Opción de examen n o 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Opción de examen n o 1"

Transcripción

1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + + b = 2 + c + a = 0 a + b = b + 2c = 4 a + c = 2 Al resolver este sistema se obtiene como solución: a = b = 2 c = b) Para a = 0, b = y c =, la matriz A es: Ö 0 è 0 Teniendo en cuenta que A = A Adj(A)t, empezamos por calcular su determinante: 0 = + + = 0 Calculamos ahora los adjuntos de cada elemento: A = 0 = A 2 = 0 = A = = 2 0 A 2 = 0 = A 22 = 0 = A 0 2 = = 0 A = = A 2 = = 2 A 0 = = Con lo que la expresión final de la matriz inversa de A es A = Ö è a) Cada una de las ramas de esta función es continua, por tanto para que la función sea continua debe de serlo también en los puntos de abscisa y. Estudiamos la continuidad en estos puntos teniendo en cuenta que una función es continua en el punto de abscisa x 0 si se verifica lím f(x) = f(x 0 ) y que el límite en caso de existir x x0 es único, es decir, el valor de los límites laterales debe coincidir.

2 Septiembre-206 PAU Cantabria-Matemáticas II 2 Continuidad en x = : lím f(x) = lím x x ( x + ) = 0 lím f(x) = lím + bx + ) = a + b + x + x +(ax2 a + b + = 0 Continuidad en x = : lím f(x) = lím + bx + ) = 9a + b + x x (ax2 9a + b + = 2 lím f(x) = lím x2 = 2 x + x + a + b = Nos queda el sistema cuya solución nos da a = 4 9a + b = y b =. b) A la vista de la gráfica vemos que el área pedida viene dada por 0 f(x)dx = ( x+)dx+ (x 2 +2x+)dx 0 ô ñ = ñ x2 x ô 2 + x + + x2 + x = 0 = = 4 6 u.a.. a) El punto P, proyección ortogonal del punto A sobre la recta r BC, viene dado por el punto intersección entre la recta y el plano perpendicular a ella que pasa por el punto A. Un vector normal al plano, al ser perpendicular a la recta r BC, es el vector BC= (2, 0, ). La ecuación del plano toma la forma: π 2x + z + D = 0. Para calcular D hay que tener en cuenta que buscamos aquel que pase por el punto A, con lo que se debe cumplir: D = 0 D =. La ecuación del plano es: π 2x + z = 0 Tomamos como vector director de la recta r BC el vector BC que junto con el punto B, por ejemplo, nos dan las siguientes ecuaciones paramétricas: x = 2t r y = z = + t con t R

3 Septiembre-206 PAU Cantabria-Matemáticas II El punto P = r BC π verifica estas dos ecuaciones a la vez, es decir, buscamos el valor de t que cumpla: 2(2t) + ( + t) = 0 t = 2 Sustituyendo este valor de t en las ecuaciones paramétricas de la recta se obtine como solución: Ç 4 P =,, 7 å b) La distancia de un punto (A) a una recta es la distancia entre el punto y su proyección ortogonal sobre la recta, es decir, en nuestro caso precisamente el punto P calculado en el apartado anterior. Así pues tenemos: d(a, r BC ) = d(a, P ) = Ã Ç 4 å 2 Ç + ( + ) å 2 = = 0 Independientemente de haber obtenido el punto P, otra forma de calcular la distancia del punto A a la recta r BC es mediante la expresión: d(a, r BC ) = v BC BA v BC Obteniéndose el mismo resultado. c) Una manera de comprobar la igualdad propuesta es mediante un cálculo directo, es decir: CA= (, 2, ) CA 2 = ( ) ( ) 2 = 6 AB= (, Ç 2, 0) AB CP = 6 å 2 = ( ) 2 + ( 2) 2 =, 0, Ç CP 2 = 6 2 Ç + Ç P B= 4 å å å 2 = 9, 0, 2 Ç P B 2 = å 4 2 Ç + 2 å = 4 Vemos que se cumple la igualdad: CA 2 AB 2 = 6 = CP 2 P B 2 = 9 4 = CA 2 AB 2 = CP 2 P B 2 Otra manera de comprobarlo sin necesidad de tener las coordenadas del punto P :

