Modelización de Sistemas Biológicos (por computadora) Parte I Modelización por Analogías FIUNER

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelización de Sistemas Biológicos (por computadora) Parte I Modelización por Analogías FIUNER"

Transcripción

1 Modelización de Sistemas Biológicos (por computadora) Parte I Modelización por Analogías FIUNER

2 Organización Parte I Introducción: concepto de modelo Etapas de la modelización Modelos Compartimentales Modelos Poblacionales Modelos por Analogías

3 Modelos por analogías Repaso Conceptos y definiciones. Etapas de la modelización Del modelo conceptual al físico Del modelo físico al matemático Ejemplo: modelo de Hodgking-Huxley

4 Modelización por analogías Generalmente el conocimiento del modelador en un campo o domino puede ayudarlo en la construcción de un modelo para un campo análogo En la naturaleza se pueden encontrar sistemas de distintos tipos con dinámicas similares

5 Dinámicas similares di 1. L i. R. i. E( t) C dv. M v. h k. v. F( t)

6 Ejemplo 1: El Modelo de Hodgkin-Huxley Circuito equivalente de la Membrana en Reposo C m dv I tot 0

7 Ejemplo 2: Generación de marn como Flujo en una Red de Tuberías Dos complejos de proteínas [TFIID (transcription factor IID) y SAGA (Spt Ada Gcn5 Acetyltransferasa)] compiten para ensamblar la maquinaria de transcripción en el ADN, via el el reclutamiento del promotortbp, para formar el Complejo de PreIniciación

8 Ejemplo 2: Generación de marn Topología de la red como Flujo en una Red de Tuberías La activación de una maquinaria de transcrip. Los reguladores válvulas presión externa (determinan el caudal) Interconexión entre los agentes de modulación (influencian la expresión del ARNm)

9 Ejemplo 3: Modelo del Sist. CardioVascular

10 Ejemplo 4: Modelo de la Presión IntraCraneal Iin Ra V c Rpv V v = V ic Rdv 2 V a Ca Rf Ro V ic V ic 1 Cic I f DC I i I o DC V vs

11 Variables generalizadas... Para el análisis de la dinámica de estos sistemas se consideran dos tipos de variables generalizadas: a) Las variables que fluyen a través de un elemento del sistema, las cuales se denominan genéricamente f. b) Las variables esfuerzo entre los extremos de un elemento del sistema, las cuales se denominan genéricamente e. ΔC ΔT ΔP Q ΔV I J DA Fick: J C x J: flujo de un ion D: Coef. de difusión C Fluye un líquido Fluye el desplazam. (x) Fluyen las cargas Fluye el calor

12 Variables generalizadas... Naturaleza del sistema Eléctrico Variable a través Corriente eléctrica i Variable entre Diferencia de potencial V Mecánico Velocidad v Fuerza F Hidráulico Caudal Q Diferencia de presión P Térmico Flujo calorífico q Diferencia de temperatura T Químico Flujo molar q Diferencia de concentración C

13 Variables generalizadas... En base a estas analogías se puede definir una ley generalizada que relaciona los dos tipos de variables: e = Z.f donde Z es una impedancia generalizada.

14 Tipos de elementos Elementos que disipan energía Elementos que almacenan energía potencial Elementos que almacenan energía cinética Asumiendo linealidad

15 Elementos disipadores Se oponen al paso de la variable que fluye

16 Elementos disipadores e Z f Sistemas Elemento físico Símbolo Ecuación Eléctrico Resistencia eléctrica V = R.i Ley que la gobierna Ohm Mecánico Rozamiento mecánico F = Rm.v Hidráulico Resistencia al flujo P = Rh.Q Poiseuille Térmico Resistencia térmica T= Rt.ḉ Fourier Químico Resistencia de difusión C 1 C 2 C 1 C 2 C J DA C x Fick P e f z f 2 e z 2

17 Elementos almacenan EP Se define el desplazamiento generalizado h como la integral de la variable que fluye h f f dh Ley lineal de los elementos que almacenan energía potencial e 1 C f C Capacidad generalizada

18 Elementos almacenan EP (estática) e 1 C t 0 f Sistemas Elemento físico Símbolo Ecuación Eléctrico Capacitor 1 V. i. C Mecánico Resorte F k. v. Hidráulico Compliancia ΔP ΔV P Co. Q. Térmico Masa térmica 1. q. C T Químico q Cm Capacitancia C

19 Elementos almacenan EC e L df Sistemas Elemento físico Símbolo Ecuación Eléctrico Mecánico Hidráulico Inductancia Inercia (masa) Inertancia V F P L. di m. dv I. dq

20 Kirchov a e a E1 f 1 e b f 2 b f 3 E2 f 2 0 ( e e ) ( e 0) (0 e ) a b b a 0 f1 ( f2) ( f3) 0

21 Elementos en paralelo

22 El Modelo de Hodgkin-Huxley de membrana de Axón Modelización de sistemas biológicos

23 La Bomba Na + K + Ingreso de 2*K + por cada 3*Na + que salen 1/3 de la energía

24 Ecuación de Nernst Describe cómo una diferencia en la concentración iónica puede resultar en una diferencia de potencial V n RT zf R: constante universal de los gases T: temperatura absoluta z: carga en el ión N ln F: constante de Faraday N N e i

25 Fuerza de arrastre Exterior(+) Interior(-) Na + X Cl - Cl - X K +

26 No hay corriente neta a través de la membrana debido a que la difusión es balanceada por la diferencia de potencial eléctrico El potencial de membrana Estado de equilibrio Control del volumen Balance entre Difusión y Diferencia de Potencial Eléctrico V m RT F P ln P Na Na Na i PK K i PL Cl e Na e PK K e PL Cl i Ecuación de Goldman-Hodgkin-Katz P n : permeab. de la membrana al ión µ: movilidad del ión b: coeficiente de partición aceite/agua a: espesor de la membrana Sustancia muy soluble en aceiteb grande P n b RT af

