Circuitos de Corriente Continua

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Circuitos de Corriente Continua"

Transcripción

1 Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente ontinua - arga y descarga de una capacidad a través de una resistencia. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas Informáticos Universidad Politécnica de Madrid

2 onsideremos el siguiente circuito. El interruptor S se encuentra en una posición intermedia desde hace mucho tiempo. Figura. ircuito formado por una resistencia R y una capacidad.

3 Proceso de carga del condensador. En el instante tt se procede a conectar el interruptor al punto. El circuito resultante es el indicado por la Figura. Figura. ircuito R durante el proceso de carga de la capacidad. 3

4 Proceso de carga del condensador. Para dicho instante se verifica (condiciones iniciales): ( t ) 0 ( ) max I i t I R Para cualquier instante t, la ecuación del circuito será: R + donde, R ir q 4

5 Proceso de carga del condensador. Derivando la ecuación del circuito ecuación respecto al tiempo, obtenemos: di dq 0 R + La anterior expresión puede rescribirse, si tenemos en cuenta que: dq i Quedando por tanto: di 0 R + i ; di R i 5

6 Proceso de carga del condensador. Separando variables en esta última expresión, tenemos: di i t R Integrando desde tt (instante inicial del proceso de carga) hasta t, queda: i ( t ) I ( ) di i R Resolviendo la integral se obtiene por tanto: i lni ln I ( ) ln t t ; R I R t t ( t t ) 6

7 Proceso de carga del condensador. Por último, despejando el término i(t) se obtiene la expresión definitiva: i ( ) R τ t I e I e tt tt siendo: τ R la constante de tiempo o de relajación. 7

8 Proceso de carga del condensador. Gráficamente, la corriente en función del tiempo es la mostrada en la Figura: Figura. Representación de la corriente i(t) en función del tiempo. 8

9 Proceso de carga del condensador. omo puede comprobarse la anterior gráfica es una función exponencial cuya pendiente en el punto inicial (tt ) es τr. Esto puede comprobarse fácilmente si se deriva la expresión de i(t) respecto al tiempo: t t ( ) R d i t Ie R Si ahora personalizamos la última expresión para tt, tenemos: d i I I tgα R τ t t 9

10 Proceso de carga del condensador. Un último aspecto relevante es que para una vez transcurrido un lapso de tiempo mayor o igual a 4τ, el proceso de carga se considera completado, en efecto para tt +4τ, tenemos: i 4τ τ ( t + 4τ ) Ie 0, 08I Esto es lo mismo que decir que la corriente es menor que el % de su valor inicial. 0

11 Proceso de carga del condensador. Así mismo, partiendo de la misma expresión podemos determinar la evolución de la carga del condensador: i R I e q 0 q q t t t R Ie t tt I R dq dq R e e tt tt τ

12 Proceso de carga del condensador. La representación gráfica de la variación de la carga es: Figura. Representación gráfica de la carga q.

13 Proceso de carga del condensador. De manera similar podemos determinar c(t) si tenemos en cuenta que está relacionada con i(t) por medio de: d i En este caso el signo negativo indica que c(t) aumenta a lo largo del tiempo mientras que el valor de la corriente i(t) va disminuyendo. 3

14 Proceso de carga del condensador. Reordenando la expresión e integrando respecto al tiempo t, obtendremos: d i ( t ) 0 d I t t I R e tt e t t R t t R ( ) R t I R e t t 4

15 Proceso de carga del condensador. Sustituyendo el valor de I, queda: y simplificando: tt R R e R t t τ e 5

16 Proceso de carga del condensador. La representación gráfica de dicha tensión puede verse en la Figura. Figura. Representación gráfica de la tensión (t). 6

17 Proceso de carga del condensador. La pendiente de la curva en el punto inicial (tt ) puede obtenerse evaluando la derivada de (t) en dicho punto: d t t tt τ e τ t t ( t ) d τ tgα 7

18 Proceso de descarga del condensador. Ahora en un instante posterior tt (siendo t >>t para poder asegurar que el condensador se haya cargado completamente) se procede a conectar el interruptor al punto i(t) c + R R Figura. ircuito R durante el proceso de descarga de la capacidad. 8

19 Proceso de descarga del condensador. En dicho instante se verifica (condiciones iniciales): ( t ) max i( t ) I R R Para cualquier instante t del proceso de descarga, se cumplirá que: + 0 R donde: q R ir 9

20 Proceso de descarga del condensador. Sustituyendo los términos (t) y R (t) por sus expresiones y derivando respecto al tiempo, obtenemos: d i dq d R di R di R

21 Proceso de descarga del condensador. Separando variables en la última expresión, tenemos: di i R Integrando desde tt (instante inicial del proceso de descarga) hasta t, queda: i ( t ) I di i R t t

22 Proceso de descarga del condensador. Si ahora resolvemos la integral se obtiene por tanto: ln i ln I ( t t ) R i ln ( t t ) I R Por último, despejando el término i(t) se consigue la expresión definitiva: siendo: i ( ) R τ t I e I e τ R tt tt la constante de tiempo o de relajación.

