalles

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011 Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011 ITCR - Elementos Activos I 2011 Objetivos El transistor de efecto de campo MOSFET y la tecnología CMOS (6 semanas) Construcción, símbolo, clasificación.

Más detalles

Tecnologías Digitales

Tecnologías Digitales Tecnologías Digitales Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid Contenidos.Familia CMOS 2.Familia TTL 3.Características de las familias CMOS y TTL 4.Tipos

Más detalles

TECNOLOGÍA DE LOS SISTEMAS DIGITALES

TECNOLOGÍA DE LOS SISTEMAS DIGITALES TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS

Más detalles

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6

'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGVTCPUKUVQTGU/15('6 'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN (/(&75Ï1,&$%È6,&$ 241$'/#5 FGVTCPUKUVQTGU/15('6 ','4%+%+15FGVTCPUKUVQTGU/15('6 (/(&75Ï1,&$%È6,&$ D Un determinado transistor MOSFET de enriquecimiento

Más detalles

Tema IV. Compuertas Lógicas. Contenido. Circuitos básicos, Características eléctricas, retardos de propagación.

Tema IV. Compuertas Lógicas. Contenido. Circuitos básicos, Características eléctricas, retardos de propagación. Circuitos Digitales I Tema IV Compuertas ógicas uis Taraza, UNEXPO arquisimeto E-3213 Circuitos Digitales I - 2004 100 Ctenido! Definicies de parámetros de corriente y voltaje.! Compuertas lógicas CMOS

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 17: Circuitos Amplificadores Lineales (5) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 8 de Octubre de 2009 1

Más detalles

TEMA 3. Circuitos digitales básicos CMOS.

TEMA 3. Circuitos digitales básicos CMOS. Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 2010/11 Resumen TEMA 3. Circuitos digitales básicos CMOS. 3.2 Otros Circuitos digitales básicos. Diseño de puertas CMOS Puertas

Más detalles

Tema 7. Introducción a los circuitos de conmutación

Tema 7. Introducción a los circuitos de conmutación Tema 7. Introducción a los circuitos de conmutación 7.1 Introducción. 7.2 Circuitos digitales. 7.3 Circuitos con diodos en cuasi estática. 7.4 El diodo en conmutación dinámica. 7.5 Conmutación con transistores

Más detalles

TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA

TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 5.2 FUNCIONES LÓGICAS Puertas lógicas Simplificación de funciones lógicas 2 TEMA 5.2 FUNCIONES

Más detalles

LOS DIAGRAMAS DE MEMELINK COMO HERRAMIENTA GRÁFICA PARA MODELOS FUNCIONALES DE MOS Y PUERTAS LÓGICAS

LOS DIAGRAMAS DE MEMELINK COMO HERRAMIENTA GRÁFICA PARA MODELOS FUNCIONALES DE MOS Y PUERTAS LÓGICAS LOS DIAGRAMAS DE MEMELINK COMO HERRAMIENTA GRÁFICA PARA MODELOS FUNCIONALES DE MOS Y PUERTAS LÓGICAS T. POLLÁN, C. BERNAL Y F. PÉREZ-CEBOLLA Escuela Universitaria de Ingeniería Técnica Industrial de Zaragoza.

Más detalles

Compuertas Lógicas. Contenido. Tema IV. Definiciones de parámetros de corriente y voltaje (2) Definiciones de parámetros de corriente y voltaje

Compuertas Lógicas. Contenido. Tema IV. Definiciones de parámetros de corriente y voltaje (2) Definiciones de parámetros de corriente y voltaje Tema IV Circuitos Digitales I Compuertas ógicas Ctenido! Definicies de parámetros de corriente y voltaje.! Compuertas lógicas CMOS Circuitos básicos, Características eléctricas, retardos de propagación.!