27 Modelo del circuito eléctrico de la membrana La membrana separa cargas Capacitor aprox. (1µF/cm 2 ) Hay difusión pasiva (escape) de iones Resistencia C m dv I tot 0

28 Circuito Equivalente de la Membrana en Reposo P n b RT af V n RT zf ln N e N i Ión Permeabilidad Potenc. de Nernst K + 6x mv Na + 8x mv L mv

29 Membrana en reposo I n I L Em E m =r n I n +E n I n =g n (E m -E n ) g K =0.367 ms/cm 2 g Na =0.01 ms/cm 2 g L =0.30 ms/cm 2

30 Potencial de acción Tejidos exitables Saca del estado de equilibrio Señaliza

31 Hodgkin y Huxley (1939)

32 Hodgkin y Huxley (1939) 1mm

33 Existe un umbral Hodgkin-Huxley Existe un período refractario El potencial de acción puede propagarse (de 20 a 120 m/seg).

34 Potencial de acción

35 Hodgkin-Huxley (1957, premio Nobel 1963) Pinzado de voltaje ("voltage clamp ) Humbral Corrientes selectivas Corriente explosiva de entrada de Na + Corriente lenta de salida de K + Permeabilidades (g n ) son función de V m y t

36 Potencial de acción Variación de V m Varían Conductancias Varían Potenciales de Nernst

37 Potencial de Acción

38 Modelo Matemático ap Por Kirchoff I ap C m dv m g K t V t E t g t V t E t g V t E t m K Na m Na cl m cl

39 Modelo Matemático: Corriente de K + Resultados del Pinzado de Voltaje Canales abiertos β α Canales cerrados dn (1 n) n n α y β dependen de V m n La dinámica de la apertura de los canales de K + es una sigmoidea de 4 orden g La variación en el tiempo de la g k se modela como una ecuac. dif. de 1 orden La g k se mantiene mientras el V m se mantenga (no se inactiva) k dg ( v) k g k n 4 f ( v, t)

40 Modelo Matemático: Corriente de Na + dm Canal abierto β m β h (1 m) m m α y β dependen de V m α m Canal cerrado α h Canal Inactivado m Resultados del Pinzado de Voltaje La dinámica de la apertura de los canales de Na + es de 3 orden con inactivación La variación en el tiempo de la g Na se modela como una ecuac. dif. de 1 orden La g Na es explosiva e inmediata pero se inactiva por tiempo g Na dg Na g 3 Nam h f ( v, t)

41 Modelo Matemático g g g Na k L g g g k L Na n 4 m 3 h dm dn dh (1 m) m (1 n) n n (1 h) h h m n h m α m (v) = 0.1(45+v)/(1-e -((45+v)/10) ), β m (v) = 4e -((70+v)/18), α n (v) = 0.01(v+60)/(1-e -((60+v)/10) ), β n (v) = 0.125e -((70+v)/80) α h (v) = 0.07 e -((70+v)/20), β h (v) = 1/(1+e -((40+v)/10) ) Suponiendo la evolución normal del potencial de acción

42 Modelo Matemático I ap ( t) C m dv g K t vt E g t vt E g vt K Na Na L E L dv I ap t) Cm g( v Em) donde g E m ( ap g Na g Na g E g K Na Na g L g K EK g K g g L L E L g L E L g g g Na k L g g g k L Na n 3 m h 4 dm m(1 m) mm dn n(1 n) nn dh h(1 h) hh α m (v) = 0.1(45+v)/(1-e -((45+v)/10) ), β m (v) = 4e -((70+v)/18), α n (v) = 0.01(v+60)/(1-e -((60+v)/10) ), β n (v) = 0.125e -((70+v)/80) α h (v) = 0.07 e -((70+v)/20), β h (v) = 1/(1+e -((40+v)/10) )

43 Modelo del cable Error de la gráfica: según el modelo de H-H las conductancias están en serie con los potenciales de Nernst

44 Conducción saltatoria

45 Bibliografía Physiological Control Systems, Michael C. Khoo, IEEE Press, "Introducción a la Bioingenieria", Marcombo-Boixareu Editores, Mathematical Physiology, J. Keener J. Sneyd, Volume 8, Springer, 1988 Modelling with Diferencial Equations", Burghes-Borrie. "An introduction to Mathematical Modelling", Bender. "Elementos de Biomatematica", Engel, Sec Gral de la OEA., Programa Regional de Desarrollo Cientifico, "Modelling and Control in Biomedical Systems", Cobelli-Mariani, "Dynamics of Physical systems", R. Cannon, McGraw-Hill. "Farmacocinética Clínica", John G. Wagner, Ed. Reverté, S.A., "Drugs and Pharmaceutical Sciences", Gibaldi

Modelización de Sistemas Biológicos (Parte I) FIUNER

Modelización de Sistemas Biológicos (Parte I) FIUNER Modelización de Sistemas Biológicos (Parte I) FIUNER Organización Parte I Introducción: concepto de modelo Etapas de la modelización Modelos Compartimentales Modelos Poblacionales Modelos por Analogías

Más detalles

Modelización de Sistemas Biológicos (por computadora) Parte I Modelización por Analogías FIUNER

Modelización de Sistemas Biológicos (por computadora) Parte I Modelización por Analogías FIUNER Modelización de Sistemas Biológicos (por computadora) Parte I Modelización por Analogías FIUNER Organización Parte I Introducción: concepto de modelo Etapas de la modelización Modelos Poblacionales Modelos

Más detalles

Organización. Modelización por analogías. Modelos por analogías. Modelización de Sistemas Biológicos (Parte I) Parte I