23 Proceso de descarga del condensador. Gráficamente, la corriente en función del tiempo es la mostrada en la Figura. Figura. Representación de la corriente i(t) en función del tiempo. 3

24 Proceso de descarga del condensador. omo puede comprobarse la anterior gráfica es una función exponencial cuya pendiente en tt es τr. En efecto, derivando la ecuación que describe la evolución de la corriente, obtenemos: d i t t τ I τ e Ahora si personalizamos la última expresión para tt, tenemos: d i I tgα τ t t 4

25 Proceso de descarga del condensador. Un último aspecto relevante es que para una vez transcurrido un lapso de tiempo mayor o igual a 4τ, el proceso de descarga se considera prácticamente terminado, puesto que para tt +4τ, tenemos: i 4τ τ ( t + 4τ ) I e 0, 08I Esto equivale a decir que la corriente será menor que el % de su valor máximo inicial. 5

26 Proceso de descarga del condensador. Para establecer el nivel de carga del condensador a lo largo de todo este proceso partimos del resultado anterior y de la relación existente entre carga presente en el condensador y corriente que circula por éste: t t dq R i Ie q q ( t ) dq dq I t t t R e t t t R I e donde el nivel de carga inicial q(t ) Q max 6

27 Proceso de descarga del condensador. Operando, llegamos al resultado final. q I R e t t R q e t τ t 7

28 Proceso de descarga del condensador. La representación gráfica de dicha carga puede verse en la Figura. q Figura. Representación gráfica de la carga q. e tt α τ 4τ t 8

29 Proceso de descarga del condensador. Por su parte, la tensión (t) puede estimarse también a partir de su relación con la corriente i(t): d i Integrando la anterior expresión, queda: ( t ) d I I t t e Re t t R tt R t t t t R I R e 9

30 Proceso de descarga del condensador. Por último, sustituyendo el valor de I, queda: tt + R e y simplificando: t ( ) τ t e t 30

31 Proceso de descarga del condensador. La representación gráfica de dicha tensión puede verse en la Figura. (t) I R Figura. Representación gráfica de la tensión (t). e tt α τ 4τ t 3

CURVAS CARACTERÍSTICAS DE LA CARGA Y DESCARGA DE UN CONDENSADOR

CURVAS CARACTERÍSTICAS DE LA CARGA Y DESCARGA DE UN CONDENSADOR Física II PRÁTIAS DE FÍSIA: Guiones de prácticas \ 1 URVAS ARATERÍSTIAS DE LA ARGA Y DESARGA DE UN ONDENSADOR OBJETIVO onstruir las gráficas de la intensidad de corriente que circula por un condensador

Más detalles

R 4 R 3. Solución. Establecemos las siguientes 3 mallas aprovechando el hecho de que conocemos los valores de V e I.

R 4 R 3. Solución. Establecemos las siguientes 3 mallas aprovechando el hecho de que conocemos los valores de V e I. Problema º. Dado el siguiente circuito donde,,,, y 4, son datos conocidos, calcular e por: a) El método de corrientes de malla. b) El método de tensiones en los nudos. c) Obteniendo el circuito equivalente

Más detalles

P6. CARGA Y DESCARGA DE UN CONDENSADOR en CC

P6. CARGA Y DESCARGA DE UN CONDENSADOR en CC P6. CARGA Y DESCARGA DE UN CONDENSADOR en CC OBJETIVO El objetivo de esta experiencia consiste en estudiar el valor de la carga, la intensidad y el voltaje que circula por un circuito RC conectado a una

Más detalles

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 13

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 13 TEMA 13 REGÍMENES TRANSITORIOS II 2 2 13.1 CASO DE RAÍCES COMPLEJAS CONJUGADAS: a - ω r < 0. CIRCUITO OSCILANTE AMORTIGUADO, O CIRCUITO SUBAMORTIGUADO. La descarga de un condensador en un circuito sin

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3. Circuito RC de corriente continua R V I C En esta figura se muestra un circuito RC de corriente continua, el cual está formado por una malla simple con

Más detalles

Ayudantía 14 Problema 1.