Más detalles

Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores. Introducción a la Electrónica

Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores. Introducción a la Electrónica CIRCUITOS DIGITALES Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores Memorias Conceptos preliminares Máximo nivel de tensión de entrada para un nivel lógico bajo V IL

Más detalles

Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores. Introducción a la Electrónica

Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores. Introducción a la Electrónica CIRCUITOS DIGITALES Conceptos preliminares Familias lógicas Topologías Compuertas Flip Flops Osciladores Memorias Conceptos preliminares Máximo nivel de tensión de entrada para un nivel lógico bajo V IL

Más detalles

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET BIBLIOGRAFÍA Tema 3: EL TRANSISTOR FET.1 Introducción. El Mosfet de acumulación Funcionamiento y curvas características Polarización.3 El Mosfet de deplexión Funcionamiento y curvas características.4 El

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: generadores ideales y reales. Equivalencia de generadores. -Potencia y energía. Ley

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 22: Respuesta en Frecuencia de Circuitos Amplificadores (3) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 27 de

Más detalles

SISTEMAS ELECTRICOS EJEMPLO 1.- CIRCUITO ELECTRICO DE COMPONENTES EN SERIE CON UNA FUENTE DE TENSIÓN

SISTEMAS ELECTRICOS EJEMPLO 1.- CIRCUITO ELECTRICO DE COMPONENTES EN SERIE CON UNA FUENTE DE TENSIÓN SISTEMAS EETIOS EJEMPO.- IUITO EETIO DE OMPONENTES EN SEIE ON UNA FUENTE DE TENSIÓN ircuito eléctrico con un componente pasivo y un componente almacenador de energía, ambos en serie con una fuente de voltaje

Más detalles

S. Hambley, Electrónica, Prentice Hall, 2001.

S. Hambley, Electrónica, Prentice Hall, 2001. Tema 6. El transistor MOS Bibliografía A.S. Sedra, K.C. Smith, Circuitos Microelectrónicos, Oxford University Press, 004. S. Hambley, Electrónica, Prentice Hall, 00. Índice del Tema 6 ESTRUCTURA FÍSCA

Más detalles

EL MOSFET DE POTENCIA

EL MOSFET DE POTENCIA Ideas generales sobre el transistor de Efecto de Campo de MetalÓxido Semiconductor El nombre hace mención a la estructura interna: Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Es un dispositivo

Más detalles

3.6) Repite el problema 3.5 para una frecuencia de reloj de 100KHz.

3.6) Repite el problema 3.5 para una frecuencia de reloj de 100KHz. urso 2002-2003. Boletín-3, Pág. 1 de 6 3 3.1) ual es el peor caso de tiempo de conversión para un convertidor A/D de integración de doble rampa con 18 bits, si la frecuencia de reloj es de 5MHz?. T 52,4ms

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA PRÁCTICA 3. ESTABLECER LAS CURVAS DE CARGAS Y DESCARGA DE UN CAPACITOR ELECTROLÍTICO EN C.C OBJETIVOS Realizar el cálculo teórico del tiempo de carga de un capacitor electrolítico. Conocer y manejar la

Más detalles

6. Diseño de circuitos integrados

6. Diseño de circuitos integrados 6. Diseño de circuitos integrados 6.1. Sistemas síncronos 6.2. Limitaciones de diseño 6.3. Señal de reloj 6.4. Control de bus 6.5. Técnicas prohibidas, metaestabilidad 6.6. Control y datos 6.7. Estructuras

Más detalles

TEMA 7. FAMILIAS LOGICAS INTEGRADAS

TEMA 7. FAMILIAS LOGICAS INTEGRADAS TEMA 7. FAMILIAS LOGICAS INTEGRADAS http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 Aniversary: http://www.flickr.com/photos/ieee25/with/289342254/ TEMA 7 FAMILIAS

Más detalles

CURVAS CARACTERÍSTICAS DE LA CARGA Y DESCARGA DE UN CONDENSADOR

CURVAS CARACTERÍSTICAS DE LA CARGA Y DESCARGA DE UN CONDENSADOR Física II PRÁTIAS DE FÍSIA: Guiones de prácticas \ 1 URVAS ARATERÍSTIAS DE LA ARGA Y DESARGA DE UN ONDENSADOR OBJETIVO onstruir las gráficas de la intensidad de corriente que circula por un condensador

Más detalles

Stuck-at. 1.1 Stuck-at Fault

Stuck-at. 1.1 Stuck-at Fault Capítulo 1 Stuck-at 1.1 Stuck-at Fault Este fallo es modelado asignando un valor fijo (0 ó 1) a la línea de señal en el circuito. Una línea de señal es una entrada o salida de una compuerta lógica o un

Más detalles

El layout contienen una descripción geométrica (tamaño y orientación) de todos los componentes y sus interconexiones.