Organización. Modelización por analogías. Modelos por analogías. Modelización de Sistemas Biológicos (Parte I) Parte I Organización Modelización de Sistemas Biológicos (Parte I) FIUNER Parte I Introducción: concepto de modelo Etapas de la modelización Modelos Compartimentales Modelos Poblacionales Modelos por Analogías

Más detalles

Modelización de Sistemas Biológicos (Parte I) Bioingeniería I FIUNER

Modelización de Sistemas Biológicos (Parte I) Bioingeniería I FIUNER Modelización de Sistemas Biológicos (Parte I) Bioingeniería I FIUNER Objetivos Presentar las bases de la modelización. Comprender las etapas implicadas en el proceso de modelización. Aprender a modelizar

Más detalles

Propiedades eléctricas de las células

Propiedades eléctricas de las células Propiedades eléctricas de las células - La membrana celular regula el paso de iones entre el exterior y el interior de la célula. - Interior y exterior contienen diferentes concentraciones de iones. -

Más detalles

Sistemas compartimentales. Modelización de Sistemas Biológicos (por Computadora) FIUNER

Sistemas compartimentales. Modelización de Sistemas Biológicos (por Computadora) FIUNER Sistemas compartimentales Modelización de Sistemas Biológicos (por Computadora) FIUNER Organización Parte I Introducción: concepto de modelo Etapas de la modelización Modelos Poblacionales Modelos Compartimentales

Más detalles

PROPIEDADES ACTIVAS DE LA MEMBRANA CELULAR

PROPIEDADES ACTIVAS DE LA MEMBRANA CELULAR PROPIEDADES ACTIVAS DE LA MEMBRANA CELULAR BIOLOGIA CELULAR DE LA NEURONA CELULAS GLIALES PROPIEDADES PASIVAS Y ACTIVAS DE LA MEMBRANA Respuesta Activa. Sólo en células excitables (ej: neuronas y Células

Más detalles

UNIDAD 2: Bases físicas de la Circulación y Respiración

UNIDAD 2: Bases físicas de la Circulación y Respiración PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: FÍSICA E INTRODUCCIÓN A LA BIOFÍSICA NOTA: ESTE CURSO INTEGRADO SE DICTA ENTRE LA CATEDRA DE FISICA Y BIOFISICA (CBC) Y LA CÁTEDRA DE BIOFÍSICA DE

Más detalles

Ejercicios Clase 9 - CANALES Y POTENCIALES I

Ejercicios Clase 9 - CANALES Y POTENCIALES I Ejercicios Clase 9 - CANALES Y POTENCIALES I Ejercicio 1. Un canal de Na + permite el pasaje de iones a favor de gradiente electroquímico. Sabiendo que este pasaje es un flujo de iones, calcula cuántos

Más detalles

Tema 6. Electricidad: transporte de cargas. Práctica 6: Ley de Nerst Práctica 7: Descarga de un circuito RC

Tema 6. Electricidad: transporte de cargas. Práctica 6: Ley de Nerst Práctica 7: Descarga de un circuito RC Tema 6. Electricidad: transporte de cargas Práctica 6: Ley de Nerst Práctica 7: Descarga de un circuito RC Origen del movimiento de las cargas Fuerza de interacción entre dos cargas: F donde K q r 1 q

Más detalles

Formulario de Electroquímica

Formulario de Electroquímica Formulario de Electroquímica Salvador Blasco Llopis. Notación α coeficiente de transferencia de materia a e área específica del electrodo A e área del electrodo c concentración c A concentración de A en

Más detalles

Transporte a través de la membrana celular. Departamento de Biofísica Facultad de Medicina

Transporte a través de la membrana celular. Departamento de Biofísica Facultad de Medicina Transporte a través de la membrana celular Departamento de Biofísica Facultad de Medicina Objetivos Analizar parte de las funciones de las membranas celulares. Estudiar el pasaje de sustancias a través

Más detalles

Sistema Mecánico Traslacional. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Sistema Mecánico Traslacional. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Sistema Mecánico Traslacional Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia VARIABLES PRINCIPALES Esfuerzo (e) Nombre: Fuerza Símbolo: F Unidades SI: [N]

Más detalles

K + 28/10/2009. Clase 11. Transporte a través de las membranas. Cl Cl - Ca ++

K + 28/10/2009. Clase 11. Transporte a través de las membranas. Cl Cl - Ca ++ Clase 11. Transporte a través de las membranas 1. La concentración de solutos en el interior de la célula es diferente que en el exterior. 1. El medio extracelular posee una composición química diferente

Más detalles

BASES BIOFÍSICAS DE LA EXCITABILIDAD

BASES BIOFÍSICAS DE LA EXCITABILIDAD BASES BIOFÍSICAS DE LA EXCITABILIDAD Depto. Biofísica Facultad de Medicina ESFUNO Escuelas UTI: Biología Celular y Tisular Importancia del estudio de la membrana celular Funciones de la membrana: -Barrera

Más detalles

CÉLULAS EXCITABLES Y NO EXCITABLES. Este material es de propiedad del grupo de Biofísica de la Pontificia Universidad Javeriana

CÉLULAS EXCITABLES Y NO EXCITABLES. Este material es de propiedad del grupo de Biofísica de la Pontificia Universidad Javeriana CÉLULAS EXCITABLES Y NO EXCITABLES Este material es de propiedad del grupo de Biofísica de la Pontificia Universidad Javeriana Objetivos Recordar los mecanismos de transporte a través de la membrana. Distinguir

Más detalles

MECANISMOS DISIPATIVOS Y SUS FUERZAS IMPULSORAS

MECANISMOS DISIPATIVOS Y SUS FUERZAS IMPULSORAS MECANISMOS DISIPATIVOS Y SUS FUERZAS IMPULSORAS Temas de Biofísica Mario Parisi Bibliografía Capítulo 3: Los Grandes Mecanismos Disipativos y sus Fuerzas Impulsoras Gradiente Variación de una cierta cantidad