Ayudantía 14 Problema 1. Pontificia Universidad Católica de Chile Facultad de Física FIS1533 Electricidad y Magnetismo Profesor: Máximo Bañados Ayudante: Felipe Canales, correo: facanales@uc.cl Ayudantía 14 Problema 1. En t el

Más detalles

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 12 REGÍMENES TRANSITORIOS I

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 12 REGÍMENES TRANSITORIOS I TEMA 12 REGÍMENES TRANSITORIOS I 12.1. DESCARGA DE UN CONDENSADOR. La ecuación general que define la descarga en un condensador en un circuito R, L y C, constituye un caso particular de sistemas de descarga

Más detalles

FÍSICA II Ing. Pablo M. Flores Jara Ing. Pablo M. Flores Jara

FÍSICA II Ing. Pablo M. Flores Jara Ing. Pablo M. Flores Jara FÍSICA II pablofloresjara@gmail.com RÉGIMEN TRANSITORIO EN CIRCUITOS RC Circuitos RC Los circuitos RC son los formados por elementos resistivos y capacitivos. En esta sección vamos a analizar el comportamiento

Más detalles

El transistor MOS. Fundamentos Físicos y Tecnológicos de la Informática

El transistor MOS. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática El transistor MOS - El transistor MOS como conmutador: inversor MOS. Función de transferencia. - Retardos de propagación. - Puerta de transmisión: nmos,

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Fundamentos Físicos y Tecnológicos de la nformática Circuitos de Corriente Alterna - Función de transferencia. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas nformáticos

Más detalles

Práctica 7. Fenómenos transitorios: carga y descarga de un condensador. 7.1 Objetivo. 7.2 Material. 7.3 Fundamento

Práctica 7. Fenómenos transitorios: carga y descarga de un condensador. 7.1 Objetivo. 7.2 Material. 7.3 Fundamento Práctica 7 Fenómenos transitorios: carga y descarga de un condensador 7.1 Objetivo Existen numerosos fenómenos en los que el valor de la magnitud física que los caracteriza evoluciona en régimen transitorio,

Más detalles

Práctica 10. Corriente Continua

Práctica 10. Corriente Continua átedra: L. Szybisz Fisica 1 (yg), 2do cuatrimestre 2015 Práctica 10. orriente ontinua ircuitos con resistencias 1. Dadas tres resistencias de valores 1, 2 y 4, qué valores de resistencia se pueden obtener

Más detalles

Carga y descarga de un capacitor en un circuito RC

Carga y descarga de un capacitor en un circuito RC Carga y descarga de un capacitor en un circuito RC Informe Laboratorio Curso Física II Catherine Andreu, María José Morales, Gonzalo Núñez, and Clío Peirano Ing. en Biotecnología Molecular. * Facultad

Más detalles

1.9 Sustituciones diversas 49

1.9 Sustituciones diversas 49 1.9 Sustituciones diversas 49 1.9 Sustituciones diversas En ocasiones tenemos ecuaciones diferenciales que no corresponden a ninguna forma de ecuación conocida, donde, para resolverlas fácilmente recurrimos

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 10. Coeficientes de inducción mutua y autoinducción 10.1. Objeto de la práctica

Más detalles

Ayudantía 23. Problema 1

Ayudantía 23. Problema 1 Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo Profesor: Máximo Bañados Ayudante: Alonso Ruiz (airuiz@uc.cl) Problema 1 Ayudantía 23 Considere el circuito

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden.3.4 Circuito de corriente alterna V.t/ D V 0 sen t o I C En la figura anterior se muestra un circuito de corriente alterna; este circuito está formado por una

Más detalles

SISTEMAS ELECTRICOS EJEMPLO 1.- CIRCUITO ELECTRICO DE COMPONENTES EN SERIE CON UNA FUENTE DE TENSIÓN

SISTEMAS ELECTRICOS EJEMPLO 1.- CIRCUITO ELECTRICO DE COMPONENTES EN SERIE CON UNA FUENTE DE TENSIÓN SISTEMAS EETIOS EJEMPO.- IUITO EETIO DE OMPONENTES EN SEIE ON UNA FUENTE DE TENSIÓN ircuito eléctrico con un componente pasivo y un componente almacenador de energía, ambos en serie con una fuente de voltaje

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUIÓN ELETROMAGNÉTIA Ley de Ampére La ley de Ampère, relaciona la componente tangencial del campo magnético, alrededor de una curva cerrada, con la corriente I c que atraviesa dicha curva. r r B dl =