El layout contienen una descripción geométrica (tamaño y orientación) de todos los componentes y sus interconexiones. TECNOLOGÍA DE COMPUTADORES Tema 5 Representación y diseño de circuitos integrados Agustín Álvarez Marquina Diseño de circuitos integrados (I) El diseño de un circuito integrado termina con la realización

Más detalles

Instrumental y Dispositivos Electrónicos

Instrumental y Dispositivos Electrónicos Instrumental y Dispositivos Electrónicos DepartamentoAcadémico Electrónica Facultad de Ingeniería 2014 Diagrama de bloques de una fuente de alimentación lineal RED 220 V TRANSFORMACIÓN RECTIFICACIÓN FILTRADO

Más detalles

Preguntas Más Frecuentes Tema 7

Preguntas Más Frecuentes Tema 7 Preguntas Más Frecuentes Tema 7 ontenido P.7.: Tengo dificultades en entender la carga y descarga de un condensador. Podrían explicármelo?. P.7.: ómo podemos saber la expresión matemática de la tensión

Más detalles

FAMILIAS LÓGICAS CON TRANSISTORES MOS

FAMILIAS LÓGICAS CON TRANSISTORES MOS FAMILIAS LÓGICAS CON TRANSISTORES MOS FAMILIA CMOS El número de transistores que se requieren en esta lógica para implementar una puerta lógica de N entradas es de 2N. Esta tecnología presenta unos niveles

Más detalles

Parcial_1_Curso.2012_2013. Nota:

Parcial_1_Curso.2012_2013. Nota: Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.

Más detalles

Diseño digital CMOS. TRANSISTOR

Diseño digital CMOS.   TRANSISTOR Diseño digital CMOS DIODO https://www.youtube.com/watch?v=hsjgw_c-nn4 TRANSISTOR https://www.youtube.com/watch?v=9jkj-wlepmy Transistor nmos Un transistor MOS (Metal-Oxide-Silicon) de canal n (nmos)esunaestructurafísicacreada

Más detalles

Introducción TEMA 1 TECNOLOGÍA DE LOS CI. ME Tema 1 Aspectos generales sobre diseño microelectrónico 1

Introducción TEMA 1 TECNOLOGÍA DE LOS CI. ME Tema 1 Aspectos generales sobre diseño microelectrónico 1 Introducción TEMA 1 TECNOLOGÍA DE LOS CI ME Tema 1 Aspectos generales sobre diseño microelectrónico 1 ÍNDICE TEMA 1 ASPECTOS GENERALES SOBRE DISEÑO MICROELECTRONICO Evolución del diseño electrónico Proceso

Más detalles

=V dd, el transistor esta encendido y permite la

=V dd, el transistor esta encendido y permite la Tecnología CMOS Compuertas lógicas Introducción: El transistor MOS como llave. Se puede pensar que el transistor MOS tiene dos estados de funcionamiento. Autor: Sebastián Horacio Carbonetto Revisión: Ariel

Más detalles

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica Introducción a la Electrónica Transistores de efecto de campo Introducción a la Electrónica Características La corriente es controlada a travez de un campo eléctrico establecido por el voltaje aplicado

Más detalles

TEMA 5. FAMILIAS LÓGICAS INTEGRADAS

TEMA 5. FAMILIAS LÓGICAS INTEGRADAS TEMA 5. FAMILIAS LÓGICAS INTEGRADAS 5.1. Parámetros característicos de los circuitos digitales 5.2. Tecnologías: Bipolar (TTL) y MOSFET (CMOS) 5.3. Comparación de prestaciones y compatibilidad Introducción