4 Septiembre-206 PAU Cantabria-Matemáticas II 4 CA 2 AB 2 = CA 2 AB 2 = ( CA + AB) ( CA AB) = CB ( CA AB) = a b a c Para nuestro caso se tiene que En el último paso se ha hecho uso de la interpretación geométrica del producto escalar de dos vectores como proyección de uno sobre otro. CB CA= a b cos α = a b CB AB= a c cos β = a c Por otra parte: CP 2 P B 2 = CP 2 P B 2 = ( CP + P B) ( CP P B) = CB ( CP P B) = a b a c Es decir: CA 2 AB 2 = CP 2 P B 2

5 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o 2. El estudio de la compatibilidad de un sistema lineal de ecuaciones se hace por medio del teorema de Rouché-Fröbenius. Para poder aplicar este teorema necesitamos calcular el rango de la matriz del sistema y el de su ampliada en función del parámetro a. La matriz A asociada a este sistema y su ampliada A son: A = Ö a 0 è a 2 0 a A = Ö a 0 a è 2 0 a Empezamos por ver que A = 6a 2 + 6a = 6a(a ), con lo que Si a 0 y rango(a) = = rango(a ) = n o de incógnitas T ma.r F S.C.D. Si a = 0 tomamos el menor formado por las dos últimas filas y las dos primeras 2 columnas = 2 0, con lo que rango(a) = 2. 0 Para calcular el rango de la matriz ampliada orlamos a partir de este menor con la columna de los términos independientes: = Por tanto, rango(a ) = 2 = rango(a) T ma.r F S.Incompatible). Si a = tomamos el menor formado por las dos primeras filas y columnas 0 = 2 0, con lo que rango(a) = 2. 2 Para calcular el rango de la matriz ampliada orlamos a partir de este menor con la columna de los términos independientes: 0 2 = 0 0 Por tanto, rango(a ) = 2 = rango(a) T ma.r F S.C.I. (uniparamétrico). Las soluciones para a 0 y las calculamos utilizando la regla de Cramer: 0 a 6a + 6a x = 2 = 6a(a ) 0 a 6a(a ) = 0 a a y = = a2 9a + a + 9a + a = a2 6a + 6a(a ) a 6a(a ) 6a(a ) a 0 2( a + ) z = 2 = 6a(a ) 0 6a(a ) = 2 (a ) 6a (a ) = a = a 6a

6 Septiembre-206 PAU Cantabria-Matemáticas II 6 Para a = y teniendo en cuenta el menor calculado antes, el sistema se reduce a las dos primeras ecuaciones: x + z = hacemos z = t x = t y = + 4t x + 2y + z = Es decir, la solución para este caso es: x = t y = + 4t z = t con t R 2. a) Dominio: no existe ningún valor real de x que anule el denominador de la función, por tanto: Dom (f) = R Puntos de corte con los ejes: Con el eje Y: x = 0 f(0) = 0 (0, 0) Con el eje X: y = 0 x = 0 (0, 0) Simetría: x f( x) = ( x) = x x = f(x) Es decir, esta función es IMPAR, presenta una simetría puntual respecto del origen de coordenadas. Intervalos de crecimiento y de decrecimiento: estos intervalos vienen dados por el signo de la primera derivada, si es positiva es creciente, si es negativa decreciente. f (x) = x2 + 4 (x 2 + 4) 2 Para ver el signo de esta expresión hay que tener en cuenta que el denominador es siempre positivo. Por tanto, el signo nos lo dará el numerador, el cual es negativo para x < 2 y para x > 2 y positivo para 2 < x < 2. Teniendo en cuenta lo anterior, se tiene que x (, 2) f(x) decreciente x ( 2, 2) f(x) creciente x (2, + ) f(x) decreciente Máximos y mínimos relativos: vienen dados por aquellos puntos que anulan la primera derivada. En nuestro caso x = ±2. Para ver si son máximos o mínimos tenemos que ver el signo de la segunda derivada para estos puntos: f (x) = 2x(x2 + 4) 2 ( x 2 + 4)2 (x 2 + 4)2x = 2x(x2 2) (x 2 + 4) 4 (x 2 + 4) Por tanto: f ( 2) = Ç 6 > 0 2, å es un mínimo 4 f (2) = Ç 6 < 0 2, å es un máximo 4

