M a t e m á t i c a s I I 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "M a t e m á t i c a s I I 1"

Transcripción

1 Matemáticas II

2 Matemáticas II 2

3 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque. Álgera lineal Prolema a) A() ) El determinante de la matriz inversa de A es el inverso del determinante de A, es decir: A Imponemos que A, que es lo mismo 66 A que imponer que A , 6 Prolema.2. a) Nos encontramos ante un sistema homogéneo, en el cual la solución trivial x y z 0 se produce cuando el sistema es compatile determinado o, lo que es lo mismo, cuando el rango de la matriz de coeficientes es igual a (por tener incógnitas). Esta situación se producirá cuando el determinante (que es de orden ) sea distinto de cero. A A 0 9 A Luego si 9 el sistema es compatile determinado y, por lo tanto, la única solución que admite es la trivial, (x, y, z) (0, 0, 0). ) Según el apartado anterior, cuando 9 el rango de la matriz de coeficientes es 2. Nos encontramos, pues ante un sistema compatile indeterminado con 2 grado de liertad. Tenemos el sistema: x y z 2x y 4z Resolvemos el sistema por Cramer: z 4z x z 2 z 2 4z y 2z 2 La solución se expresa de esta forma: x y 2 con z Bloque 2. Geometría Prolema 2.. a) Puesto que la recta que uscamos es perpendicular al plano, utiliza como vector director el vector normal de, es decir: v " r n " (, 2, 2) Como la recta pasa por P(,, 4), la ecuación de r es (x, y, z) (,, 4) (, 2, 2). ) Existen infinitos planos perpendiculares a. La condición que han de cumplir es que uno de los dos vectores directores sea el vector normal del plano n " (, 2, 2) y el otro, cualquier vector, v ", que no sea proporcional a n ". La ecuación vectorial de los planos es: (x, y, z) (,, 4) (, 2, 2) v ", con, c) Como el plano pasa por P y Q, un vector director del mismo es PQ $ Q P (2,, 5). La ecuación del plano es: (x, y, z) (,, 4) (, 2, 2) (2,, 5) Prolema 2.2. a) Los planos que uscamos son paralelos a y son de esta forma: x 2y 4z D 0. La distancia entre planos paralelos se calcula con la distancia de un punto P(a,, c) perteneciente a al otro plano Ax By Cz D 0: d(p, ) Aa B Cc D A 2 B 2 C 2

4 Un punto del plano es P(0, 0, ). Luego la distancia entre los planos es: D 2 D d(, ) Imponemos que la distancia sea 5 u, por lo que hay que resolver esta ecuación: 2 D 5 29 Como es valor asoluto, existen dos ecuaciones: 2 D 5 D D 5 D Por tanto, los dos planos son: x 2y 4z x 2y 4z ) Para hallar las coordenadas de cada uno de los puntos, igualamos a cero dos de las tres incógnitas y calculamos la otra. Intersección de con el eje X Hacemos y 0, z 0 x 2 x 4 El punto es A(4, 0, 0). Intersección de con el eje Y Hacemos x 0, z 0 2y 2 y 6 El punto es B(0, 6, 0). Intersección de con el eje Z Hacemos x 0, y 0 4z 2 z El punto es C(0, 0, ). c) Calculamos los vectores AB $, BC $, y AC $ para hallar los ángulos pedidos: AB $ B A (4, 6, 0) BC $ C B (0, 6, ) AC $ C A (4, 0, ) cos (AB $,AC $ AB $ AC $ ) AB $ AC $ ,44 8 Ángulo BAC X arc cos (0,44 8) 6,65 cos (BA $,BC $ BA $ BC $ ) BA $ BC $ , Ángulo ABC X arc cos (0,744 2) 4,9 Hallamos el ángulo ACB X de esta forma: Angulo ACB X 80 (6,65 4,9 ) 74,44 Bloque. Análisis Prolema.. f(x) 2x 2 2x 6 a) Sea h(x) g(x) (x 2)(x 2 9) Asíntotas verticales En x 2 2x 2 2x 6 26 x 2 (x 2)(x 2 9) 0 2x 2 2x 6 26 x 2 (x 2)(x 2 9) 0 Asíntotas horizontales: x x 2x 2 2x 6 (x 2)(x 2 9) 2x 2 2x 6 (x 2)(x 2 9) 0 0 Por tanto, la asíntota horizontal es y 0. Como existen asíntotas horizontales en y, no hay asíntotas olicuas. ) Para calcular 2x2 2x 6 dx descomponemos: (x 2)(x 2 9) 2x 2 2x 6 (x 2)(x 2 9) Ax 2 9A Bx 2 Cx 2Bx 2C (x 2)(x 2 9) (A B)x 2 (C 2B)x (9A 2C) (x 2)(x 2 9) Igualamos los numeradores: 2x 2 2x 6 (A B)x 2 (C 2B)x (9A 2C) Igualamos los coeficientes del mismo grado: A B 2 C 2B 2 A 2, B 0, C 2 9A 2C 6 Luego el integrando es: 2x 2 2x 6 (x 2)(x 2 9) A Bx C x 2 x x 2 2 x 2 9 4