Más detalles

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET I. FET vs BJT Su nombre se debe a que el mecanismo de control de corriente está basado en un campo eléctrico establecido por el voltaje aplicado al terminal de control, es decir, a diferencia del BJT,

Más detalles

Electrónica 1. Práctico 10 Familias Lógicas

Electrónica 1. Práctico 10 Familias Lógicas Electrónica 1 Práctico 10 Familias Lógicas Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 12: Transistores de Efecto de Campo (3) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 10 de Septiembre de 2009

Más detalles

CUESTIONES DEL TEMA - IV

CUESTIONES DEL TEMA - IV ema 5: Osciladores de elajación... Presentación En el tema 5 se tratan distintos circuitos que producen en su salida ondas de tipo cuadradas, triangulares, pulso, etc. : a) Se analiza el comportamiento

Más detalles

TEMA 1. Introducción

TEMA 1. Introducción Fundamentos de los Computadores. Introducción. T1-1 TEMA 1. Introducción INDICE: SISTEMAS SISTEMAS CONTINUOS Y DISCRETOS EN EL TIEMPO SEÑALES SISTEMAS DIGITALES DESCRIPCIÓN DE LOS SISTEMAS DIGITALES Fundamentos

Más detalles

EL TRANSISTOR BIPOLAR

EL TRANSISTOR BIPOLAR L TRASISTOR IOLAR La gráfica esquemática muestra el transistor como interruptor. La resistencia de carga está colocada en serie con el colector. l voltaje Vin determina cuando el transistor está abierto

Más detalles

Electrónica 1. Práctico 10 Familias Lógicas

Electrónica 1. Práctico 10 Familias Lógicas Electrónica 1 Práctico 10 Familias Lógicas Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS

Experimento 6: Transistores MOSFET como conmutadores y compuertas CMOS Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Sergio Morales, Ing. Pablo Alvarado, Ing. Eduardo Interiano Laboratorio de Elementos Activos II Semestre 2006 I Experimento

Más detalles

Transitorios RL en corriente continua

Transitorios RL en corriente continua Transitorios RL en corriente continua Cuando en un circuito producimos un cambio de las condiciones de trabajo, generalmente por variación de la tensión aplicada, se produce un periodo de transición hasta

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO Se define Para la región triodo (zona ohmica) VGS

Más detalles

Tema 7: Polarización.

Tema 7: Polarización. 7. bjetivos Tema 7: Polarización. 7. ntroducción 7.3 Zona de Seguridad ontenidos 7.4 nfluencia de la temperatura sobre el Punto de peración 7.5 ircuitos y Técnicas ásicas de Polarización 7.6 Espejos de

Más detalles

PROBLEMAS Y CUESTIONES. 1. A qué se debe el tiempo de almacenamiento durante el transitorio de on a off de un diodo?

PROBLEMAS Y CUESTIONES. 1. A qué se debe el tiempo de almacenamiento durante el transitorio de on a off de un diodo? PROBLEMAS Y CUESTIONES 1. A qué se debe el tiempo de almacenamiento durante el transitorio de on a off de un diodo? 2. Qué fenómenos físicos tienen lugar durante los transitorios de un diodo? 3. Explique

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN

EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN INTRODUCCIÓN 1.- EL INTERRUPTOR A TRANSISTOR Un circuito básico a transistor como el ilustrado en la Figura 1 a), conforma un circuito inversor; es decir que su salida es de bajo nivel cuando la señal

Más detalles

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.

Más detalles

1.- La tensión v A es a) Triangular recortada b) Triangular c) Cuadrada (por estar saturado el AO).