7 Septiembre-206 PAU Cantabria-Matemáticas II 7 Asíntotas Horizontales: lím x ± x x = 0 asíntota horizontal: y = 0 Verticales: No hay ningún valor que anule el denominador no tiene Oblícuas: y = mx + n m = b) Gráfica de la función: f(x) lím x ± x = lím x ± x x 2 +4 x = lím x ± x x(x 2 + 4) = 0 no tiene. a) Que v tenga la misma dirección y sentido que P Q implica que v = k P Q con k > 0. La otra condición es v = QR. Así pues, tenemos: v = k P Q v = k P Q = k P Q = QR k = QR P Q Teniendo en cuenta que P Q= (, 2, 2) y que QR= (,, ), se obtine que k = k = por tanto, el vector pedido es ( v =, 2, 2 ) b) Si los tres puntos estuvieran alineados los vectores P Q y QR serían paralelos y por tanto sus componentes proporcionales. Vemos que esto no es así: 2 2 El área del triángulo que forman se puede calcular utilizando la expresión

8 Septiembre-206 PAU Cantabria-Matemáticas II 8 Área( Ì P QR) = P Q QR 2 Calculamos pues, el producto vectorial: P Q QR= i j k 2 2 = 2 i + 2 j k 2 k j 2 i = 4 i + j k El módulo de este vector es P Q QR = Por tanto, el área pedida será A = 2 u.a. c) La ecuación general de la recta perpendicular a P Q que pase por R viene dada por la intersección del plano π que pasa por los tres puntos P, Q y R y el π perpendicular a la recta P Q y que pasa por R. El vector normal al plano π es n = P Q QR= ( 4,, ) ya calculado en el apartado anterior. La ecuación del plano toma la forma: π 4x + y z + D = 0. Para calcular D hay que tener en cuenta que pasa por el punto P, por ejemplo, con lo que se debe cumplir: 4 + D = 0 D = 8. La ecuación del plano es: π 4x + y z + 8 = 0 Hacemos lo mismo para calcular la ecuación de π teniendo en cuenta que un vector normal a este plano viene dado por n = P Q y debe pasar por R. Así pues, tenemos que: π x + 2y + 2z + D = D = 0 D = 7 La recta pedida es: 4x + y z + 8 = 0 r x + 2y + 2z 7 = 0 Otra forma: Consideremos un punto genérico S de la recta P Q y formemos el vector SR. El que nos interesa será aquel que cumpla P Q SR= 0, es decir, serían perpendiculares. Este vector será el vector director de la recta pedida. x = t r P Q = y = + 2t z = + 2t SR= ( + t, 2t, 2t) P Q SR= t + 2( 2t) + 2( 2t) = 9t = 0 t = 9

9 Septiembre-206 PAU Cantabria-Matemáticas II 9 Por tanto, el vector director de la recta pedida será: Ç SR= 9, + 2 9, + 2 å Ç 8 = 9 9, å 9, 7 9 O alternativamente, por simplificar, podemos tomar el v = (8,, 7) que junto con el punto R nos da las ecuaciones paramétricas de la recta pedida: x = + 8t r y = 2 + t z = 2 7t con t R

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2005 Se sabe que la gráfica de la función f : R R definida por f (x)= x 3 + ax+ bx + c es la que aparece en el dibujo. (a) [1 25 puntos] Determina f. (b) [1 25

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II REGIÓN DE MURCIA CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque A Para saber si la matriz tiene inversa, el determinante de la

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Septiembre 206) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dada la función f(x) = (6 x)e x/3, se pide: a) ( punto). Determinar su dominio, asíntotas y cortes