5 Por tanto: 2 2 H(x) dx x 2 x 2 9 x 2ln x 2 arc tg C Para hallar C tenemos en cuenta que H(), es decir: 2ln 2 arc tg C C 4 C 2 4 Luego la función que uscáamos es: x H(x) 2ln x 2 arc tg 4 Prolema.2. a) f(x) f (x) f (x) 8 x 2 8 2x ( x 2 ) 2 6x ( x 2 ) 2 6( x 2 ) 2 ( 6x) 2( x 2 ) 2x ( x 2 ) 4 ( x 2 )6x 2 ( x 2 ) 64x 2 ( x 2 ) 4 48x 2 6 ( x 2 ) ) f (x)0 48x x 2 x, x Comproamos que son puntos de inflexión:, l, l f 0 f 0 f 0, l Como la derivada segunda camia de signo a amos lados de los puntos calculados, la función camia de curvatura y, por lo tanto, los puntos son de inflexión. Los puntos de inflexión de f(x) son:,6 P y P 2 c) La pendiente de las rectas tangentes la proporciona la derivada primera, f (x): 6x Pendiente(x) ( x 2 ) 2 Para maximizar esta función, igualamos su derivada a 0: Pendiente (x) f (x),6 48x 2 6 ( x 2 ) Pendiente (x) 0 x x Los intervalos de curvatura son:, l, l f 0 f 0 f 0 Pend. 0 Pend. 0 Pend. 0 En x la función Pendiente tiene un máximo, pues su derivada primera es positiva a la izquierda (creciente) y negativa a la derecha (decreciente). La pendiente máxima se alcanza en x y su valor es: Pendiente 6 l 8 46,77 2, l Bloque 4. Resolución de prolemas Prolema 4.. Representamos la situación del enunciado: Y 0 km/h 40 km/h B(0, 0) A(50, 0) 50 km Estalecemos un sistema de coordenadas y situamos el punto B en el instante cero (7 de la mañana) en el origen de X coordenadas y, por lo tanto, el punto A en las coordenadas (50, 0). La lancha B navega hacia el norte a 0 km/h, por lo que sus coordenadas de posición en función del tiempo son (0, 0t). La lancha A(50, 0) navega hacia el oeste y sus coordenadas en función del tiempo son (50 40t, 0). La función que nos da la distancia entre los puntos A y B dependiendo del tiempo es: d(t) (50 40t) 2 (0t) 2 Desarrollando cuadrados y agrupando, tenemos: d(t) ( t 2 500t 2 5