Más detalles

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 7 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECT 1. DEFINICION

Más detalles

LA NEURONA 30/09/2014 MEMBRANA CELULAR CANALES Y BOMBAS. La membrana

LA NEURONA 30/09/2014 MEMBRANA CELULAR CANALES Y BOMBAS. La membrana LA NEURONA MEMBRANA CELULAR Bi capa lipídica Separa liquido intra y extra celular Regula el movimiento de sustancias Equilibra la concentración de sales. Hay 2 estructuras: CANALES BOMBAS CANALES Y BOMBAS

Más detalles

Departamento de Fisiología Coordinación de Enseñanza

Departamento de Fisiología Coordinación de Enseñanza Sesión No. 4 POTENCIAL DE MEMBRANA PROPÓSITO GENERAL Comprender el concepto de potencial de equilibrio y potencial de membrana. Analizar cuáles son los factores que determinan el potencial de membrana

Más detalles

Bases biofísicas del potencial de membrana en reposo.

Bases biofísicas del potencial de membrana en reposo. Espacio Interdisciplinario 2014 - Física Instituto de Profesores Artigas Profesora Carolina Pereira Práctico N 1 Bases biofísicas del potencial de membrana en reposo. Muchas funciones que lleva a cabo

Más detalles

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas

Más detalles

Clase 2. Hola a todos/as! Aspectos generales de las señales eléctricas de la membrana celular. Cuáles son estos principios básicos?

Clase 2. Hola a todos/as! Aspectos generales de las señales eléctricas de la membrana celular. Cuáles son estos principios básicos? Clase 2 Hola a todos/as! En la clase pasada hablamos sobre el potencial de equilibrio de un ion (E), su significado y cómo podíamos determinarlo a través de la ecuación de Nernst. También decíamos que

Más detalles

Ejercicios Clase 10, 11 y 12 - CANALES Y POTENCIALES I Y II, POTENCIALES III Y IV, MITOCONDRIA I Y II.

Ejercicios Clase 10, 11 y 12 - CANALES Y POTENCIALES I Y II, POTENCIALES III Y IV, MITOCONDRIA I Y II. Ejercicios Clase 10, 11 y 12 - CANALES Y POTENCIALES I Y II, POTENCIALES III Y IV, MITOCONDRIA I Y II. Ejercicio 1. Un canal de Na + permite el pasaje de iones a favor de gradiente electroquímico. Sabiendo

Más detalles

Unidad 2: Sistema nervioso. Profesor: Nicolás Soto L.

Unidad 2: Sistema nervioso. Profesor: Nicolás Soto L. Unidad 2: Sistema nervioso Profesor: Nicolás Soto L. Objetivo Comprender cómo se genera y transmite un impulso nervioso en las neuronas. Modelo de Hodgkin y Huxley El modelo de Alan Lloyd Hodgkin y Andrew

Más detalles

DISTRIBUCIÓN DE LOS FLUÍDOS CORPORALES

DISTRIBUCIÓN DE LOS FLUÍDOS CORPORALES Lección 1. Estructura y composición física de la membrana celular. Mecanismos de transporte. Difusión. Permeabilidad. Osmosis y presión osmótica. Transporte mediado: Transporte facilitado, Transporte activo

Más detalles

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 8 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA 1.BLOQUES

Más detalles

Conceptos Previos SISTEMA NERVIOSO NEURONAS MOTORAS. Llevan señales del SNC que controlan las actividades de los músculos y glándulas SOMÁTICO

Conceptos Previos SISTEMA NERVIOSO NEURONAS MOTORAS. Llevan señales del SNC que controlan las actividades de los músculos y glándulas SOMÁTICO IMPULSO NERVIOSO IMPULSO NERVIOSO Conceptos Previos SISTEMA NERVIOSO SISTEMA NERVIOSO CENTRAL (SNC) Recibe y procesa información; inicia acciones SISTEMA NERVIOSO PERIFÉRICO (SNP) Transmite señales entre

Más detalles

CINEMÁTICA. dr v dt dv a dt 2. dv v. v vu. r 2. a r r u r r uˆ. Movimiento en una dimensión. v v v. x x v t at. v v 2a x x

CINEMÁTICA. dr v dt dv a dt 2. dv v. v vu. r 2. a r r u r r uˆ. Movimiento en una dimensión. v v v. x x v t at. v v 2a x x CINEMÁTICA r iˆ j ˆ zkˆ dr v dt dv a dt dv v a uˆ ˆ t un dt, v ruˆ ˆ r ru ˆr v vu a r r u r r uˆ Movimiento en una dimensión vt 1 v v v v v at v t at 1 v v a X B A X B X A VB A VB VA ab A ab aa ˆt ESTÁTICA

Más detalles

FORMULARIO DE FÍSICA

FORMULARIO DE FÍSICA 15 FORMULARIO DE FÍSICA CINEMÁTICA r iˆ j ˆ zkˆ dr v dv a dv v a uˆ ˆ t un, v vu ˆt v ruˆ ˆ r ru ˆr a r r u r r uˆ Movimiento en una dimensión vt 1 v v v v v at v t at 1 v v a X B A X B X A VB A VB VA

Más detalles

Sensores generadores SENSORES GENERADORES

Sensores generadores SENSORES GENERADORES Sensores generadores SENSORES GENERADORES Definición: Sensores generadores son aquellos que generan una señal eléctrica a partir de la magnitud que miden, sin necesidad de una alimentación eléctrica. Tipos:

Más detalles

FISICOQUÍMICA 2. (Grado de Farmacia) Fenómenos de transporte. Dr. Licesio J. Rodríguez.