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos) Isaac Musat Hervás 22 de mayo de 2013 Capítulo 5 Año 2004 5.1. Modelo 2004 - Opción A Problema 5.1.1 2 puntos) a) 1 punto) Calcular

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2 IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx

Más detalles

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1 Ejercicio n º 1 de la opción A de junio de 2005 [2'5 puntos] De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CANTABRIA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque I A a) No es cierto que el producto de matrices sea conmutativo. Por ejemplo,

Más detalles

MATEMÁTICAS II 2005 OPCIÓN A

MATEMÁTICAS II 2005 OPCIÓN A MATEMÁTICAS II 2005 OPCIÓN A Ejercicio 1: De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el punto de abscisa

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Sobrantes del 05 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, modelo del 05 [ 5 puntos] Sea f : R R la función dada por f(x) = ax 3 + bx + cx + d Halla

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

IES Fco Ayala de Granada Septiembre de 2017 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2017 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 07 (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Septiembre 07 (modelo 6) [ 5 puntos] Una imprenta recibe el encargo de realizar una

Más detalles

10.1. Modelo Opción A

10.1. Modelo Opción A 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π : x + y z =, la recta: r : x 3 = y 1 = z 5 4 y el punto P (, 3, ), perteneciente al plano π, se pide: 1. (0,5 puntos) Determinar

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio específico de 010 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Junio Específico 010 [ 5 puntos] La hipotenusa de un triángulo rectángulo mide

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z San Blas, 4, entreplanta. 98 0 70 54 OPCIÓN A m + y + z = 0 E.-a) Discutir, en función del valor de m, el sistema de ecuaciones y my + mz = resolverlo para m = b) Para m = añadir una ecuación al sistema

Más detalles

m m 7m 7 0 m 1, m m

m m 7m 7 0 m 1, m m 5 4 La matriz de los coeficientes es A 4 m El único menor de orden de A es: 5 4 0 y la matriz ampliada B 0 4 m m 5 4 5m 6 4 4 58m 7m 7 0 m, m 4 m Tenemos entonces: Para m y m : rga rgb nº de incógnitas

Más detalles

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque.

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 203 OBSERVACIONES: FASE ESPECÍFICA MATEMÁTICAS El alumno deberá responder únicamente a una

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Eamen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Problema 1 (2 puntos) Hallar una ecuación cartesiana del plano que contiene a la recta r: y es perpendicular

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 02

Preparando Selectividad Solución Selectividad - Modelo 02 página 1/17 Preparando Selectividad Solución Selectividad - Modelo 0 Modelo 0. Opción A. Ejercicio 1 a) [0,5 puntos] Enuncia el teorema de Bolzano. b) [0,5 puntos] Enuncia el teorema de Rolle. c) [0,5

Más detalles

Ejercicio nº 1 de la opción A del modelo 1 de Solución

Ejercicio nº 1 de la opción A del modelo 1 de Solución Ejercicio nº 1 de la opción A del modelo 1 de 2001 Se quiere dividir la región encerrada entre la parábola y = x 2 y la recta y = 1 en dos regiones de igual área mediante la recta y = a. Halla el valor

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

Apellidos: Nombre: Opción A

Apellidos: Nombre: Opción A EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: S Instrucciones: Curso: 2º Grupo: A Día: 27 - IV - 17 CURSO 201-17 a) Duración: 1 HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II 2 CANTABRIA CNVCATRIA SEPTIEMBRE 2009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz Bloque I A a) El rango de la matriz de los coeficientes será 3 siempre que el

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2011, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2011, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 011, Andalucía Pedro González Ruiz septiembre de 011 1. Opción A Problema 1.1 Calcular la base y la altura del

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Entonces M(0) tiene inversa. Por Gauss o por determinant se calcula la inversa.