6 Calculamos su derivada: t d (t) t 2 500t 2 Para minimizar la distancia igualamos a cero la derivada: d (t) t 0 t Si tomamos valores en la derivada a amos lados de t 2/5, tenemos lo siguiente: 0, 2 5 l d 0 d 0 Creciente Luego en t 2/5 hay un mínimo. Lo convertimos a horas y minutos: 2 2 h 2 h 2 h y 24 min 5 5 Así, las lanchas estarán a la mínima distancia 2 h y 24 min después de las 7 de la mañana; es decir, a las 9 h y 24 min. 2 5, l Decreciente 2 5 Prolema 4.2. Como la ase aumenta 0,2 mm por minuto y al principio tiene 8 cm 80 mm, la expresión 80 0,2t nos proporciona lo que mide en el instante t. La altura tamién crece 0,2 mm por segundo, pero como al principio tiene 60 mm, la expresión de su longitud es 60 0,2t. La diagonal de la lámina viene dada por esta expresión: d(t) (800,2t) 2 (600,20t) t 0,08t 2 La velocidad de crecimiento viene determinada por la derivada de la función d(t): 56 0,6t Velocidad(t) t 0,08t 2 Simplificamos y otenemos la velocidad de crecimiento de la diagonal de la lámina en función del tiempo: Velocidad(t) 28 0,08t t 0,08t 2 6

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c, PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ARAGÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz. Algebra Opción A a) Las matrices correspondientes son: A m m m m m m A* El determinante

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos) Isaac Musat Hervás 22 de mayo de 2013 Capítulo 5 Año 2004 5.1. Modelo 2004 - Opción A Problema 5.1.1 2 puntos) a) 1 punto) Calcular

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CEUTA Y MELILLA CONVOCATORIA SEPTIEMBRE 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio Como esta función está definida en el intervalo

Más detalles

MATEMÁTICAS GEOMETRÍA PLANA. FUNCIONES 1º DE BACHILLER CC NN ( ) ( ) x a + y b = R, desarrollando : x y x y

MATEMÁTICAS GEOMETRÍA PLANA. FUNCIONES 1º DE BACHILLER CC NN ( ) ( ) x a + y b = R, desarrollando : x y x y MATEMÁTICAS GEOMETRÍA PLANA. FUNCIONES º DE BACHILLER CC NN Ejercicio. El punto A( 6,) y y es un vértice de un cuadrado inscrito en la circunferencia de ecuación 4 6 7 = 0. Calcula las coordenadas de los

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

(, ) ( ) ( ) ( ) ( ) ( ) = 0. Calcula las coordenadas de los demás vértices del cuadrado.

(, ) ( ) ( ) ( ) ( ) ( ) = 0. Calcula las coordenadas de los demás vértices del cuadrado. Eamen de geometría analítica del plano y funciones 3/6/0 Ejercicio. El punto A ( 6,) es un vértice de un cuadrado inscrito en la circunferencia de ecuación y y 4 6 7 = 0. Calcula las coordenadas de los

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II EXTREMADURA CONVOCATORIA JUNIO 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A a) La matriz A tiene tres filas de las que para calcular el determinante

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CANTABRIA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque I A a) No es cierto que el producto de matrices sea conmutativo. Por ejemplo,

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

Ejercicio 1 de la Opción A del modelo 2 de Solución

Ejercicio 1 de la Opción A del modelo 2 de Solución Ejercicio 1 de la Opción A del modelo 2 de 2003 En la figura adjunta puedes ver representada parte de la gráfica de una función f que está definida en el intervalo (-3, 3) y que es simétrica respecto al

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2014 OPCIÓN A Ejercicio 1 a) (1 punto) Determinar el valor del parámetro para que los puntos A(1,2,0), B(5,-4,0)

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución Ejercicio n º 1 de la opción A de junio de 2008 [2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. La recta x = a es una asíntota vertical (A.V.) de la función

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio específico de 010 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Junio Específico 010 [ 5 puntos] La hipotenusa de un triángulo rectángulo mide

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II REGIÓN DE MURCIA CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque A Para saber si la matriz tiene inversa, el determinante de la