FISICOQUÍMICA 2. (Grado de Farmacia) Fenómenos de transporte. Dr. Licesio J. Rodríguez. FISICOQUÍMICA 2 (Grado de Farmacia) Dr. Licesio J. Rodríguez http://campus.usal.es/licesio/fq2.htm Curso 2013-2014 Universidad de Salamanca Dr. Licesio J. Rodríguez, Salamanca, 25 de marzo de 2014 (13:28

Más detalles

TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR

TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR TRANSPORTE A TRAVÉS DE LA MEMBRANA CELULAR Introducción Compartimientos Acuosos separados por Barreras Biológicas Organelos selectivos, autocatalíticos, autoreproductivos, competitivos, adaptativos...

Más detalles

LA NEURONA 16/05/2015 NEURONA N E U R O N A S TEJIDO NERVIOSO FORMADO POR: CELULAS GLIALES: Son células de sostén, protección y nutrición

LA NEURONA 16/05/2015 NEURONA N E U R O N A S TEJIDO NERVIOSO FORMADO POR: CELULAS GLIALES: Son células de sostén, protección y nutrición LA NEURONA CELULAS GLIALES: Son células de sostén, protección y nutrición NEURONAS: funciones especificas del SN TEJIDO NERVIOSO FORMADO POR: DENDRITAS ------ RECIBEN LOS IMPULSOS NERVIOSOS AXON ----------TRANSMITE

Más detalles

Figura 1. En efecto, como V m = V B - V A, al aplicarse una corriente de salida de intensidad constante I en los nodos

Figura 1. En efecto, como V m = V B - V A, al aplicarse una corriente de salida de intensidad constante I en los nodos 1. ELECTROFISIOLOGÍA Una de las propiedades fundamentales de las células nerviosas y musculares, es la capacidad de generar potenciales de acción. Estos consisten en un cambio rápido y transitorio del

Más detalles

Resumen de la clase anterior

Resumen de la clase anterior Prof. Cristian Resumen de la clase anterior SISTEMA NERVIOSO Sistema nervioso central Sistema nervioso periférico ENCÉFALO Neuronas motoras Neuronas sensoriales Sistema nervioso somático Sistema nervioso

Más detalles

Modelización de Sistemas Biológicos. Modelización de Sistemas Biológicos (por Computadora) FIUNER

Modelización de Sistemas Biológicos. Modelización de Sistemas Biológicos (por Computadora) FIUNER Modelización de Sistemas Biológicos Modelización de Sistemas Biológicos (por Computadora) FIUNER Objetivos Presentar las bases de la modelización. Comprender las etapas implicadas en el proceso de modelización.

Más detalles

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES TEORÍA CINÉTICA DE LOS GASES Tema Entre los siglos XVIII y XIX Bernoulli, Krönig, Clausius, Maxwell y Boltzmann desarrollaron la Teoría Cinética Molecular de los Gases para explicar el comportamiento de

Más detalles

TEMA 2. LA ENERGÍA Y EL PRIMER PRINCIPIO DE LA TERMODINÁMICA

TEMA 2. LA ENERGÍA Y EL PRIMER PRINCIPIO DE LA TERMODINÁMICA TEMA. LA ENERGÍA Y EL PRIMER PRINCIPIO DE LA TERMODINÁMICA CONTENIDOS: 1. Concepto mecánico de la energía. Energía transferida mediante trabajo 3. Energía de un sistema 4. Transferencia de energía mediante

Más detalles

Capítulo 17. Impulso nervioso

Capítulo 17. Impulso nervioso Capítulo 17 Impulso nervioso 1 Equilibrio de Donnan El equilibrio de Donnan se produce siempre que se tiene una membrana semipermeable que separa dos medios con iones cargados. La ecuación de Nernst nos

Más detalles

Membrana Celular Teórico 1

Membrana Celular Teórico 1 Membrana Celular Teórico 1 Dra. María Laura Fischman Física Biológica 2008 fischman@fvet.uba.ar Membrana plasmática (700 m 2 ) Membranas internas (7000 m 2 ) Citoesqueleto (94.000 m 2 ) Funciones de las

Más detalles

BIOELECTRICIDAD Y POTENCIAL DE MEMBRANA

BIOELECTRICIDAD Y POTENCIAL DE MEMBRANA BIOELECTRICIDAD Y POTENCIAL DE MEMBRANA CONCEPTOS BASICOS DE BIOFISICA CARGA (q) DIFERENCIA DE POTENCIAL ( V) CORRIENTE ELECTRICA CONDUCTANCIA (g) / RESISTENCIA CAPACITANCIA CARGA CARGA (q) - Propiedad

Más detalles

MODELOS EN ING. QUIMICA

MODELOS EN ING. QUIMICA MODELOS EN ING. QUIMICA ECUACION DE BALANCE: {velocidad de acumulación} = {velocidad de entrada} + {velocidad de generación} n} - {velocidad de salida} Unidades: [{velocidad de acumulación}] = [Propiedad].[tiempo]

Más detalles

Tc / 5 = Tf - 32 / 9. T = Tc + 273

Tc / 5 = Tf - 32 / 9. T = Tc + 273 ENERGIA TERMICA Energía Interna ( U ) : Es la energía total de las partículas que lo constituyen, es decir, la suma de todas las formas de energía que poseen sus partículas; átomos, moléculas e iones.

Más detalles

Conductividad eléctrica

Conductividad eléctrica Propiedades eléctricas La conductividad eléctrica (σ) es una propiedad física intrínseca de los materiales que proporciona información sobre la cantidad de carga que se conduce a través de un conductor.