Más detalles

Autoinductancia. Circuitos RL

Autoinductancia. Circuitos RL Autoinductancia. ircuitos R 1 Autoinductancia omo hemos estudiado, el fenómeno de inducción electromagnética relaciona la variación temporal del flujo magnético en una superficie (abierta) arbitraria,

Más detalles

Bloque 5 Análisis de circuitos en régimen transitorio. Teoría de Circuitos

Bloque 5 Análisis de circuitos en régimen transitorio. Teoría de Circuitos Bloque 5 Análisis de circuitos en régimen transitorio Teoría de Circuitos 5.1 Análisis de circuitos de primer orden en régimen transitorio Régimen transitorio de los circuitos eléctricos En los capítulos

Más detalles

AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener:

AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener: AMPLIFICADORES OPERACIONALES Modelo Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener: 1. Una impedancia de entrada muy elevada en cada

Más detalles

Carga y descarga de un capacitor en un circuito RC.

Carga y descarga de un capacitor en un circuito RC. Carga y descarga de un capacitor en un circuito RC. Laboratorio de Física: 1210 Unidad 4 Temas de interés. 1. Relación exponencial. 2. Relaciones directamente proporcionales. 3. Ajuste de tendencia lineal.

Más detalles

Marzo CORRIENTE GISPUD. c) Potencia consumida por el condensador a través del tiempo;.

Marzo CORRIENTE GISPUD. c) Potencia consumida por el condensador a través del tiempo;. Marzo 2012 http:///wpmu/gispud/ Ejercicio 2. Corriente Eléctrica. 1.2 CORRIENTE A partir de la gráfica de carga en un condensador determine gráfica y analíticamente: a) Corriente del condensador a través

Más detalles

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente - Tensión y corriente alterna. Funciones sinusoidales. Valores medio y eficaz. - Relación tensión corriente en los elementos de

Más detalles

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores IRUITOS DE SEGUNDO ORDEN Mg. Amancio R. Rojas Flores Un circuito de segundo orden se caracteriza por una ecuación diferencial de segundo orden. onsta de elementos R, y 1.- INTRODUION En este capítulo se

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA PRÁCTICA 3. ESTABLECER LAS CURVAS DE CARGAS Y DESCARGA DE UN CAPACITOR ELECTROLÍTICO EN C.C OBJETIVOS Realizar el cálculo teórico del tiempo de carga de un capacitor electrolítico. Conocer y manejar la

Más detalles

Guía 8. Circuitos de corriente continua

Guía 8. Circuitos de corriente continua átedra: Mindlin Fisica 1 (yg), 2do cuatrimestre 2009 Guía 8. ircuitos de corriente continua ircuitos con resistencias 1. Dadas tres resistencias de valores 1Ω, 2Ω y 4Ω, qué valores de resistencia se pueden

Más detalles

Instituto de Física, Facultad de Ciencias Electromagnetismo 2008

Instituto de Física, Facultad de Ciencias Electromagnetismo 2008 Problema Nº EECTROMAGNETISMO PRACTICO Nº 9 CIUITOS EÉCTRICOS RÉGIMEN TRANSITORIO Y SINUSOIDA En el circuito de la figura, la tensión vi ( t ) es periódica (de periodo T) y su forma de onda es la que se

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice:

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice: Indice: 1. Clasificación de Sistemas en tiempo continuo Lineales y no Lineales Invariante y Variantes en el tiempo Causal y no Causal Estable e Inestables Con y sin Memoria 2. La Convolución La Integral

Más detalles

2500 ; 1275 ; 730 ; 472 ; 343 ; 252 ; 187 ; 152 ; 123 ; 102 y 86

2500 ; 1275 ; 730 ; 472 ; 343 ; 252 ; 187 ; 152 ; 123 ; 102 y 86 Ejercicios resoluciones clases.5 y.6 Pág. de 8 Tema - HIDRÁULICA DE ACUÍFEROS Profesor: Eduard Batista Ejercicio En la cabecera de un río, alimentado exclusivamente por un manantial, se han realizado aforamientos

Más detalles

Circuitos dinámicos de segundo orden. Respuesta libre en el circuito RLC serie y respuesta estimulada en circuitos de segundo orden

Circuitos dinámicos de segundo orden. Respuesta libre en el circuito RLC serie y respuesta estimulada en circuitos de segundo orden ircuitos dinámicos de segundo orden. espuesta libre en el circuito serie y respuesta estimulada en circuitos de segundo orden Objetivos. Analizar la respuesta libre en el circuito serie, mediante la metodología