Más detalles

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1 CURSO 28-29. Primera parte. 2 de mayo de 29. ) (p) Calcula el siguiente límite: lím x (x e/x ) 2) (p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades de la función: f(x)= x- 3) (p)

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Ejercicio 1 de la Opción A del modelo 4 de Solución

Ejercicio 1 de la Opción A del modelo 4 de Solución Ejercicio 1 de la Opción A del modelo 4 de 2005 Sea f : R R la función definida por f (x) = (5x + 8) / (x 2 + x + 1). (a) [0 5 puntos] Calcula los puntos de corte de la gráfica de f con los ejes coordenados.

Más detalles

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 2 de la opción A de sobrantes de 2002 (a) [1'5 puntos] Determina la función f: R R sabiendo que f '(x) = 2x 3-6x 2 y que su valor mínimo es -12. (b) [1 punto] Calcula la ecuación

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

, calcula a R para f(x) cumpla las hipótesis del Teorema de

, calcula a R para f(x) cumpla las hipótesis del Teorema de Bárbara Cánovas Conesa 67 70 Reserva. 06 a) Enuncia el teorema de Bolzano. sen πx + xe x si x b) Dada la función f(x) = a(x ), calcula a R para f(x) cumpla las hipótesis del Teorema de si x > x+ Bolzano

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II 2 CANTABRIA CNVCATRIA SEPTIEMBRE 2009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz Bloque I A a) El rango de la matriz de los coeficientes será 3 siempre que el

Más detalles

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica

Más detalles

Unidad 6 Geometría euclídea. Producto escalar

Unidad 6 Geometría euclídea. Producto escalar Unidad 6 Geometría euclídea Producto escalar PÁGINA 131 SOLUCIONES 1 La recta 4 x 3y + 6 = 0 tiene de pendiente 4 m = 3 4 Paralela: y 1 = ( x ) 4x 3y 5 = 0 3 4 Perpendicular: y 1 = ( x ) 3x + 4y 10 = 0

Más detalles

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Septiembre 206) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dada la función f(x) = (6 x)e x/3, se pide: a) ( punto). Determinar su dominio, asíntotas y cortes

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo del 996. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 996-997. Opción A Modelo Ejercicio opción A sobrantes 996 La capacidad

Más detalles

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos)

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos) PROPUESTA A 1A. a) Calcula los valores de los parámetros a, b R para que la función { sea continua y derivable en x = 0. (1 5 puntos) b) Para los valores encontrados, calcula la ecuación de la recta tangente

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Grupo Opción A A El sistema es cuadrado, por lo que podemos calcular

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2011 OPCIÓN A Ejercicio 1 (2 puntos) Hallar el valor o los valores del parámetro para los que el siguiente

Más detalles

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2 IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx

Más detalles

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Sobrantes del 05 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, modelo del 05 [ 5 puntos] Sea f : R R la función dada por f(x) = ax 3 + bx + cx + d Halla

Más detalles

OPCIÓN A. Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo.

OPCIÓN A. Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo. MATEMÁTICAS II 2007 OPCIÓN A Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo. Solución: Es un problema de optimización, sean

Más detalles

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1 Ejercicio Considerando la recta R que pasa por los puntos A = (; 0; ) y B = (2; ; 5) y el punto P = (2; ; ), hallar la ecuación implícita del plano π que es perpendicular a la recta R y contiene al punto

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2005 Se sabe que la gráfica de la función f : R R definida por f (x)= x 3 + ax+ bx + c es la que aparece en el dibujo. (a) [1 25 puntos] Determina f. (b) [1 25

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II PRINCIPADO DE ASTURIAS MODELO CURSO 009-00 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio a) Como se trata de un sistema cuadrado, calculamos

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1 Ejercicio n º 1 de la opción A de junio de 2005 [2'5 puntos] De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el

Más detalles

Observaciones del profesor:

Observaciones del profesor: INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a los cuatro ejercicios de una de las dos opciones (A o B) que se le ofrecen. Nunca deberá contestar a unos ejercicios de una opción y a otros