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] 4.1 Conceptos básicos Aplicación de la ecuación de conservación genérica: [4.1] Ecuación de conservación de la energía total, macroscópica: [4.2] IngQui-4 [2] Bases

Más detalles

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos Tema 3: Electricidad 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos eléctricos. 4. Conductores. 5. Potencial de membrana. 6. Corriente eléctrica: ley de

Más detalles

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 (93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA

Más detalles

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

El Diodo. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica El Diodo Lección 03.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez El Diodo 1 / 29 Contenido 1 Modelo del Diodo

Más detalles

Inducción Magnética BIBLIOGRAFÍA

Inducción Magnética BIBLIOGRAFÍA nducción Magnética Fisica Tema V 8.1 nductancia Mutua 8. Autoinducción 8.3 Ejemplos de autoinducción 8.4 Corrientes inducidas 8.5 Circuitos 8.6 Energía del campo magnético 8.7 Circuito C. Oscilaciones

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

Práctica 1 Simulación realista del potencial de membrana de una neurona

Práctica 1 Simulación realista del potencial de membrana de una neurona Práctica 1 Simulación realista del potencial de membrana de una neurona Carlos García Argos (carlos.garciaargos@estudiante.uam.es) de diciembre de 2008 Índice 1. Introducción 1 2. Modelo de Hodgkin-Huxley

Más detalles

Química Tema Subtema Bibliografía y Ejercicios Sugeridos El estudio de los cambios

Química Tema Subtema Bibliografía y Ejercicios Sugeridos El estudio de los cambios Química Tema Subtema Bibliografía y Ejercicios Sugeridos El estudio de los cambios Titulo: Química Átomos, moléculas y iones Autor: R. Chang Relaciones de masa en las reacciones químicas Editorial: McGraw-

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL I. DATOS GENERALES UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL Asignatura : FÍSICA II Código : IC 0302 Área Académica : Física Condición : Obligatorio

Más detalles

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix ÍNDICE Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix Capítulo 1 Introducción... 1 1.1 Por qué estudiar física?... 2 1.2 Hablar de física... 2 1.3

Más detalles

INGRESO 2011-PROGRAMA ANALÍTICO MATERIA: FÍSICA CARRERA: MEDICINA HERRAMIENTAS MATEMÁTICAS

INGRESO 2011-PROGRAMA ANALÍTICO MATERIA: FÍSICA CARRERA: MEDICINA HERRAMIENTAS MATEMÁTICAS INGRESO 2011-PROGRAMA ANALÍTICO MATERIA: FÍSICA CARRERA: MEDICINA UNIDAD N 1: HERRAMIENTAS MATEMÁTICAS Propiedades de la potenciación y la radicación. Exponente fraccionario. Ecuación de la recta. Ecuación

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS BIOFÍSICA Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 4 Horas prácticas: 2 Créditos: 10 Clave: F0119 Asignaturas antecedentes y subsecuentes PRESENTACIÓN

Más detalles

Métodos Matemáticos en Física L.5A. Cond_Cont_Conduccion de Calor Cap.5APL

Métodos Matemáticos en Física L.5A. Cond_Cont_Conduccion de Calor Cap.5APL 5.1 Oscilaciones longitudinales de una barra gruesa (1D) S=superficie transversal T=Tensión Ley Hooke se aplica a elongación de TODA barra bajo efectos de fuerza externa Modulo Young 1 Considerando Trozo

Más detalles

Figura 1. En efecto, como V m = V B - V A, al aplicarse una corriente de salida de intensidad constante I en los nodos

Figura 1. En efecto, como V m = V B - V A, al aplicarse una corriente de salida de intensidad constante I en los nodos 1. ELECTROFISIOLOGÍA Una de las propiedades fundamentales de las células nerviosas y musculares, es la capacidad de generar potenciales de acción. Estos consisten en un cambio rápido y transitorio del

Más detalles

aa bb + cc podemos expresar la velocidad de reacción de la siguiente manera:

aa bb + cc podemos expresar la velocidad de reacción de la siguiente manera: EXPERIMENTO HIDRÁULICOS. 1: ESTUDIO CINÉTICO DE PROCESOS: SÍMILES OBJETIVO: El objetivo de la práctica es familiarizar al alumno con la determinación de parámetros cinéticos de un proceso, partiendo de

Más detalles

MODELOS MATEMÁTICOS 2010

MODELOS MATEMÁTICOS 2010 GUIA DE ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS La mayoría de los problemas físicos tiene que ver con relaciones entre las cantidades variables en cuestión. Para resolver los problemas físicos

Más detalles

POTENCIAL DE LA MEMBRANA EN REPOSO

POTENCIAL DE LA MEMBRANA EN REPOSO POTENCIAL DE LA MEMBRANA EN REPOSO 1 2 3 ext Vm = Vint Vext int Neurona 70 mv M. Cardíaco 80 mv M.Esquelético M.Liso Glob.Rojo 80 mv 55 mv 11 mv 4 Metodos de medición del potencial de reposo Tecnicas electrofisiologicas

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE ELECTRICIDAD Y CALOR HERMOSILLO, SONORA, JUNIO DEL 2005 1 ELECTRICIDAD Y CALOR Datos de Identificación Nombre de la Institución

Más detalles

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 PROGRAMA DE: FÍSICA APLICADA T Carreras: TECNICATURA UNIVERSITARIA EN OPERACIONES INDUSTRIALES. - TECNICATURA UNIVERSITARIA EN SISTEMAS ELECTRONICOS

Más detalles

Tema 4: Electrocinética

Tema 4: Electrocinética Tema 4: Electrocinética 4.1 Corriente eléctrica y densidad de corriente 4.2 Conductividad, resistividad, resistencia y Ley de Ohm 4.3 Potencia disipada y Ley de Joule 4.4 Fuerza electromotriz y baterías

Más detalles

Modelos y realidad. Modelización de Sistemas Biológicos por Computadora. Organización Curso. Objetivos. Otras Definiciones... Definición de Modelo