Entonces M(0) tiene inversa. Por Gauss o por determinant se calcula la inversa. OPCIÓN A Problema A.1. Para cada número real es la matriz Se pide: a) Obtener el determinante de la matriz, y justificar que para cualquier número real existe la matriz inversa de. (4 puntos). Veamos para

Más detalles

Prueba de nivelación correspondiente a los contenidos de prerrequisitos. Prueba de nivelación de prerrequisitos

Prueba de nivelación correspondiente a los contenidos de prerrequisitos. Prueba de nivelación de prerrequisitos Fundamentos Matemáticos de la informática (G. en Ing. Informática) Prueba de nivelación correspondiente a los contenidos de prerrequisitos Nombre apellidos: Instrucciones: El alumno debe resolver la prueba

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

EVAU. Junio matematiib.weebly.com

EVAU. Junio matematiib.weebly.com Propuesta A 1A. x + a si x f(x) = { x + bx 9 si x > a) Se trata de una función definida a trozos a partir de dos funciones polinómicas, por lo que el único punto donde la función podría no ser continua

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD UNIVERSIDAD DE CANTABRIA LOE SEPTIEMBRE 2015 MATEMÁTICAS II INDICACIONES AL ALUMNO 1. Debe escogerse una sola de las opciones. 2. Debe exponerse con claridad el planteamiento

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5) CURSO 04 05 SOLUCIONES (Modelo 5) JUNIO Opción A Ejercicio.- ['5 puntos] Se quiere vallar un campo rectangular que está junto a un camino. Si la valla del lado del camino cuesta 80 euros/metro y la de

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II EXTREMADURA CONVOCATORIA JUNIO 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A a) La matriz A tiene tres filas de las que para calcular el determinante

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2011 OPCIÓN A Ejercicio 1 (2 puntos) Hallar el valor o los valores del parámetro para los que el siguiente

Más detalles

OPCIÓN A. E2.-a) Consideramos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R

OPCIÓN A. E2.-a) Consideramos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R San Blas, 4, entreplanta. 983 3 7 54 OPCIÓN A E.-a) Sea M =. Estudiar, en función del parámetro a, cuando M posee 3 a inversa (,5 puntos) b) Siendo A =, calcular A y A 3 7 (,75 puntos) a) Eiste M ( M )

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 01 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A Corrección examen PAU. Junio 6. OPCIÓN A a) Si x { }, vemos que la función está perfectamente definida y por tanto es continua, x { } Así pues, el único problema que podría existir es en x =. Para que

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,

Más detalles

PROPUESTA A. 1A a) Enuncia el teorema de Bolzano.

PROPUESTA A. 1A a) Enuncia el teorema de Bolzano. PROPUESTA A 1A a) Enuncia el teorema de Bolzano. (0,5 puntos) b) Razona que las gráficas de las funciones f(x) = 3x 5 10x 4 + 10x 3 + 3 y g(x) = e x se cortan en algún punto con coordenada de abcisa entre

Más detalles

Problemas Tema 9 Solución a problemas sobre Geometría - Hoja 01 - Problemas 1, 2, 5

Problemas Tema 9 Solución a problemas sobre Geometría - Hoja 01 - Problemas 1, 2, 5 página 1/7 Problemas Tema 9 Solución a problemas sobre Geometría - Hoja 01 - Problemas 1, 2, 5 Hoja 1. Problema 1 Dada la recta r : { 4 x 3 y+4 z= 1 y el plano Π: 2 x y+a z=0. 3 x 2 y+ z= 3 } a) Calcular

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es Ejercicio n º 1 de la opción A de junio de 2004 (Modelo 6) De la función f : (-1,+ ) R se sabe que f '(x) = 3/(x +1) 2 y que f(2) = 0. (a) [1'25 puntos] Determina f. [1'25 puntos] Halla la primitiva de

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 04

Preparando Selectividad Solución Selectividad - Modelo 04 Asignatura: Matemáticas II ºBachillerato página /9 Preparando Selectividad Solución Selectividad - Modelo 04 Modelo 04. Opción A. Ejercicio Sea la función f (x)=x 8ln( x) definida en f : +. a) [0,5 puntos]

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II PRINCIPADO DE ASTURIAS MODELO CURSO 009-00 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio a) Como se trata de un sistema cuadrado, calculamos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo 1 del 1999. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 1998999. Opción A Ejercicio 1, Opción A, Modelo 1 de 1999. x si x