Más detalles

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y Pruebas de Aptitud para el Acceso a la Universidad. JUNIO 99. Matemáticas II. OPCIÓN A X Y 5. Las matrices X e Y son las soluciones del sistema de ecuaciones matriciales. Se pide hallar X Y 0 X e Y [ punto]

Más detalles

SOLUCIONES Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Junio. Año 2017 Paco Muñoz. IES Virgen de la Cabeza Marmolejo (Jaén)

SOLUCIONES Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Junio. Año 2017 Paco Muñoz. IES Virgen de la Cabeza Marmolejo (Jaén) Examen Junio. Año 017 A.1.a) Tenemos como dato el área de 16 m².: Es un rectángulo más un semicírculo: 16=x h+ π ( x ) ; 3= xh+π x 4 ; 18=8 xh+π x 18 π x h= 8 x Ahora construimos la función que hay que

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 7 de abril de 08 hora y 5 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN. Se considera el sistema lineal de ecuaciones, dependiente del parámetro real

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 4 Especifico 2) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 4 Especifico 2) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 013 (Modelo 4 Especifico ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Septiembre 013 específico [ 5 puntos] Un rectángulo está inscrito en un

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5) CURSO 04 05 SOLUCIONES (Modelo 5) JUNIO Opción A Ejercicio.- ['5 puntos] Se quiere vallar un campo rectangular que está junto a un camino. Si la valla del lado del camino cuesta 80 euros/metro y la de

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de, Andalucía Pedro González Ruiz 3 de septiembre de. Opción A Problema. Sea la función continua f : R R definida

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2007 Sea f : R R la función definida por f(x) = (x - 3)e x. [1 punto] Calcula los extremos relativos de f (puntos donde se obtienen y valores que se alcanzan).

Más detalles

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano).

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). GEOMETRÍA ANALÍTICA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). LA RECTA.- La recta es un conjunto infinito de puntos alineados en

Más detalles

f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1)

f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1) 1. Derivar las siguientes funciones: ( ) 3 1 a. f(x) = x sin x f (x) = 3(1 + x cos x)(x sin x 1) x 4 b. f(x) = ( ln[(x cos x) 4 ] ) 7 7 (ln(x cos x)) 6 sec x (cos x x sin x) x 1 + tan x c. f(x) = f (x)

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2013 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Eamen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Problema 1 (2 puntos) Hallar una ecuación cartesiana del plano que contiene a la recta r: y es perpendicular

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA - Módulo: Es la longitud del segmento AB, se representa así:

TEMA 8 GEOMETRÍA ANALÍTICA - Módulo: Es la longitud del segmento AB, se representa así: MATEMÁTICAS ACADÉMICAS 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA - 1. MÓDULO, DIRECCIÓN Y SENTIDO DE UN VECTOR Módulo: Es la longitud del segmento AB, se representa así: Dirección: Es la dirección de la recta

Más detalles

( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto

( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto Pág. de Dados los vectores u, y v0,, calcula: a u b u + v c u v u, v0, 5 a u = = = + b u + v =, + 0, =, + 0, 6 =, c u v = u v = 0 + = Determina el valor de k para que los vectores a, y b6, k sean ortogonales.

Más detalles

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2)

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2) Selectividad Matemáticas II septiembre 07, Andalucía versión ) Pedro González Ruiz 6 de septiembre de 07. Opción A Problema. Una imprenta recibe un encargo para realizar una tarjeta rectangular con las

Más detalles

MATEMÁTICAS II 2005 OPCIÓN A

MATEMÁTICAS II 2005 OPCIÓN A MATEMÁTICAS II 2005 OPCIÓN A Ejercicio 1: De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el punto de abscisa