1.- La tensión v A es a) Triangular recortada b) Triangular c) Cuadrada (por estar saturado el AO). D.. D.1.- En el circuito de la figura el interruptor S está cerrado y se abre en el instante t = 0. Los amplificadores operacionales son ideales y están alimentados entre + 16 V y - 16 V. La tensión v

Más detalles

Electrónica Básica. Gustavo A. Ruiz Robredo Juan A. Michell Mar<n. Tema B.1. El Transistor MOS: Estructura Física y Modelos de Circuito

Electrónica Básica. Gustavo A. Ruiz Robredo Juan A. Michell Mar<n. Tema B.1. El Transistor MOS: Estructura Física y Modelos de Circuito Electrónica Básica Tema B.1. El Transistor MO: Estructura Física y Modelos de Circuito Gustavo A. Ruiz Robredo Juan A. Michell Mar

Más detalles

Manual de Prácticas. Práctica 2

Manual de Prácticas. Práctica 2 UNIVERSIDAD CARLOS III DE MADRID Manual de Prácticas Práctica 2 Dispositivos y Medios de Transmisión Ópticos Fecha: 06/03/12 Autores: Juan Carlos Torres Zafra David Sánchez Montero Carmen Vázquez García

Más detalles

P6. CARGA Y DESCARGA DE UN CONDENSADOR en CC

P6. CARGA Y DESCARGA DE UN CONDENSADOR en CC P6. CARGA Y DESCARGA DE UN CONDENSADOR en CC OBJETIVO El objetivo de esta experiencia consiste en estudiar el valor de la carga, la intensidad y el voltaje que circula por un circuito RC conectado a una

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 19: Circuitos Amplificadores Lineales (7) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 15 de Octubre de 2009

Más detalles

PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS

PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS PROBLEMAS DE MICROONDAS: PARÁMETROS S Y ANÁLISIS DE CIRCUITOS DE MICROONDAS PROBLEMA 1 Calcular la matriz S del siguiente cuadripolo: R l 1 l 2 Z 1 Z 2 PROBLEMA 2 Determine la matriz de parámetros ABCD

Más detalles

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 EXPERIMENTO DEMOSTRATIVO DE LA PRÁCTICA 8 En

Más detalles

El circuito mostrado en la figura representa un modelo más próximo a un caso real. jω hlt

El circuito mostrado en la figura representa un modelo más próximo a un caso real. jω hlt ARMONICAS Ejemplo 1.3 El circuito mostrado en la figura 1.3.1 representa un modelo más próximo a un caso real. jω hlt representa la impedancia j de Thévenin de un circuito complejo, es una reactancia ω

Más detalles

TEMA 4. DISPOSITIVOS ELECTRÓNICOS EN CONMUTACIÓN

TEMA 4. DISPOSITIVOS ELECTRÓNICOS EN CONMUTACIÓN TEMA 4. DSPOSTOS ELECTRÓNCOS EN CONMUTACÓN 4.1. Cnmutación de dids y transistres 4.2. Etapas inversras fundamentales 4.3. mplementación de circuits digitales básics ntrducción Electrónica Digital: ls circuits

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS

Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS Guía de laboratorio No. 6 EL TRANSISTOR MOSFET: CARACTERIZACIÓN Y APLICACIONES BÁSICAS En esta guía se realiza una primera aproximación a las características y polarización de transistores MOSFET, además

Más detalles

Por supuesto, se puede llegar al mismo fin conociendo la ecuación para el manejo del elemento alineal.

Por supuesto, se puede llegar al mismo fin conociendo la ecuación para el manejo del elemento alineal. Diapositiva 1 from Horwitz & Hill p. 1059 Cuál es la corriente que atraviesa el diodo? I V diodo Un método tradicional de hallar el punto de funcionamiento de un es un circuito alineal es mediante líneas

Más detalles

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida Amplificadores operacionales. Los amplificadores operacionales, también conocidos como amp ops, se usan con frecuencia para amplificar las señales de los circuitos Los amp ops también se usan con frecuencia

Más detalles

1. Introducción. 2. Familias Lógicas

1. Introducción. 2. Familias Lógicas 1. Introducción Por el rápido progreso de las tecnologías de los IC s digitales, la integración ha llegado a grandes escalas pasando de pequeña escala (SSI) hasta la integración de Giga Escala (GSI). La

Más detalles

Negro Marrón. Rojo. Plata

Negro Marrón. Rojo. Plata Fundamentos Físicos y Tecnológicos de la nformática. Examen de prácticas de laboratorio. Octubre 05. En ué figura o figuras de las siguientes se presenta un montaje válido para medir la corriente ue circula

Más detalles