Más detalles

Negro Marrón. Rojo. Plata

Negro Marrón. Rojo. Plata Fundamentos Físicos y Tecnológicos de la nformática. Examen de prácticas de laboratorio. Octubre 05. En ué figura o figuras de las siguientes se presenta un montaje válido para medir la corriente ue circula

Más detalles

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial 1.- El circuito de la figura se encuentra en las condiciones mostradas desde t = -. En t = 0 se conecta la fuente de tensión continua E, permaneciendo así indefinidamente. E= 12V ; R= 2 Ω ; L = 1 H a)

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 53 1.1. Rectificador de media onda... 55 1.2. Rectificador de onda completa... 56 1.3. Rectificador de media onda con condensador... 57

Más detalles

Recordemos que las funciones de intensidad tienen dos términos, uno de los cuales es un sumatorio

Recordemos que las funciones de intensidad tienen dos términos, uno de los cuales es un sumatorio Fluorescente con condensador en serie 111 Separando los tramos de la función Recordemos que las funciones de intensidad tienen dos términos, uno de los cuales es un sumatorio por tanto podemos integrar

Más detalles

PRÁCTICA Nº 7. CARGA Y DESCARGA DE UN CAPACITOR

PRÁCTICA Nº 7. CARGA Y DESCARGA DE UN CAPACITOR PÁCTICA Nº 7. CAGA Y DESCAGA DE UN CAPACITO OBJETIOS Analizar los procesos de carga y de descarga de un condensador a través de una resistencia. Determinar la capacitancia de un capacitor aplicando el

Más detalles

1. Conocer y verificar las leyes que rigen el proceso de carga y descarga de un condensador.

1. Conocer y verificar las leyes que rigen el proceso de carga y descarga de un condensador. Capítulo 11 Circuitos RC, carga y descarga de un condensador 11.1. Objetivos 1. Conocer y verificar las leyes que rigen el proceso de carga y descarga de un condensador. 2. Verificar relaciones energéticas

Más detalles

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff.

7. Circuitos de corriente alterna. Corriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 7. ircuitos de corriente alterna. orriente alterna, impedancia, representación compleja. Potencia en corriente alterna, leyes de Kirchhoff. 0. uál es la capacidad de un circuito oscilante si la carga máxima

Más detalles

Ejercicio 1 Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito.

Ejercicio 1 Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito. Ejercicio Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito. b) Calcula la intensidad de la corriente que atraviesa el circuito. c) Calcula la diferencia de potencial

Más detalles

Respuesta completa en circuitos RLC con estímulo de corriente directa

Respuesta completa en circuitos RLC con estímulo de corriente directa Respuesta completa en circuitos RL con estímulo de corriente directa Objetivos Analizar la respuesta completa en circuitos RL con estímulo de corriente directa, utilizando la metodología de este material.

Más detalles

Transferencia de máxima potencia

Transferencia de máxima potencia Transferencia de máxima potencia Un ejemplo Si tenemos un generador de tensión V con resistencia interna R i alimentando una resistencia de carga R se produce una intensidad I que genera en R una potencia

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES PRÁCTICA 3 CIRCUITO LCR Jesús GÓMEZ GOÑI ÍNDICE CIRCUITO

Más detalles

es e valor máximo de la fem

es e valor máximo de la fem U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar

Más detalles

EJERCICIOS DE INTEGRALES DEFINIDAS:

EJERCICIOS DE INTEGRALES DEFINIDAS: EJERCICIOS DE INTEGRALES DEFINIDAS: 1.) Se considera, en el primer cuadrante, la región R del plano limitada por: el eje X, el eje Y, la recta x = 2 y la curva y =. a) Calcula razonadamente, el área de

Más detalles

CIRCUITO RC. Se llama circuito RC a la combinación en serie de un capacitor y un resistor.

CIRCUITO RC. Se llama circuito RC a la combinación en serie de un capacitor y un resistor. Se llama circuito RC a la combinación en serie de un capacitor y un resistor. Dicho circuito puede representar cualquier conexión de resistores y capacitores cuyo equivalente sea un solo resistor en serie

Más detalles

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES.

