Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León"

Transcripción

1 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee..- CALCULADORA: Se permitirá el uso de calculadoras no programables (que no admitan memoria para teto ni representaciones gráficas). CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máimo de,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la eposición. Precisión en los cálculos y en las notaciones. Deben figurar eplícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos. OPCIÓN A 5 1. a) Resolver la siguiente ecuación matricial X A = B C, siendo A = 1, B = 1 y 1 1 C = 1. b) Sean F 1, F y F las filas de una matriz cuadrada de orden cuyo determinante vale 5. Calcular razonadamente el valor del determinante de la matriz cuyas filas son respectivamente F 1 F, F y F. y+ = 0. Sea el punto A(1, 1, ) y la recta de ecuación r. z = a) Calcular el plano perpendicular a la recta r que pasa por A. b) Calcular la distancia del punto A a la recta r.. Sea la función f () = e. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica. 4. a) Hallar el punto en el que la recta tangente a la gráfica de la función f () = + 4 es paralela a la recta de ecuación y = 5 7. b) Calcular el área delimitada por la parábola de ecuación y = y la recta y = / 16

2 OPCIÓN B m y = 1 1. Sea el sistema de ecuaciones lineales. + my = 1 m a) Discutir el sistema según los valores de m. b) Hallar los valores de m para los que el sistema tenga alguna solución en la que =. 1. a) Dados el punto A(, 5, 1), la recta r = y + = z + 1 y el plano π y + z + 5 = 0, determinar el punto B de π tal que la recta AB sea paralela a la recta r. b) Hallar las coordenadas de un vector de módulo 1 que sea perpendicular a los vectores PQ y PR, siendo P(1,, 1), Q(, 0, 1) y R( 1, 1, 0).. Se desea construir un depósito de chapa (en forma de prisma recto, abierto y de base cuadrada) con una capacidad de 000 litros. Cuáles han de ser las dimensiones del depósito para que se precise la menor cantidad de chapa posible en su construcción? 4. a) Enunciar e interpretar geométricamente el Teorema de Rolle. b) Hallar la primitiva de f () = ln cuya gráfica pasa por el punto (1, ). / 16

3 SOLUCIONES OPCIÓN A 5 1. a) Resolver la siguiente ecuación matricial X A = B C, siendo A = 1, B = 1 y 1 1 C = 1. b) Sean F 1, F y F las filas de una matriz cuadrada de orden cuyo determinante vale 5. Calcular razonadamente el valor del determinante de la matriz cuyas filas son respectivamente F 1 F, F y F. Solución: a) En primer lugar despejemos la matriz X de la ecuación matricial dada, X A = B C: Calculemos pues las matrices B C y A 1 : X A = B C X= (B C) A 1 B C = = 1 4 Por otra parte, para que eista A 1, se debe cumplir que el determinante de la matriz A sea no nulo. Como la matriz A 1 eiste, esta vendrá dada por: A = 5 1 = 5 6 = 1 0 A 1 = t Adj( A ) A siendo Adj (A t ) la matriz adjunta de la transpuesta de A. Calculémosla: A t = 5 1 Adj (A t ) = 1 5 A 1 = t Adj( A ) A = = 1 5 Entonces: X= (B C) A 1 = = b) Repasemos en primer lugar algunas propiedades de los determinantes: (1) Si todos los elementos de una fila o columna de una matriz cuadrada se descomponen es dos sumandos, entonces su determinante es igual a la suma de dos determinantes que tienen en / 16

4 esa fila o columna el primero y segundo sumandos, respectivamente, y en las demás los mismos elementos que el determinante inicial. () Si se multiplican todos los elementos de una fila o columna de una matriz cuadrada por un número, el determinante queda multiplicado por dicho número. () Si una matriz cuadrada tiene dos filas o dos columnas iguales o proporcionales, su determinante es cero. Utilizando las propiedades anteriores, calculemos el valor del determinante de la matriz cuyas filas son respectivamente F 1 F, F y F : det ( F 1 F, F, F ) (1) = det ( F 1, F, F ) det (F, F, F ) () = () = det (F 1, F, F ) det (F, F, F ) () = 6 det (F 1, F, F ) + 0 = 6 5 = 0 4 / 16

5 y+ = 0. Sea el punto A(1, 1, ) y la recta de ecuación r. z = a) Calcular el plano perpendicular a la recta r que pasa por A. b) Calcular la distancia del punto A a la recta r. Solución: a) Para determinar el plano π perpendicular a la recta r que pase por A, tengamos en cuenta que el vector director de la recta r, v r, coincide con el vector característico, p, del plano π buscado. Escribamos las ecuaciones paramétricas de la recta r, tomando y = λ, para conocer cual es su vector director: r = +λ y =λ z = v r = (1, 1, 0) = p El plano buscado π tendrá entonces por ecuación: + y + D = 0 Para calcular el coeficiente D, imponemos la condición de que dicho plano ha de pasar por el punto A dado, y por tanto sus coordenadas verifican la ecuación del plano: Así, la ecuación del plano π pedido es: A π D = 0 D = + y = 0 b) Una forma de calcular la distancia del punto A a la recta r sería usando la fórmula: d (A, r) = RA v r v siendo RA un vector que una el punto A con un punto cualquiera R de la recta r, v r el vector director de la recta r y RA v es el módulo del producto escalar de ambos. r A partir de las ecuaciones paramétricas de la recta r calculadas en el apartado anterior, tenemos que un punto R de dicha recta es: Por tanto: R(, 0, ) RA = (, 1, 1) r 5 / 16

6 Entonces: d (A, r) = RA v r = v r i j k i+ j+ k ( 1) = = = = (1,1,0) (1,1,0) u Otra forma de calcular dicha distancia, si es que no recuerdas la fórmula anterior, sería calculando en primer lugar el punto de intersección, P, de la recta r con un plano perpendicular a la misma que pasase por A, que por otra parte hemos calculado en el apartado anterior. La distancia de A a la recta r, coincide con la distancia de A al punto P. Para calcular P, sustituyamos las coordenadas de un punto genérico de la recta r en la ecuación del plano π: P r π + λ + λ = 0 λ = Por tanto: P(0,, ) r π A vr = p P Entonces: d (A, r) = d (A, P) = (0 1) + ( 1) + ( ) = u 6 / 16

7 . Sea la función f () = e. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica. Solución: a) El dominio de definición de la función dada es: Dom f =. Estudiemos en primer lugar la monotonía de f (). Para ello, calculemos su derivada, f (): f () = e e = ( ) e Los puntos singulares se presentan en los puntos solución de la ecuación f () = 0. f () = 0 ( ) e = 0 = 0 y = Representemos estos puntos singulares sobre la recta real y veamos el signo que toma f () en cada uno de los intervalos en que queda dividida: f () < 0 f () > 0 f () < 0 0 Por tanto, la función f decrece en (, 0) (, + ) y crece en (0, ). De lo anterior se deduce que en el punto de abscisa = 0 se presenta un mínimo relativo de la función f, pues en él la monotonía cambia de decreciente a creciente. También se deduce que en el punto de abscisa = la función presenta un máimo relativo, pues en él la función f pasa de ser creciente a ser decreciente. Mínimo relativo en (0, 0) y Máimo relativo en (, 4e ) A dicha conclusión se puede llegar también a través del estudio de la derivada segunda: f () = ( ) e ( ) e = ( 4 + ) e f (0) = > 0 Mínimo f () = e < 0 Máimo Estudiemos ahora la curvatura a través de la derivada segunda. Los puntos de infleión, si los hay, se presentan en los puntos solución de la ecuación f () = 0. f () = 0 ( 4 + ) e = = 0 = ± Representemos dichos puntos sobre la recta real y veamos el signo que toma f () en cada uno de los intervalos en que queda dividida: f () > 0 f () < 0 f () > 0 + Por tanto, la función f es cóncava hacia arriba en (, ) ( +, + ) y cóncava hacia abajo en crece en (, + ). 7 / 16

8 De lo anterior se deduce que en el punto de abscisa = se presenta un punto de infleión de la función f, pues en él la curvatura cambia de cóncava hacia arriba a cóncava hacia abajo. También se deduce que en el punto de abscisa = + la función presenta otro punto de infleión pues en él la curvatura cambia de cóncava hacia abajo a cóncava hacia arriba. ( ) ( ) Puntos de infleión en ( ), ( 6 4 ) e y ( ) +, ( ) e + Estudiemos ahora las asíntotas de la función: Verticales: No eisten pues Dom f =. Horizontales: Veamos en primer lugar qué pasa si. ( ) Lim e = Lim( ) e = Lim e = ( + ) ( + ) = Por tanto no eiste asíntota horizontal si. Veamos ahora qué pasa si +. = = Lim e Lim + + e Aplicando la regla de L Hopital, se tiene que: = = = = = = 0 = 0 e e e + L' Hopital L' Hopital Lim Lim Lim Por tanto, la recta y = 0 es una asíntota horizontal de f cuando +. Oblicuas: Como hay un asíntota horizontal cuando +, ya no puede haber oblicuas cuando +, pues son ecluyentes. Veamos que pasa si. Si eistiese asíntota oblicua ésta tendría por ecuación y = m + n, donde m y n son los siguientes límites, que deben eistir y ser finitos: m = Lim f ( ) y n = Lim ( f ( ) m) Calculémoslos: m = ( ) e ( ) e e Lim = Lim = Lim = Lim e = ( ) ( + ) = Como m no es finito, tampoco eiste asíntota oblicua si. Finalmente, con los datos anteriores la gráfica de la función es: 8 / 16

9 9 / 16

10 4. a) Hallar el punto en el que la recta tangente a la gráfica de la función f () = + 4 es paralela a la recta de ecuación y = 5 7. b) Calcular el área delimitada por la parábola de ecuación y = y la recta y = + 4. Solución: a) Tengamos en cuenta las siguientes consideraciones: Dos rectas paralelas tienen igual pendiente. La pendiente de la recta tangente a la gráfica de la función en un punto = a es el valor de la derivada de la función en dicho punto, es decir, f (a). Así, como: La recta dada, y = 5 7, tiene pendiente m = 5. f () = 1 Se ha de cumplir que dichos valores coincidan, es decir: Entre las dos abscisas obtenidas = 1 y =, se sitúa por encima la función y = + 4 como se puede comprobar fácilmente si más que elegir una abscisa de dicho intervalo y comparar el valor de de su imagen para ambas funciones. Por ejemplo, si elegimos la abscisa = 0, entonces: Parábola: y (0) = 0 = 0 Recta: y (0) = = 4 Así pues, el área pedida viene dada por: Área = 1 = 5 = Por tanto el punto buscado tiene por coordenadas (, f()), luego es el punto: (, f()) = (, 10) b) Calculemos en primer lugar los límites de integración. Estos vendrán dados por las soluciones de la ecuación resultante de igualar ambas funciones: = = 0 = 0 = 1 y = + d= + = [( 4) ] = = = = 9 1 u 10 / 16

11 OPCIÓN B m y = 1 1. Sea el sistema de ecuaciones lineales. + my = 1 m a) Discutir el sistema según los valores de m. b) Hallar los valores de m para los que el sistema tenga alguna solución en la que =. Solución: a) Consideremos las matrices de los coeficientes, A, y la matriz ampliada, A, del sistema: A = m 1 1 m A = m m 1 m Veamos cual es el determinante de A: A = m 1 1 m = m 1 Dicho determinante se anula para: Por tanto, tenemos que: m 1 = 0 m = 1 y m = 1 Si m 1 y m 1 rango (A) = = rango ( A ) = nº incógnitas Sistema compatible determinado. Tiene solución única. Si m = 1 Las matrices que tenemos son: A = A = En la matriz A ambas filas son iguales (f = f 1 ) y por tanto rango (A) = 1. Sin embargo, rango ( A ) = ya que en dicha matriz es posible encontrar un menor de orden dos no nulo: = + 1 = 0 Por tanto rango (A) = 1 = rango ( A ) Sistema incompatible. No tiene solución. Si m = 1 Las matrices que tenemos son: A = A = En ambas matrices se cumple que la segunda fila es proporcional a la primera (f = f 1 ) y 11 / 16

12 por tanto rango (A) = 1 = rango ( A ) < = nº incógnitas Sistema compatible indeterminado. Tiene infinitas soluciones que dependen de un parámetro. b) Para hallar los valores de m para los que el sistema tenga alguna solución en la que =, sólo debemos tomar el sistema y sustituir en él la variable por el valor que toma, : m y = 1 + my = 1 m Obtenemos así un sistema, no lineal, de dos ecuaciones con dos incógnitas, m e y. Resolvámoslo por el método de sustitución. Despejando y de la primera ecuación: Sustituyendo en la segunda: Para el caso m = e y = 4. y = m 1 + m (m 1) = 1 m m + m = 0 m = y m = 1 (m ±1) el sistema es compatible determinado y su única solución sería = Para el caso m = 1, el sistema es compatible indeterminado. Tiene infinitas soluciones que dependen de un parámetro ( = 1 + λ, y = λ, con λ ), y en una de ellas el valor de es. Dicha solución es = e y = 1. 1 / 16

13 1. a) Dados el punto A(, 5, 1), la recta r = y + = z + 1 y el plano π y + z + 5 = 0, determinar el punto B de π tal que la recta AB sea paralela a la recta r. b) Hallar las coordenadas de un vector de módulo 1 que sea perpendicular a los vectores PQ y PR, siendo P(1,, 1), Q(, 0, 1) y R( 1, 1, 0). Solución: a) El punto B buscado es la intersección de la recta s, paralela a r que pasa por A, y el plano π. s r π B A Calculemos la recta s, que está determinada por al punto A y el vector director v r de la recta r. Este último lo obtenemos fácilmente a partir de la ecuación continua de la recta r. v r = (, 1, 1) Por tanto, las ecuaciones paramétricas de la recta s son: s = + λ y = 5 +λ z = 1+λ con λ Para obtener las coordenadas de B, intersección de la recta s y del plano π, sustituimos las coordenadas de un punto genérico de la recta s en la ecuación del plano π: B = s π ( + λ) (5 + λ) + (1 + λ) + 5 = 0 5λ + 5 = 0 λ = 1 Por tanto el punto B es: B(1, 4, 0) b) Calculemos en primer lugar un vector, n, que sea perpendicular a los vectores PQ y PR. Este vendrá dado por el producto vectorial de ambos. Una vez hallado n, calculamos el vector pedido normalizándolo, es decir, dividiéndolo entre su módulo para obtener un vector unitario de igual dirección y sentido que n. Procedamos: PQ = (1,, ) y PR = (,, 1) 1 / 16

14 Entonces: n = i j k PQ PR = 1 1 = i 5 j 8 k Por tanto, un vector, u, de módulo 1 que es perpendicular a los vectores PQ y PR es: u n = = n i 5j 8k i 5j 8k = = i j k = i j k 1 + ( 5) + ( 8) Nota: El vector u también cumple las condiciones pedidas. 14 / 16

15 . Se desea construir un depósito de chapa (en forma de prisma recto, abierto y de base cuadrada) con una capacidad de 000 litros. Cuáles han de ser las dimensiones del depósito para que se precise la menor cantidad de chapa posible en su construcción? Solución: Consideremos un depósito con las dimensiones de la figura. La cantidad de chapa requerida para construirlo, la cual ha de ser mínima, viene dada por: C (, y) = Superficie lateral + Base = 4y + Debemos por tanto minimizar esta función. La relación entre las variables viene dada por la capacidad del depósito (1 litro 1 dm ): Por tanto: Capacidad = y = m Sustituyendo en la función C(, y), tenemos que: y = y = C () = 4 + = 18 + Para estudiar sus etremos, calculamos la derivada primera: 18 C () = La igualamos a cero para calcular sus puntos singulares: 18 C () = 0 Veamos que se trata de un mínimo con la ª derivada: + + = 0 18 = 0 64 = 0 = 4 56 C () = 56 + C (4) = 4 + = 4 + = 6 > 0 Mínimo Por tanto, las dimensiones del depósito para que se precise la menor cantidad de chapa posible en su construcción son = 4 m e y = 4 = m. 15 / 16

16 4. a) Enunciar e interpretar geométricamente el Teorema de Rolle. b) Hallar la primitiva de f () = ln cuya gráfica pasa por el punto (1, ). Solución: a) Teorema de Rolle: Si f () es una función definida y continua en un intervalo cerrado [a, b] y derivable en el intervalo abierto (a, b) y además se cumple que f (a) = f (b), entonces, eiste al menos un punto c del intervalo (a, b) tal que f (c) = 0. Geométricamente nos dice que si la función f cumple las condiciones requeridas en el teorema, entonces eiste al menos un punto en el intervalo (a, b) en el cual la recta tangente a la gráfica de la función f trazada en dicho punto c es horizontal. b) Calculemos la integral indefinida, F (), de la función dada, f () = ln. F () = ( ln ) d Resolvamos la integral por partes: ln = u 1 d = dv v = d = du d= Entonces: 1 ln 1 ln ( ln d ) = ln d= d= + C 9 Buscamos una primitiva que pase por el punto (1, ), esto es, F (1) =. F (1) = 1ln C = + C = C = Por tanto la primitiva en cuestión es: F () = ln / 16

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS II Nuevo currículo Teto para los Alumnos Nº páginas CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se observarán fundamentalmente los

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

SEPTIEMBRE 2005 PRUEBA A. b) Para a = 1, calcúlese la recta que pasa por (1, 1, 1) y se apoya en r y s.

SEPTIEMBRE 2005 PRUEBA A. b) Para a = 1, calcúlese la recta que pasa por (1, 1, 1) y se apoya en r y s. Selectividad Septiembre 5 SEPTIEMBRE 5 PRUEBA A PROBLEMAS - a) Calcúlense los valores de a para los cuales las rectas r x = λ y s y = 3+λ son perpendiculares z = + a λ b) Para a =, calcúlese la recta que

Más detalles

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar.

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar. S O L U C I O N E S O P C I Ó N A PR.- Nos dan planos, dos de ellos determinan la recta. El problema se reduce a interpretar geométricamente las posibles soluciones del sistema m y m my a) Matri de los

Más detalles

OPCIÓN A. = en el punto ( ) b) Calcular el área de la región delimitada en el primer cuadrante por la gráfica de la función

OPCIÓN A. = en el punto ( ) b) Calcular el área de la región delimitada en el primer cuadrante por la gráfica de la función Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

x + y + bz = a x + y + az = b bx + ay + 4z = 1

x + y + bz = a x + y + az = b bx + ay + 4z = 1 UC3M Matemáticas para la Economía Eamen Final, 3 de junio de 017 RESUELTO 1 Dados los parámetros a y b, se considera el sistema de ecuaciones lineales + y + bz = a + y + az = b b + ay + 4z = 1 (a) (5 puntos)

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA MODELO CURSO 009-00 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A El punto de infleión es aquel en el que la derivada segunda se anula. Calculamos

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es Ejercicio n º 1 de la opción A de junio de 2004 (Modelo 6) De la función f : (-1,+ ) R se sabe que f '(x) = 3/(x +1) 2 y que f(2) = 0. (a) [1'25 puntos] Determina f. [1'25 puntos] Halla la primitiva de

Más detalles

OPCIÓN A. E2.-a) Consideramos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R

OPCIÓN A. E2.-a) Consideramos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R San Blas, 4, entreplanta. 983 3 7 54 OPCIÓN A E.-a) Sea M =. Estudiar, en función del parámetro a, cuando M posee 3 a inversa (,5 puntos) b) Siendo A =, calcular A y A 3 7 (,75 puntos) a) Eiste M ( M )

Más detalles

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y Pruebas de Aptitud para el Acceso a la Universidad. JUNIO 99. Matemáticas II. OPCIÓN A X Y 5. Las matrices X e Y son las soluciones del sistema de ecuaciones matriciales. Se pide hallar X Y 0 X e Y [ punto]

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO - MATEMÁTICAS II Instrucciones: a) Duración: hora y minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1 Ejercicio n º 1 de la opción A de junio de 2005 [2'5 puntos] De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,

Más detalles

Prueba de nivelación correspondiente a los contenidos de prerrequisitos. Prueba de nivelación de prerrequisitos

Prueba de nivelación correspondiente a los contenidos de prerrequisitos. Prueba de nivelación de prerrequisitos Fundamentos Matemáticos de la informática (G. en Ing. Informática) Prueba de nivelación correspondiente a los contenidos de prerrequisitos Nombre apellidos: Instrucciones: El alumno debe resolver la prueba

Más detalles

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables.

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables. Matemáticas II Curso 0/4 Opción A (ª evaluación) Ejercicio. (Puntuación máima: puntos) Estudia las características de la función = ln = ( 0, + ) ( + ) f Dom f y = ln ; con los datos obtenidos representa

Más detalles

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 01 Reserva (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 6 Septiembre 01 ['5 puntos] De entre todos los triángulos rectángulos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z San Blas, 4, entreplanta. 98 0 70 54 OPCIÓN A m + y + z = 0 E.-a) Discutir, en función del valor de m, el sistema de ecuaciones y my + mz = resolverlo para m = b) Para m = añadir una ecuación al sistema

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos)

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos) PROPUESTA A 1A. a) Calcula los valores de los parámetros a, b R para que la función { sea continua y derivable en x = 0. (1 5 puntos) b) Para los valores encontrados, calcula la ecuación de la recta tangente

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

MATEMÁTICAS II 2005 OPCIÓN A

MATEMÁTICAS II 2005 OPCIÓN A MATEMÁTICAS II 2005 OPCIÓN A Ejercicio 1: De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el punto de abscisa

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II 2 CANTABRIA CNVCATRIA SEPTIEMBRE 2009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz Bloque I A a) El rango de la matriz de los coeficientes será 3 siempre que el

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque.

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 203 OBSERVACIONES: FASE ESPECÍFICA MATEMÁTICAS El alumno deberá responder únicamente a una

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 04

Preparando Selectividad Solución Selectividad - Modelo 04 Asignatura: Matemáticas II ºBachillerato página /9 Preparando Selectividad Solución Selectividad - Modelo 04 Modelo 04. Opción A. Ejercicio Sea la función f (x)=x 8ln( x) definida en f : +. a) [0,5 puntos]

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II PRINCIPADO DE ASTURIAS MODELO CURSO 009-00 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio a) Como se trata de un sistema cuadrado, calculamos

Más detalles

IES Fco Ayala de Granada Septiembre de 2017 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2017 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 07 (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Septiembre 07 (modelo 6) [ 5 puntos] Una imprenta recibe el encargo de realizar una

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Ejercicio 1 de la Opción A del modelo 4 de Solución

Ejercicio 1 de la Opción A del modelo 4 de Solución Ejercicio 1 de la Opción A del modelo 4 de 2004 Considera la integral definida I = (a) [1 5 puntos] Expresa la anterior integral definida aplicando el cambio de variables 1 + = t. (b) [1 punto] Calcula

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ARAGÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz. Algebra Opción A a) Las matrices correspondientes son: A m m m m m m A* El determinante

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

Selectividad Matemáticas II septiembre 2016, Andalucía (versión 1)

Selectividad Matemáticas II septiembre 2016, Andalucía (versión 1) Selectividad Matemáticas II septiembre 16, Andalucía (versión 1) Pedro González Ruiz 14 de septiembre de 16 1. Opción A Problema 1.1 Sabiendo que es finito, calcular m y el valor del límite. ( 1 lím x

Más detalles

Tema 4 Funciones(IV). Aplicaciones de la Derivada.

Tema 4 Funciones(IV). Aplicaciones de la Derivada. Tema 4 Funciones(IV). Aplicaciones de la Derivada. 1. Monotonía. Crecimiento y decrecimiento de una función. Etremos relativos 3. Optimización 4. Curvatura 5. Punto de Infleión 6. Propiedades funciones

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1 Problema 1 Estudia la posición relativa de los planos siguientes según los distintos valores de m: π 1 x + y + z = m + 1 π 2 mx + y + ) z = m π 3 x + my + z = 1 Si vemos los tres planos como un sistema

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II EXTREMADURA CONVOCATORIA JUNIO 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A a) La matriz A tiene tres filas de las que para calcular el determinante

Más detalles

Elija una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Elija una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. Prueba de Acceso a la Universidad. JUNIO 0. Elija una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A 5 m A.. Sea A la matriz: A 0 m a) (,5 puntos) Discuta

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II REGIÓN DE MURCIA CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque A Para saber si la matriz tiene inversa, el determinante de la

Más detalles

Modelo 4 de Sobrantes de 2004

Modelo 4 de Sobrantes de 2004 Ejercicio n de la opción A del modelo 4 de 24 9 Considera la integral definida I d + [ 5 puntos] Epresa la anterior integral definida aplicando el cambio de variables + t. [ punto] Calcula I. I d + Cambio

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

m m 7m 7 0 m 1, m m

m m 7m 7 0 m 1, m m 5 4 La matriz de los coeficientes es A 4 m El único menor de orden de A es: 5 4 0 y la matriz ampliada B 0 4 m m 5 4 5m 6 4 4 58m 7m 7 0 m, m 4 m Tenemos entonces: Para m y m : rga rgb nº de incógnitas

Más detalles

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) = JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 03

Preparando Selectividad Solución Selectividad - Modelo 03 página 1/17 Preparando Selectividad Solución Selectividad - Modelo 03 Modelo 03. Opción A. Ejercicio 1 Sea f (x)=. x 5 x+6 a) Estudia el dominio y las asíntotas de la función. b) Estudia la monotonía c)

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG UCLM Septiembre 0 Propuesta B Matemáticas II º Bachillerato Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PROPUESTA B EJERCICIO Dada la función Matemáticas II Septiembre

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2005 Se sabe que la gráfica de la función f : R R definida por f (x)= x 3 + ax+ bx + c es la que aparece en el dibujo. (a) [1 25 puntos] Determina f. (b) [1 25

Más detalles

en el intervalo - 1-cos(x) 2 si x > 0 sen(x)

en el intervalo - 1-cos(x) 2 si x > 0 sen(x) . [04] [ET-A] Sea la función f() = e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica..

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

y la matriz ampliada B λ λ 1

y la matriz ampliada B λ λ 1 a) La matriz de los coeficientes es 0 A λ 0 λ λ y la matriz ampliada B λ 0 0. λ λ λ Estudiemos sus rangos según los posibles valores de λ : En la matriz A, el mayor rango posible es : 0 λ 0 λ λ λ λ λ λ

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2)

Selectividad Matemáticas II septiembre 2017, Andalucía (versión 2) Selectividad Matemáticas II septiembre 07, Andalucía versión ) Pedro González Ruiz 6 de septiembre de 07. Opción A Problema. Una imprenta recibe un encargo para realizar una tarjeta rectangular con las

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CANTABRIA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque I A a) No es cierto que el producto de matrices sea conmutativo. Por ejemplo,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES Teto para los Alumnos Nº páginas: y TABLAS CRITERIOS GENERALES DE EVALUACIÓN Cada pregunta de la 1

Más detalles

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto)

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado. Bachillerato L. O. G. S. E. Instrucciones: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios deben

Más detalles

10.APLICACIÓN DE LAS DERIVADAS

10.APLICACIÓN DE LAS DERIVADAS .APLICACIÓN DE LAS DERIVADAS. DERIVADAS SUCESIVAS Antes de introducirnos en algunas importantes aplicaciones de las derivadas, vamos a ver una ampliación de los puntos estudiados en el tema anterior que

Más detalles