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 03

Preparando Selectividad Solución Selectividad - Modelo 03 página 1/17 Preparando Selectividad Solución Selectividad - Modelo 03 Modelo 03. Opción A. Ejercicio 1 Sea f (x)=. x 5 x+6 a) Estudia el dominio y las asíntotas de la función. b) Estudia la monotonía c)

Más detalles

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2)

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2) Selectividad Matemáticas II septiembre 07, Andalucía versión ) Pedro González Ruiz 6 de septiembre de 07. Opción A Problema. Una imprenta recibe un encargo para realizar una tarjeta rectangular con las

Más detalles

[1,75 PUNTOS] Considerando la matriz A del apartado anterior con a = 1, resuelve la ecuación C. 6 si x 1

[1,75 PUNTOS] Considerando la matriz A del apartado anterior con a = 1, resuelve la ecuación C. 6 si x 1 MATEMÁTICAS CCSS º DE BACHILLERATO 014 OPCIÓN DE EXAMEN Nº 1 Ejercicio 1 [,5 PUNTOS] A. [1,75 PUNTOS] Determina para qué valores de a la matriz 1 A 5 a 1 1 a no tiene inversa. [1,75 PUNTOS] Considerando

Más detalles

Observaciones del profesor:

Observaciones del profesor: INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a los cuatro ejercicios de una de las dos opciones (A o B) que se le ofrecen. Nunca deberá contestar a unos ejercicios de una opción y a otros

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Matemáticas II Curso

Matemáticas II Curso Matemáticas II Curso 03-04 Exámenes LÍMITES Y CONTINUIDAD. Límites y continuidad Ejercicio. Dada la función f(x) = x 3 + x cos πx, demostrar que existe un valor x = a positivo y menor que, que verifica

Más detalles

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución Ejercicio n º 1 de la opción A de junio de 2008 [2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. La recta x = a es una asíntota vertical (A.V.) de la función

Más detalles

Seis problemas resueltos de geometría

Seis problemas resueltos de geometría Problema 1 a) Dados los puntos P(4, 2, 3) y Q(2, 0, 5), da la ecuación implícita del plano π de modo que el punto simétrico de P respecto a π es Q. b) Calcula el valor del parámetro λ R para que el plano

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II 2 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque. Álgera lineal Prolema.. 2 2 a) A() 4 2 8 44 2 8 6 2 648 2 2 0 ) El determinante de la matriz inversa

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

y la matriz ampliada B λ λ 1

y la matriz ampliada B λ λ 1 a) La matriz de los coeficientes es 0 A λ 0 λ λ y la matriz ampliada B λ 0 0. λ λ λ Estudiemos sus rangos según los posibles valores de λ : En la matriz A, el mayor rango posible es : 0 λ 0 λ λ λ λ λ λ

Más detalles

SOLUCIONES Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Junio. Año 2017 Paco Muñoz. IES Virgen de la Cabeza Marmolejo (Jaén)

SOLUCIONES Prueba de Acceso a la Universidad. Universidades de Andalucía Examen Junio. Año 2017 Paco Muñoz. IES Virgen de la Cabeza Marmolejo (Jaén) Examen Junio. Año 017 A.1.a) Tenemos como dato el área de 16 m².: Es un rectángulo más un semicírculo: 16=x h+ π ( x ) ; 3= xh+π x 4 ; 18=8 xh+π x 18 π x h= 8 x Ahora construimos la función que hay que

Más detalles

A = 1 3. A 1 = 1 A Adj ( A ) t A 1 = 1 & A A 1 = I

A = 1 3. A 1 = 1 A Adj ( A ) t A 1 = 1 & A A 1 = I EXAMEN DE SELECTIVIDAD JUNIO 2014. MATEMÁTICAS II OPCIÓN A " Problema A.1. Se dan las matrices S: A = 1 3 2 2 y B= " 1 3 2 2, obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado:

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Grupo Opción A A El sistema es cuadrado, por lo que podemos calcular

Más detalles