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIO. En el circuito de la figura, hallar la corriente que circula por la impedancia Ω. RESOLUCIÓN: MÉTODO DE LAS

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

ANÁLISIS EN EL DOMINIO DEL TIEMPO

ANÁLISIS EN EL DOMINIO DEL TIEMPO APÍTUO 2 ANÁSS EN E DOMNO DE TEMPO P. NVARANZA EN E TEMPO... 2 PR2. ESTADO NA... 2 PR3. TRANSTORO R SERE... 2 PR4. TRANSTORO R PARAEO... 3 PR5. ESTADO NA... 3 PR6. TEÓRO-PRÁTO (SEP -06)... 3 PR7. TEÓRO-PRÁTO

Más detalles

Nombre: DNI: (PRIMERA PARTE)

Nombre: DNI: (PRIMERA PARTE) SEGUNDO PRCL DE ELECTROMGNETSMO 6 de junio de 5 Nombre: DN: (PRMER PRTE) Teoría ( puntos). Densidad de energía magnética en medios lineales y no lineales. Pérdidas magnéticas por histéresis y por corrientes

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden APÍTULO 5 Aplicaciones de ED de segundo orden 5.3.3 ircuito de corriente continua V I L onsideremos ahora un circuito formado por un resistor, un capacitor y un inductor L conectados en serie con una fuente

Más detalles

INTRODUCCIÓN A LOS SISTEMAS DIGITALES II

INTRODUCCIÓN A LOS SISTEMAS DIGITALES II INTRODUIÓN A LOS SISTEMAS DIGITALES II ANEXO APUNTES UNIDAD N 1 APAITORES AÑO 2012 Ing. Eduardo Hoesé APAITORES El capacitor, también llamado condensador, es un componente eléctrico de dos terminales capaz

Más detalles

Figura 1. Circuito RLC

Figura 1. Circuito RLC APLIAIÓN: EL IRUITO RL. Al comienzo del tema de las E.D.O lineales de segundo orden hemos visto como estas ecuaciones sirven para modelizar distintos sitemas físicos. En concreto el circuito RL. Figura

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y Elaborado por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales de Primer orden Aplicaciones. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: ' 0 Solución:

Más detalles

Capacitancia

Capacitancia 1. CONDENSADOR IDEAL 1.1. Circuito La Figura 1 muestra el circuito que se simulará. Consta de una fuente de tensión alterna V1 con parámetros de definición:.model V SIN (F=5 A=1) y de un condensador C1

Más detalles

CLAVE V

CLAVE V CLAVE-114-2-V-2-00-2015 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTA DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA SEMESTRE: PRIMERO CÓDIGO DEL CURSO: 114 CURSO: MATEMÁTICA INTERMEDIA 3 JORNADA: TIPO DE EXAMEN:

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

TEMA 2. CARGA Y DESCARGA DEL CONDENSADOR.

TEMA 2. CARGA Y DESCARGA DEL CONDENSADOR. TEMA 2. CARGA Y DESCARGA DEL CONDENSADOR. 2.1 FORMAS DE ONDA Se denomina forma de onda a una función matemática que describe un parámetro físico, con el tiempo como variable independiente. En esta asignatura,

Más detalles

Superficies. Primera Forma Fundamental

Superficies. Primera Forma Fundamental Tema Superficies. Primera Forma Fundamental Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 005 006 Tema. Superficies. Primera Forma Fundamental 1. Curvas sobre superficies

Más detalles

Fundamentos Físicos de la Informática. Grupo de Tecnología de Computadores-DATSI. Facultad de Informática. UPM. 4 o Z 3 Z 4 I V. Las ecuaciones son:

Fundamentos Físicos de la Informática. Grupo de Tecnología de Computadores-DATSI. Facultad de Informática. UPM. 4 o Z 3 Z 4 I V. Las ecuaciones son: Fundamentos Físicos de la nformática. Grupo de Tecnología de omputadores-dts. Facultad de nformática. UPM. Ejercicio En el circuito de la figura se conocen los valores de,,,,,, y g. Sin realizar ninguna

Más detalles

CLASE PRÁCTICA 2 RESUELTA. PLAN D PROBLEMAS DE POLARIZACIÓN DEL TRANSISTOR BIPOLAR (BJT)

CLASE PRÁCTICA 2 RESUELTA. PLAN D PROBLEMAS DE POLARIZACIÓN DEL TRANSISTOR BIPOLAR (BJT) LASE PRÁTIA RESUELTA. PLAN D PROBLEMAS DE POLARIZAIÓN DEL TRANSISTOR BIPOLAR (BJT) Sumario:. Introducción.. Solución de problemas. 3. onclusiones. Bibliografía:. Rashid M. H. ircuitos Microelectrónicos.

Más detalles

V DD. -I ds. V sal. +I ds. v ss. Es una de las puertas más sencillas y a la vez la más utilizada en los circuitos digitales. T 2.