Modelos y realidad. Modelización de Sistemas Biológicos por Computadora. Organización Curso. Objetivos. Otras Definiciones... Definición de Modelo Modelización de Sistemas Biológicos por Computadora Modelos y realidad Mundo real Modelo Teoría Identificación de detalles relevantes para la descripción y traducción de objetos reales en variables del

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

Conceptos Generales Formas de generar vacío Medición de vacío. Técnicas de vacío. Acosta, Joel; Corbat, Agustín. Laboratorio de abril de 2014

Conceptos Generales Formas de generar vacío Medición de vacío. Técnicas de vacío. Acosta, Joel; Corbat, Agustín. Laboratorio de abril de 2014 Laboratorio 5 29 de abril de 2014 Índice I 1 Qué es vacío? 2 3 Manómetro de Capacitancia Manómetro de Pirani Manómetro de Ionización de Cátodo Frío Manómetro de Ionización de Cátodo Caliente Qué es vacío?

Más detalles

Capítulo 3: Campos Electromagnéticos Estáticos

Capítulo 3: Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Conductividad en presencia de campo eléctrico

Conductividad en presencia de campo eléctrico 6. Fenómenos de transporte Fenómenos de transporte Conductividad térmicat Viscosidad Difusión n sedimentación Conductividad en presencia de campo eléctrico UAM 01-13. Química Física. Transporte CT V 1

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS I

LABORATORIO DE OPERACIONES UNITARIAS I UNIVERSIDD DEL ZULI FCULTD DE INGENIERÍ ESCUEL DE INGENIERÍ QUÍMIC DEPRTMENTO DE INGENIERÍ QUÍMIC BÁSIC LORTORIO DE OPERCIONES UNITRIS I DIFUSION BINRI EN FSE GSEOS Profesora: Marianela Fernández Objetivo

Más detalles

PROGRAMA ANALITICO DE LA ASIGNATURA: Fenómenos de Transporte APROBADO RESOLUCION Nº 329/98 CO. ACAD. FRRo PLAN DE ESTUDIOS ORDENANZA Nº: 1028

PROGRAMA ANALITICO DE LA ASIGNATURA: Fenómenos de Transporte APROBADO RESOLUCION Nº 329/98 CO. ACAD. FRRo PLAN DE ESTUDIOS ORDENANZA Nº: 1028 PROGRAMA ANALITICO DE LA ASIGNATURA: Fenómenos de Transporte APROBADO RESOLUCION Nº 329/98 CO. ACAD. FRRo PLAN DE ESTUDIOS ORDENANZA Nº: 1028 HORAS SEMANALES: 5 Hs. DICTADO ANUAL CORRELATIVAS: Para cursar:

Más detalles

Tema 2: Representación y modelado de sistemas dinámicos

Tema 2: Representación y modelado de sistemas dinámicos Fundamentos de Control Automático 2º G. Ing. Tecn. Industrial Tema 2: Representación y modelado de sistemas dinámicos Índice del tema Tema 2: Representación y modelado de sistemas dinámicos 2. Señales

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA SÍLABO PLAN DE ESTUDIOS 2000

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA SÍLABO PLAN DE ESTUDIOS 2000 UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA SÍLABO PLAN DE ESTUDIOS 2000 I. DATOS GENERALES Asignatura : FÍSICA II Código : IE 0302 Área Académica

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE MECÁNICA Y FLUIDOS HERMOSILLO, SONORA, ENERO DEL 2005 MECÁNICA Y FLUIDOS Datos de Identificación Nombre de la Institución

Más detalles

La primera ley de la termodinámica identifica el calor como una forma de energía.

La primera ley de la termodinámica identifica el calor como una forma de energía. La primera ley de la termodinámica identifica el calor como una forma de energía. Esta idea, que hoy nos parece elemental, tardó mucho en abrirse camino y no fue formulada hasta la década de 1840, gracias

Más detalles

POTENCIAL DE MEMBRANA

POTENCIAL DE MEMBRANA POTENCIAL DE MEMBRANA Bibliografía Temas de Biofísica Mario Parisi Capítulo 5 Paginas 87-94 Objetivos Discutir el potencial que se debe aplicar para que no haya flujo neto de iones en presencia de un gradiente

Más detalles

PROCESOS DE FILTRACIÓN POR MEMBANAS. M.C. Ma. Luisa Colina Irezabal

PROCESOS DE FILTRACIÓN POR MEMBANAS. M.C. Ma. Luisa Colina Irezabal PROCESOS DE FILTRACIÓN POR MEMBANAS M.C. Ma. Luisa Colina Irezabal La membrana funciona no sólo en función del tamaño de la partícula, sino como una pared de separación selectiva algunas sustancias pueden

Más detalles

Modelización de Sistemas Biológicos. Modelización de Sistemas Biológicos (por Computadora) FIUNER

Modelización de Sistemas Biológicos. Modelización de Sistemas Biológicos (por Computadora) FIUNER Modelización de Sistemas Biológicos Modelización de Sistemas Biológicos (por Computadora) FIUNER Objetivos Presentar las bases de la modelización. Comprender las etapas implicadas en el proceso de modelización.