Más detalles

Matemáticas II. Curso Exámenes

Matemáticas II. Curso Exámenes Matemáticas II. Curso 009-00. Exámenes. Matrices y determinantes Ejercicio. Calcular el rango de la matriz A = 0 4 5 5 rango A = rango 0 4 5 5 poniendo ceros en la 3 a columna = rango 0 0 Puesto que F

Más detalles

PAU MATEMÁTICAS II. JUNIO Bloque 1. ÁLGEBRA LINEAL Problema 1.1. Dado el sistema dependiente del parámetro real α

PAU MATEMÁTICAS II. JUNIO Bloque 1. ÁLGEBRA LINEAL Problema 1.1. Dado el sistema dependiente del parámetro real α PAU MATEMÁTICAS II. JUNIO 8 Bloque. ÁLGEBRA LINEAL Problema.. Dado el sistema dependiente del parámetro real α αx + y + z x + αy + z, se pide x + y + αz a) Determinar, razonadamente, los valores de α para

Más detalles

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato Recta Tangente a una curva en uno de sus Puntos Si f(x) es derivable en x 0, la ecuación de la recta tangente a la gráfica de y=f(x) en x 0 es: Tipos: y y 0 = m (x-x 0 ) y f(x 0 ) = f (x 0 ) (x-x 0 ) 1)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.

1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos. 28 de noviembre de 2008. 1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 2) (1p) Enuncia el teorema de Rolle. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

Examen de Matemáticas II (Junio 2016) Selectividad-Opción A Tiempo: 90 minutos. ln(1 x) 1 x. si x < 0 f(x) = xe x si x 0

Examen de Matemáticas II (Junio 2016) Selectividad-Opción A Tiempo: 90 minutos. ln(1 x) 1 x. si x < 0 f(x) = xe x si x 0 Examen de Matemáticas II (Junio 16) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dada la función: ln(1 x) si x < f(x) = 1 x xe x si x se pide: a) (1 punto). Estudiar la continuidad de

Más detalles

Selectividad Matemáticas II septiembre 2014, Andalucía

Selectividad Matemáticas II septiembre 2014, Andalucía Selectividad Matemáticas II septiembre 14, Andalucía Pedro González Ruiz 17 de septiembre de 14 1. Opción A Problema 1.1 Sabiendo que lím x cos(3x) e x +ax xsen(x) Sea l el límite pedido. Tenemos: es finito,

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid)

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid) COLEGIO INTERNACIONAL SEK EL CASTILLO Departamento de Ciencias MODELOS DE EXÁMENES Pruebas de acceso a la universidad Matemáticas II Universidad Complutense (Madrid) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD

Más detalles

Selectividad Matemáticas II junio 2017, Andalucía

Selectividad Matemáticas II junio 2017, Andalucía Selectividad Matemáticas II junio 07, Andalucía Pedro González Ruiz 3 de junio de 06. Opción A Problema. Se quiere hacer una puerta rectangular coronada por un semicírculo como el de la figura. El hueco

Más detalles

F F / 3 0 A 1 =

F F / 3 0 A 1 = EXAMEN: ALGEBRA Y GEOMETRÍA (A) 8/05/0. De un paralelogramo ABCD se sabe que A = 3,4, B = 4,3, que las dos coordenadas del vértice C son positivas que la diagonal AC el lado BC miden ambos 5. Hallar las

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2008) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2008) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 28) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (2 puntos)una familia dispone de 8 euros mensuales para realizar la compra de la carnicería.

Más detalles

Colegio Agave Matemáticas I

Colegio Agave Matemáticas I Derivadas y aplicaciones de la derivada (con solución) Problema 1: Se considera la función definida por a) Calcula las asíntotas de la gráfica de f(x) b) Estudia la posición de la gráfica de f(x) respecto

Más detalles

Matemáticas II Curso

Matemáticas II Curso Matemáticas II Curso 03-04 Exámenes LÍMITES Y CONTINUIDAD. Límites y continuidad Ejercicio. Dada la función f(x) = x 3 + x cos πx, demostrar que existe un valor x = a positivo y menor que, que verifica

Más detalles