V DD. -I ds. V sal. +I ds. v ss. Es una de las puertas más sencillas y a la vez la más utilizada en los circuitos digitales. T 2. TENOLOGÍA DE OMPUTADORES Tema 4 aracterización y Modelado de Dispositivos MOS (/) Agustín Álvarez Marquina Inversor MOS (I) () Es una de las puertas más sencillas y a la vez la más utilizada en los circuitos

Más detalles

Cálculo de las tensiones y corrientes en un transistor

Cálculo de las tensiones y corrientes en un transistor Cálculo de las tensiones y corrientes en un transistor Analicemos el circuito de la Figura 1. FIGURA 1: Circuito a analizar Este es un circuito genérico, pensado solamente para ver como se plantean las

Más detalles

Transitorios RL en corriente continua

Transitorios RL en corriente continua Transitorios RL en corriente continua Cuando en un circuito producimos un cambio de las condiciones de trabajo, generalmente por variación de la tensión aplicada, se produce un periodo de transición hasta

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

Guia 3. Circuitos de primer y segundo orden

Guia 3. Circuitos de primer y segundo orden Guia 3. Circuitos de primer y segundo orden 1. PSfrag Calcular replacements y graficar la respuesta v C (t) para t > 0 de la figura 1, si estuvo conectado a la fuente por un tiempo suficientemente grande

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: generadores ideales y reales. Equivalencia de generadores. -Potencia y energía. Ley

Más detalles

Guía del docente. 1. Descripción curricular:

Guía del docente. 1. Descripción curricular: Guía del docente 1. Descripción curricular: Nivel: 4º medio Subsector: Ciencias Físicas Unidad temática: Los condensadores o capacitores. Palabras claves: condensadores, capacitancia, capacitor, carga

Más detalles

El BJT en la zona activa

El BJT en la zona activa El BJT en la zona activa Electrónica Analógica º Desarrollo de Productos Electrónicos Índice.- Amplificadores con BJT. 2.- Osciladores L con BJT. Electrónica Analógica El BJT en la zona activa 2 .- ircuitos

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una resistencia

1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una resistencia Física 3 - Turno : Mañana Guia N 6 - Primer cuatrimestre de 2010 Transitorios, Circuitos de Corriente Alterna, Transformadores 1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

CUESTIONES DEL TEMA - IV

CUESTIONES DEL TEMA - IV ema 5: Osciladores de elajación... Presentación En el tema 5 se tratan distintos circuitos que producen en su salida ondas de tipo cuadradas, triangulares, pulso, etc. : a) Se analiza el comportamiento

Más detalles

TRANSISTOR BIPOLAR: TEMA 2.2

TRANSISTOR BIPOLAR: TEMA 2.2 TRANSISTOR BIPOLAR: TEMA 2.2 Zaragoza, 12 de noviembre de 2013 ÍNDICE TRANSISTOR BIPOLAR Tema 2.2 Polarización Modelo de pequeña señal TRANSISTOR BIPOLAR Tema 2.2 Polarización Modelo de pequeña señal POLARIZACIÓN

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

Transitorios, Circuitos de Corriente Alterna, Transformadores.

Transitorios, Circuitos de Corriente Alterna, Transformadores. Física 3 Guia 5 - Corrientes variables Verano 2016 Transitorios, Circuitos de Corriente Alterna, Transformadores. 1. Un condensador de 3µF se carga a 270 V y luego se descarga a través de una resistencia

Más detalles

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES 4.1. CONDENSADORES. CAPACIDAD Un sistema binario es el constituido por dos conductores próximos entre los cuales se producen fenómenos de influencia. Si la influencia es total, se

Más detalles

Aplicaciones del diodo

Aplicaciones del diodo Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales Definición de Ecuación diferencial. A toda igualdad que relaciona a una función desconocida o variable dependiente con sus variables independientes y sus derivadas se le conoce

Más detalles

AREA MOJADA DE UN CONDUCTO CIRCULAR. La ecuación general de la circunferencia en el plano cartesiano es de la forma:

AREA MOJADA DE UN CONDUCTO CIRCULAR. La ecuación general de la circunferencia en el plano cartesiano es de la forma: AREA MOJADA DE UN CONDUCTO CIRCULAR La ecuación general de la circunferencia en el plano cartesiano es de la forma: (xx ) + (yy kk) = rr Ec 1 Ubicando el origen del plano cartesiano en un extremo de la

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

TRABAJO DE LABORATORIO Nº 3 Capacidad: Carga y descarga de capacitores

TRABAJO DE LABORATORIO Nº 3 Capacidad: Carga y descarga de capacitores Universidad Nacional del Nordeste Facultad de Ingeniería átedra: Profesor Adjunto: Ing. Arturo astaño Jefe de Trabajos Prácticos: Ing. esar Rey A ili I A d é M di il I J é E i I Ab l U R d í TRABAJO DE