Más detalles

4 Electrocinética. M. Mudarra. Física III - M. Mudarra Enginyeria Aeroespacial - p. 1/35

4 Electrocinética. M. Mudarra. Física III - M. Mudarra Enginyeria Aeroespacial - p. 1/35 4 Electrocinética M. Mudarra Física III - M. Mudarra Enginyeria Aeroespacial - p. 1/35 Objetivos Nuestro objetivo es el estudio del flujo de s estacionarias. Profundizaremos en el caso de s a través de

Más detalles

2011 II TERMODINAMICA - I

2011 II TERMODINAMICA - I TERMODINAMICA I 2011 II UNIDAD Nº 1 SESION Nº 3 FORMAS DE ENERGIA La energía puede existir en varias formas: térmica, mecánica, cinética, potencial, eléctrica, magnética, química, nuclear, etc. Cuya suma

Más detalles

COORDINACIÓN DE FÍSICA Y QUÍMICA. INGENIERÍA PETROLERA División Departamento Licenciatura

COORDINACIÓN DE FÍSICA Y QUÍMICA. INGENIERÍA PETROLERA División Departamento Licenciatura UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO FUNDAMENTOS DE TERMODINÁMICA Y ELECTROMAGNETISMO CIENCIAS BÁSICAS 3 10 Asignatura Clave Semestre Créditos COORDINACIÓN

Más detalles

INTRODUCCIÓN Con C t on act act T o é T rmi Equi librio T o é T rmi

INTRODUCCIÓN Con C t on act act T o é T rmi Equi librio T o é T rmi INTRODUCCIÓN La Temperatura es una propiedad que no es fácil de describir. La Temperatura esta comúnmente asociada, con que tanto calor o frio se siente en un objeto. Entender el concepto de Temperatura

Más detalles

A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S

A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S UNIVERSIDAD NACIONAL DEL SUR 1 PROGRAMA DE: FISICA ARQ CODIGO: 309 T E O R I C A S H O R A S D E C L A S E P R A C T I C A S Por semana Por cuatrimestre Por semana Por cuatrimestre 3 48 3 48 D E S C R

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores Introducción En este capítulo se presentan dos nuevos e importantes elementos pasivos de los circuitos lineales: el capacitor y el inductor. A diferencia

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 5. Equilibrio de fases en sistemas de un componente

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 5. Equilibrio de fases en sistemas de un componente María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 5 Equilibrio de fases en sistemas de un componente Esquema Tema 5. Equilibrio de fases en sistemas de un componente

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Módulo Titulación BASES MOLECULARES DEL TRANSPORTE DE MEMBRANA Y LA EXCITABILIDAD CELULAR FISIOLOGÍA GENERAL Y BIOFÍSICA COMÚN MASTER EN INVESTIGACIÓN BIOMÉDICA

Más detalles

Seminario Nº2: Actividad bioeléctrica 2 Propiedades pasivas y activas Silvia Pedetta

Seminario Nº2: Actividad bioeléctrica 2 Propiedades pasivas y activas Silvia Pedetta Seminario Nº2: Actividad bioeléctrica 2 Propiedades pasivas y activas Silvia Pedetta Propiedades pasivas afuera Pensemos a la célula como un circuito RC adentro I Constante de tiempo: τ τ = R m * C m Pero

Más detalles

Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición

Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición Factores que Afectan la Velocidad de las Reacciones Químicas aa + bb Productos velocidad k [A] α [B] β Concentración Temperatura

Más detalles

Planificaciones Química Física II. Docente responsable: RAZZITTE ADRIAN CESAR. 1 de 8

Planificaciones Química Física II. Docente responsable: RAZZITTE ADRIAN CESAR. 1 de 8 Planificaciones 6307 - Química Física II Docente responsable: RAZZITTE ADRIAN CESAR 1 de 8 OBJETIVOS Dar las bases fisicoquímicas para el estudio de los procesos dinámicos en sistemas homogéneos y heterogéneos.

Más detalles

La membrana plasmática o citoplasmática es una estructura laminar que engloba a las células, define sus límites y contribuye a mantener el equilibrio

La membrana plasmática o citoplasmática es una estructura laminar que engloba a las células, define sus límites y contribuye a mantener el equilibrio Membranas celulares La membrana plasmática o citoplasmática es una estructura laminar que engloba a las células, define sus límites y contribuye a mantener el equilibrio entre el interior y el exterior

Más detalles

UNIVERSIDAD AUTÓNOMA DE COAHUILA

UNIVERSIDAD AUTÓNOMA DE COAHUILA FORMATO DE ASIGNATURAS LLENAR UN FORMATO PARA TODAS Y CADA UNA DE LAS MATERIAS DEL PRORGAMA CURRICULAR Y DE MATERIAS EXTRACURRICULARES. Las notas en color deberá eliminarlas para la presentación final

Más detalles

Análisis de sensibilidad de los parámetros de diseño de la placa bipolar de una pila de combustible tipo P.E.M.

Análisis de sensibilidad de los parámetros de diseño de la placa bipolar de una pila de combustible tipo P.E.M. DEPARTAMENTO DE INGENIERÍA ENERGÉTICA Y MECÁNICA DE FLUIDOS GRUPO DE TERMOTECNIA. ESCUELA SUPERIOR DE INGENIEROS UNIVERSIDAD DE SEVILLA Proyecto Fin de Carrera Análisis de sensibilidad de los parámetros

Más detalles

Dra. Catalina de León POTENCIALES DE MEMBRANA, TRANSPORTE Y EXCITABILIDAD.

Dra. Catalina de León POTENCIALES DE MEMBRANA, TRANSPORTE Y EXCITABILIDAD. Dra. Catalina de León POTENCIALES DE MEMBRANA, TRANSPORTE Y EXCITABILIDAD. Membrana Barrera al paso de iones y solutos polares (azúcares, aminoácidos, proteínas, fosfatos). Compartimentación: -Medio interno:

Más detalles

TTC - Termodinámica y Transferencia de Calor

TTC - Termodinámica y Transferencia de Calor Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 295 - EEBE - Escuela de Ingeniería de Barcelona Este 729 - MF - Departamento de Mecánica de Fluidos GRADO EN INGENIERÍA BIOMÉDICA

Más detalles

TTC - Termodinámica y Transferencia de Calor

TTC - Termodinámica y Transferencia de Calor Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 295 - EEBE - Escuela de Ingeniería de Barcelona Este 729 - MF - Departamento de Mecánica de Fluidos GRADO EN INGENIERÍA ELÉCTRICA

Más detalles