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características asociadas a capacitancias e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características asociadas a capacitancias e inductancias en circuitos eléctricos. CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características asociadas a capacitancias e inductancias en circuitos eléctricos. EQUIPAMIENTO - Netbook con software

Más detalles

26. De todas las gráficas dadas que relacionan la concentración de reaccionante con el tiempo para una reacción del primer orden,

26. De todas las gráficas dadas que relacionan la concentración de reaccionante con el tiempo para una reacción del primer orden, CINÉTICA QUÍMICA. El orden de una reacción química se define como el número de moléculas que con su concentración intervienen en la velocidad de una reacción mientras que la constante de proporcionalidad

Más detalles

CAPITULO 3 PROPUESTA DEL DISEÑO DEL CIRCUITO. funciona, así, como la obtención de valores de dispositivos del CFP para su

CAPITULO 3 PROPUESTA DEL DISEÑO DEL CIRCUITO. funciona, así, como la obtención de valores de dispositivos del CFP para su CAPITULO 3 PROPUESTA DEL DISEÑO DEL CIRCUITO 3.1 INTRODUCCIÓN En este capítulo se verá el diseño del circuito, las diferentes etapas en las que funciona, así, como la obtención de valores de dispositivos

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES ECUACIONES DIFERENCIALES DE PRIMER ORDEN Solución Taller preparativo para el parcial 1 Ecuaciones diferenciales de primer

Más detalles

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA

CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características tanto para el circuito RC y el RL, asociadas a capacidades e inductancias en circuitos eléctricos

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍICA GENERAL II GUÍA 5 - Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

Soluciones Examen febrero 2014 E = A partir de 2 determino la diferencia de potencial entre las placas (que es V 1 ): q = V 1

Soluciones Examen febrero 2014 E = A partir de 2 determino la diferencia de potencial entre las placas (que es V 1 ): q = V 1 Soluciones Examen febrero 2014 Ejercicio 1 Parte a Supongo una carga q en las placas del capacitor. Aplicando Ley de Gauss: E. ds = q 1 kɛ 0 S E = q 2πrdkɛ 0 2 A partir de 2 determino la diferencia de

Más detalles

Solución: La condición para que el transistor se encuentre en saturación es:

Solución: La condición para que el transistor se encuentre en saturación es: Problemas Adicionales. apítulo 4: Transistores JT. Problemas esueltos de omponentes y ircuitos lectrónicos.. Figueres, M. Pascual, J.A. Martínez e. Miró. SPUP- Problema 4.2ver1 epetir el problema 4.2 si

Más detalles

Curso: 2º Bachillerato Examen II

Curso: 2º Bachillerato Examen II Nombre: Nota Curso: º Bachillerato Examen II Fecha: de Octubre de 015 La mala o nula explicación de cada ejercicio implica una penalización de hasta el 5% de la nota. 1.- Se sabe que la función f :[0,5]

Más detalles

Clave V

Clave V Clave-114-6-V-2-00-2013 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DEPARTAMENTO DE MATEMÁTICA CURSO: Matemática Intermedia 3 SEMESTRE: Segundo Semestre de 2014 CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Segunda

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

No pase esta hoja hasta que se le indique

No pase esta hoja hasta que se le indique FUNDMENTOS FÍSOS Y TENOLÓGOS DE L NFOMÁT EXMEN DE TEOÍ ENEO 016 TEO DE LFÓN Pregunta con respuesta correcta: Pregunta con respuesta incorrecta: Pregunta con más de una respuesta: Pregunta sin respuesta:

Más detalles

Guía de Problemas N 3: Circuitos Eléctricos

Guía de Problemas N 3: Circuitos Eléctricos Guía de Problemas N 3: Circuitos Eléctricos Problema 1. Tenemos 5 10 10 iones positivos por cm 3 con carga doble de la elemental que se mueven con una velocidad de drift que se mueven con una velocidad

Más detalles

Examen de Electrónica Industrial. 1 de septiembre de 2006 Tiempo: 2:30 horas.

Examen de Electrónica Industrial. 1 de septiembre de 2006 Tiempo: 2:30 horas. Examen de Electrónica ndustrial. de septiembre de 006 Tiempo: :30 horas. Problema ( punto) En la figura se muestra un circuito de disparo de tiristores usando un UJT. La tensión de alimentación del circuito

Más detalles

DESCARGA DE UN CONDENSADOR

DESCARGA DE UN CONDENSADOR eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles