1. Se considera el siguiente problema isoperiméétrico: calcular el mínimo relativo del funcional. xy (x) 2 dx,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Se considera el siguiente problema isoperiméétrico: calcular el mínimo relativo del funcional. xy (x) 2 dx,"

Transcripción

1 GRADO EN MATEMÁTICAS UNIVERSIDAD DE GRANADA Modelos Matemáticos II de julio de 4 Curso 3/4 Se considera el siguiente problema isoperiméétrico: calcular el mínimo relativo del funcional en el espacio D = y C [, e], F[y] = x yx dx =, xy x dx, } yx senπ lnx dx = x Encuentra las extremales del problema en D C [, e] Es alguna de las extremales un mínimo en D C [, e]? Recuerda que el cambio de variable x = e z reduce una EDO de Euler a una con coeficientes constantes Solución: Al tratarse de un problema de optimización con ligaduras, deberíamos introducir el funcional corregido F x, y, p = xp + λ x y + λ y senπ lnx x y calcular su ecuación de Euler Lagrange asociada Obtenemos λ x y + λ d senπ lnx x dx xp = λ x y + λ x senπ lnx y xy = o, equivalentemente, x y + xy λ y = λ senπ lnx Si retenemos solo la primera de las ligaduras, nos encontramos con una ecuación de tipo Euler que, después del cambio de variable x = e z, se transforma en la siguiente ecuación diferencial con coeficientes constantes: y z λ yz =, que ha de ser resuelta junto con las siguientes condiciones de contorno: yx = = yz = =, yx = e = yz = =, de donde se desprende que las únicas soluciones no triviales, tras de haber deshecho el cambio de variable, son todas de la forma A sennπ lnx, A, de entre las cuales la ligadura solo es satisfecha si se toma A = ± Por consiguiente, disponemos de las extremales y n x = ± sennπ lnx Multiplíquese la ecuación por el factor x senπ lnx e intégrese por partes en el intervalo [, e] para obtener λ = Dado que y C[, e]

2 Basta entonces con observar que la segunda ligadura no es más que una relación de ortogonalidad respecto de y con función peso x : x yxy x dx =, de donde se desprende que recuérdese la teoría estudiada sobre problemas isoperimétricos las extremales en que se materializa el mínimo son exactamente las que vienen dadas por y x = ± senπ lnx Se consideran los siguientes tres funcionales: F[y] = b pxy x + qxyx b dx, G[y] = sxyx dx, a a Λ[y] = F[y] G[y], donde p C [a, b], q, s C[a, b] y p, s > a Para p = s =, q =, a = y b = π, calcula las extremales de F en D Además, sabiendo que para estos valores se tiene F[y] en D, prueba que solamente en dos de ellas alcanza Λ el mínimo en D b Siendo yx un extremo relativo no nulo de Λ en D = y C [a, b], b determina la ecuación diferencial que ha de verificar a sxyx dx = π } C [a, b], Solución: a Para tales elecciones se tiene que F[y] = π y x yx dx y π D = y C[, π], yx dx = π } C [, π] Las extremales de F en D son las soluciones de la ecuación de Euler-Lagrange asociada a F x, y, p := p y λy, que no es otra que y ++λy = a saber: yx = A cos + λ x+b sin + λ x, que satisfacen las condiciones y = yπ =, π yx dx = π Se tiene: y = A = yπ = λ n = n π = π yx dx π = B π sinnx dx = B π B = ±

3 Por consiguiente, las extremales pedidas son y n x = ± sinnx, n N Finalmente, como F[y], G[y] en D y Λ[± sinnx] = π n, se deduce que el funcional Λ alcanza su valor mínimo = en yx = ± sinx b Si partimos del hecho de que yx es un extremo relativo no nulo de Λ en D, en particular ha de verificar la ligadura G[y] = b a sxyx dx = π O, dicho de otro modo, yx ha de ser un extremo relativo no nulo de F luego de F en π C [a, b] En definitiva, la ecuación diferencial que yx debe satisfacer no es otra que la ecuación de Euler Lagrange asociada al funcional F: = qy d dx py py qy = 3 Se considera el siguiente funcional, que representa la energía asociada a la vibración de la cuerda de una guitarra de longitud π: definido en F[u] = T π } u t u x dx dt, D = u C [, T ] [, π] : u, x = ut, x = ut, = ut, π = } 3a Para u C [, T ] [, π], encuentra la ecuación de Euler Lagrange asociada al problema variacional anterior 3b Se considera que: La cuerda está fija en sus extremos: ut, = ut, π = La vibración es estacionaria, luego u t t =, x = La cuerda comienza a vibrar cuando es soltada de la posición inicial ut =, x = x si x [, π/] π x si x [π/, π] En las condiciones anteriores, resuelve el correspondiente problema mixto para la ecuación encontrada en el apartado a Solución: a La ecuación de Euler Lagrange es o, equivalentemente, = d dt u t d dx u x = u tt + u xx u tt = u xx

4 b Se trata de resolver el problema mixto para la ecuación de ondas u tt = u xx que resulta de imponer las condiciones de contorno ut, = ut, π = y los datos iniciales ut =, x = x si x [, π/] π x si x [π/, π] y u t t =, x = Para ello empleamos la técnica de separación de variables, que consiste en buscar soluciones que respondan a la forma ut, x = vtwx En tal caso habría de cumplirse v twx = vtw x v t vt = w x wx = λ R Comenzamos resolviendo el problema de contorno constituido por la ecuación w x + λwx = junto con las condiciones de frontera w = wπ =, el cual admite como valores propios λ n = n, n N, y como funciones propias w n x = C sinnx, C R El siguiente paso consiste en resolver la ecuación diferencial v t + n vt =, que arroja la siguiente familia de soluciones: v n t = C cos nt + C 3 sin nt, con C, C 3 R Por consiguiente, los perfiles buscados son de la forma u n t, x = An cos nt + B n sin nt sinnx, A, B R n N Imponiendo finalmente las condiciones iniciales, se tiene en primer lugar que u n t t, x = n N n A n sin nt + B n cos nt sinnx = u n t, x = n N B n sinnx x π B n = n N Finalmente, se obtiene u n, x = n N A n sinnx = n N ϕ n sinnx, donde ϕ n = π π ϕx sinnx dx x si x [, π/] son los coeficientes del desarrollo de Fourier en senos de la función ϕx = π x si x [π/, π] en el intervalo [, π] Para concluir, calculamos los ϕ n que han de coincidir, para cada n N, con

5 los A n que buscamos: π/ π x sinnx dx + π/ ϕ n = π = π/ x sinnx dx π = π/ x sinnx dx π π/ x sinnx sin = π = π π n = πn sin n π π π/ π x sinnx dx x sinnx dx π π/ n x + π n cosnπ cos n π sin n x + π dx π cosnπ cos n π n x + π dx π cosnπ cos n π n cosnπ cos n π sinnπ sin n π π cosnπ cos n π n n 4 Para describir el crecimiento de una bacteria mediante un modelo matemático, se supone que el paso de nutrientes al interior de la misma está regulado por un sistema de receptores enzimaticos localizados en su membrana como indica el dibujo modelo de Michaelis Menten, de modo que el nutriente externo es capturado por uno de los receptores que hay sobre la membrana bacteriana, y entonces es bien introducido como alimento en la bacteria por un mecanismo de transporte o bien devuelto al exterior, dejando de nuevo libre al receptor Describimos este esquema molecular mediante leyes de acción de masa, denotando por C las moléculas de nutriente externo, por X los receptores enzimáticos no ocupados, por X los receptores ocupados y por P el nutriente que ha pasado al interior k C + X k X k X P + X 4a Llamando como sigue: c = [C], x = [X ], x = [X ] y p = [P ] a las respectivas concentraciones de cada uno como variables dependientes del tiempo, determina el sistema de 4 EDOs que verifican estas concentraciones 4b Usando que la ecuación del nutriente introducido está desacoplada y que la concentración de receptores de membrana ocupados + no ocupados es constante, reduce el sistema a sólo

6 EDOs para las incógnitas c y x Toma inicialmente sólo receptores libres, es decir, x = y x = R > y todo el nutriente en el exterior, es decir, c = N > y p = 4c Suponiendo que hay abundancia de nutrientes podemos considerar que a partir de un cierto instante la concentración de receptores ocupados apenas cambia, es decir, que dx /dt Usa esta hipótesis para demostrar que dt = α c β + c para ciertas constantes α y β descritas en términos de R, k, k y k 4d Usa k R como unidad típica de tiempo y N como concentración típica de nutrientes y adimensionaliza la ecuación Solución: a El sistema es el siguiente: dt = k x k cx, dx dt = k x k cx + k x, dx dt = k x + k cx k x, dp dt = k x b A partir de la cuarta ecuación, es claro que pt = p + t k x s ds = t k x s ds Por otra parte, como la concentración de receptores de membrana es constante se tiene que d dt x + x = x t = x x x t = R x t Finalmente, sustituyendo x en las ecuaciones de c y x encontramos dt = k x k cr x = k cr + k c + k x, dx dt = k cr x k + k x = k cr k c + k + k x c Como dx dt =, se tiene que k cr k c + k + k x =, luego x = k cr k c + k + k Entonces dt = k cr + k c + k c = k k R = k c + k + k k c + k + k k Rc c + k +k k

7 Basta finalmente por identificar α = k R, β = k + k k d Se definen τ = k Rt y vτ = ct = c τ k R Entonces N N dv dτ = N dt = α Nk R donde las constantes k Nk y k +k Nk k R = αct = Nk R β + ct k R vτ = k vτ Nk β N + vτ son ambas adimensionales k +k Nk α ct N + vτ β + N ct N, Todos los ejercicios tienen el mismo valor

(x + 3) 2 (y (x)) 2 dx, x + 3 ln(5) Solución: Comenzamos construyendo el funcional. F (x, y, p) = (x + 3) 2 p 2 λy 2

(x + 3) 2 (y (x)) 2 dx, x + 3 ln(5) Solución: Comenzamos construyendo el funcional. F (x, y, p) = (x + 3) 2 p 2 λy 2 UNIVERSIDAD DE GRANADA Modelos Matemáticos II. 5 de mayo de 016 EJERCICIO 1. Se considera el funcional definido en F[y] (x + 3 (y (x dx, D { y C 0 [, ] C0(, 1 tal que ( } (y(x 1 π dx 1, sen ln(x + 3 y(x

Más detalles

[25] EJERCICIO 1. Se considera el problema isoperimétrico consistente en calcular el mínimo relativo de

[25] EJERCICIO 1. Se considera el problema isoperimétrico consistente en calcular el mínimo relativo de UNIVERSIDAD DE GRANADA Modelos Matemáticos II. 3 de mayo de 3 [5] EJERCICIO. Se considera el problema isoperimétrico consistente en calcular el mínimo relativo de F[y] = y x) + yx) ) dx { en D = y C [,

Más detalles

Ecuaciones Diferenciales y Métodos Numéricos

Ecuaciones Diferenciales y Métodos Numéricos NOMBRE...Número... Ecuaciones Diferenciales y Métodos Numéricos 3 er Curso I. Caminos. Ecuaciones en Derivadas Parciales Examen Parcial: 7-XII-2006 Observaciones: Escribir exactamente la solución donde

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

r r a) Clasificar el sistema x = Ax en función del parámetro r R.

r r a) Clasificar el sistema x = Ax en función del parámetro r R. Examen Final de Ecuaciones Diferenciales Fecha: 15 de junio de 2012 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Queremos dibujar el croquis de un sistema lineal 2D y realizar

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

EDP/M2NI/MASTERICCP/UC

EDP/M2NI/MASTERICCP/UC MASTER U. en Ingeniera de Caminos, Canales y Puertos Métodos Matemáticos y Numéricos en Ingeniería CURSO 2014-15 - Bloque I: EDP Hoja 1 - Preliminares: valores propios y desarrollos en serie de Fourier.

Más detalles

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1.

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1. . Introducción Definición.. Una ecuación que contiene derivadas de una o más variables dependientes con respecto a una o más variables independientes se llama ecuación diferencial. En (.) y (.2), y es

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

1. Ecuaciones exactas.

1. Ecuaciones exactas. 1. Ecuaciones exactas. Definición Sean D un subconjunto abierto de R 2 y M, N : D R dos funciones continuas en D. Se dice que la ecuación diferencial: está escrita en forma exacta en D cuando existe una

Más detalles

Fundamentos de Matemáticas

Fundamentos de Matemáticas Fundamentos de Matemáticas Ecuaciones diferenciales Solución: Tarea 4 (Total: 18 puntos) II.2. Ecuaciones diferenciales de primer orden La ecuación de Ricatti es una ecuación no-lineal = P (x) + Q(x)y

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

c) Calcular la solución general y dibujar un croquis preciso del sistema cuando µ = 4.

c) Calcular la solución general y dibujar un croquis preciso del sistema cuando µ = 4. Examen Final de Ecuaciones Diferenciales Fecha: 10 de enero de 2013 3 Problemas 75 puntos Tiempo total: 2 horas 30 minutos Problema 1 [25 puntos] Consideramos el sistema lineal x = Ax, donde 2µ 4 1, µ

Más detalles

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax.

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax. Examen Final de Ecuaciones Diferenciales Fecha: 7 de junio de 013 3 Problemas (7.5 puntos) Tiempo total: horas 30 minutos Problema 1 [.5 puntos]. Consideramos la matriz A = α 1 0 1 α 0, α R, 0 0 cuyos

Más detalles

Análisis Dinámico: Ecuaciones diferenciales lineales de segundo orden

Análisis Dinámico: Ecuaciones diferenciales lineales de segundo orden de aplicación económica Análisis Dinámico: Ecuaciones diferenciales lineales de segundo orden Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva

Más detalles

Examenes de Ecuaciones en Derivadas Parciales

Examenes de Ecuaciones en Derivadas Parciales Examenes de Ecuaciones en Derivadas Parciales Ingeniería de Caminos, Canales y Puertos Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada Ingeniería de Caminos, Canales y

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 003-004. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 6: Ecuaciones en derivadas parciales. 6.1 Series de Fourier

Más detalles

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales)

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Licenciatura en Física Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada FÍSICA MATEMÁTICA

Más detalles

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre Departamento de Métodos Cuantitativos en Economía y Gestión Universidad de Las Palmas de G.C. MATEMATICAS III (Lic. en Economía. 14/7/4) Convocatoria adelantada de Septiembre 1. (*) Sea f(x, y) : { ax

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje:

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje: UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO Unidad Académica Profesional Tianguistenco Licenciatura en Ingeniería de Plásticos Unidad de Aprendizaje: Análisis Numérico y Ecuaciones Diferenciales Unidad 1.

Más detalles

Ecuaciones Diferenciales (MA-841)

Ecuaciones Diferenciales (MA-841) Ecuaciones Diferenciales (MA-841) Ecuaciones de Departmento de Matemáticas / CSI ITESM Ecuaciones de Ecuaciones Diferenciales - p. 1/16 Ecuaciones de Iniciaremos nuestras técnicas de solución a ED con

Más detalles

2. Actividad inicial: Crecimiento del dinero.

2. Actividad inicial: Crecimiento del dinero. Índice 1. Introducción 6 2. Actividad inicial: Crecimiento del dinero. 6 3. EDO de variables separables 7 3.1. Técnica de resolución de una ODE de variables separables........... 8 3.2. Ejemplos desarrollados...............................

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

CÁLCULO III. Problemas

CÁLCULO III. Problemas CÁLCULO III. Problemas Grado en Ingeniería en Tecnologías Industriales Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 4 MÉTODO DE SEPARACIÓN DE VARIABLES 19 4.

Más detalles

Examen final. 8 de enero de 2013

Examen final. 8 de enero de 2013 Cálculo I Examen final Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 8 de enero de 2013 3 p 1 Se considera la función escalar de una variable real fx = lnx a Calcular el dominio

Más detalles

Ecuaciones Diferenciales Ordinarias de Orden Superior al primero

Ecuaciones Diferenciales Ordinarias de Orden Superior al primero Tema 5 Ecuaciones Diferenciales Ordinarias de Orden Superior al primero Una ecuación diferencial ordinaria de orden n es de manera general una expresión del tipo: F (x, y, y, y,..., y (n) ) = 0 o bien,

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por.

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por. Pauta Prueba Solemne 1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta. a) (0.5pt) Suponga que las funciones u(x) = x y v(x) = x son soluciones de una ecuación

Más detalles

Matemáticas III Tema 7 Ecuaciones en derivadas parciales (EDPs)

Matemáticas III Tema 7 Ecuaciones en derivadas parciales (EDPs) Matemáticas III Tema 7 Ecuaciones en derivadas parciales (EDPs) Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos numéricos para EDOs Complementos de Matemáticas, ITT Telemática Tema 4. Solución numérica de problemas de valor inicial para ecuaciones diferenciales ordinarias Departamento de Matemáticas,

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2007 Sea f : R R la función definida por f(x) = (x - 3)e x. [1 punto] Calcula los extremos relativos de f (puntos donde se obtienen y valores que se alcanzan).

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1

CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1 Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 5/117 CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1 Introducción (Curso 017 018 1. Demostrar que la solución general de la ecuación α + β

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I(1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Ecuaciones Diferenciales Matemáticas

Más detalles

14 Sistemas lineales de ecuaciones diferenciales con coeficientes

14 Sistemas lineales de ecuaciones diferenciales con coeficientes Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 14 Sistemas lineales de ecuaciones diferenciales con coeficientes constantes 14.1 Definición Se llama sistema lineal con coeficientes constantes al

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

Superficies. Primera Forma Fundamental

Superficies. Primera Forma Fundamental Tema Superficies. Primera Forma Fundamental Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 005 006 Tema. Superficies. Primera Forma Fundamental 1. Curvas sobre superficies

Más detalles

EVAU. Junio matematiib.weebly.com

EVAU. Junio matematiib.weebly.com Propuesta A 1A. x + a si x f(x) = { x + bx 9 si x > a) Se trata de una función definida a trozos a partir de dos funciones polinómicas, por lo que el único punto donde la función podría no ser continua

Más detalles

Ecuaciones diferenciales lineales con coeficientes variables

Ecuaciones diferenciales lineales con coeficientes variables Tema 5 Ecuaciones diferenciales lineales con coeficientes variables 5 Existencia y unicidad Partimos de una ecuación de la forma a 0 (x y (n + a (x y (n + + a n (x y + a n (x y = b(x (5 con a 0 (x 0 donde

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

Examen de Matemáticas

Examen de Matemáticas Examen de Matemáticas Enunciados. 1 1 Primer ejercicio Enero 2003 Se considera la función f(x) = x, x ] π, π[. 1. Calcular su serie de Fourier (realizar los cálculos; la respuesta es [ ] sin 2x sin 3x

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

El haz de planos paralelos queda determinado por un vector normal, n A, B,

El haz de planos paralelos queda determinado por un vector normal, n A, B, HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π

Más detalles

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes Fecha: 25 de junio de 2 Problema [2 puntos] Conviene recordar los problemas Depósito de salmuera y Grandes Lagos En los primeros apartados se preparan algunos cálculos previos [4 p] a) Resolver la EDO

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

Ecuación de calor: Solución con el método de separación de variables y serie de medio rango de Fourier *

Ecuación de calor: Solución con el método de separación de variables y serie de medio rango de Fourier * Universidad de San Carlos Departamento de Matemática Facultad de Ingeniería s septiembre/211 Matemática Aplicada 2N Ecuación de calor: Solución con el método de separación de variables y serie de medio

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Coeficientes Indeterminados y Variación de Parámetros) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases

Más detalles

Seis problemas resueltos de geometría

Seis problemas resueltos de geometría Problema 1 a) Dados los puntos P(4, 2, 3) y Q(2, 0, 5), da la ecuación implícita del plano π de modo que el punto simétrico de P respecto a π es Q. b) Calcula el valor del parámetro λ R para que el plano

Más detalles

Hoja de Problemas Ecuaciones Diferenciales Ordinarias

Hoja de Problemas Ecuaciones Diferenciales Ordinarias Unidad docente de Matemáticas Matemáticas (CC. Químicas) Hoja de Problemas Ecuaciones Diferenciales Ordinarias 1. Comprobar si la función indicada en cada caso es una solución de la ecuación diferencial

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA V (plan 1999)

MÉTODOS MATEMÁTICOS DE LA FÍSICA V (plan 1999) Segundo parcial, 11 de junio del año 2002. CUESTIONES Duración: de 9:05 a 9:55. Cada cuestión vale 1 punto. Cada cuestión vale 0.5 puntos. Responda de manera clara y concisa a todo lo que se pregunta.

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0).

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0). Soluciones a los ejercicios propuestos: Matemáticas III Curso 08 09 36 Tema 4 1 Sea f : IR 3 IR 3 definida por fx, y, z = e x+y, cosz, e z a Determinar si f es localmente invertible en 0, 0, 0 J fx, y,

Más detalles

Ecuación unidimensional de la Onda

Ecuación unidimensional de la Onda ESPO Ing. Roberto Cabrera V. DEMOSTRACIÓN DE A SOUCIÓN DE A ECUACIÓN DE A ONDA Consideraremos ahora las vibraciones transversales de una cuerda extendida entre dos puntos, x = y x =. El movimiento se produce

Más detalles

LAS ECUACIONES VARIACIONALES DE EULER

LAS ECUACIONES VARIACIONALES DE EULER LAS ECUACIONES VARIACIONALES DE EULER Los conceptos de máximo y de mínimo -de extremo o extremal, en definitivade una expresión funcional, es algo corriente en el análisis matemático, y las condiciones

Más detalles

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función:

e x 1 + kx b) Halla los intervalos de crecimiento, decrecimiento, concavidad, así como los extremos y puntos de inflexión de la función: Matemáticas Convocatoria Extraordinaria 4 de junio de 14 1 3 puntos) a) Estudia el ite: en función del valor del parámetro real k e x 1 + kx x 1 cos x b) Halla los intervalos de crecimiento, decrecimiento,

Más detalles

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Junio 04) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dadas las matrices α β γ x 0 A = γ 0 α ; X = y ; B = 0 O = 0 β γ z 0 se pide: (,5 puntos). Calcula α, β

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DEFINICIÓN Ecuación Diferencial es una ecuación que contiene las derivadas o diferenciales de una función de una o más variables. 1. Si hay una sola variable independiente, las

Más detalles

Un problema de equilibrio dinámico

Un problema de equilibrio dinámico Un problema de equilibrio dinámico F. Javier Gil Chica Manuel Pérez Polo marzo, 009 Resumen La estabilidad lateral de un vehículo ha sido estudiada en extenso, y desde hace mucho implementada en muchos

Más detalles

Capítulo 3. Funciones con valores vectoriales

Capítulo 3. Funciones con valores vectoriales Capítulo 3. Funciones con valores vectoriales 3.1. Curvas: recta tangente y longitud de arco 3.2. Superficies parametrizadas 3.3. Campos vectoriales, campos conservativos Capítulo 3. Funciones con valores

Más detalles

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua

Análisis Matemático. Convocatoria de enero Prueba Global. Evaluación Continua Apellidos y nombre: Análisis Matemático. Convocatoria de enero. 9--26. Prueba Global. Evaluación Continua Instrucciones: No abandonar el examen durante los primeros 3 minutos. Tiempo para esta parte del

Más detalles

Ampliación de Cálculo. Práctica 10. Ecuaciones en derivadas parciales de primer y segundo orden

Ampliación de Cálculo. Práctica 10. Ecuaciones en derivadas parciales de primer y segundo orden Ampliación de Cálculo Escuela Politécnica Superior I. Eléctrica, I. Electrónica Industrial, I. Mecánica e I. Diseño Industrial y Desarrollo del Producto Curso 2013 2014 Práctica 10. Ecuaciones en derivadas

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas AMPLIACIÓN DE MATEMÁTICAS. Curso 23/4 Examen final de junio. 8 6 24 Teoría y Problemas. Contestar a las siguientes cuestiones: (a) (.5 puntos) Dada una función :[ ) R de clase,demostrarlafórmula L[ ]()

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

m 2 g A partir de los DCLs escribimos las ecuaciones de Newton (1 punto) por plantear el sistema

m 2 g A partir de los DCLs escribimos las ecuaciones de Newton (1 punto) por plantear el sistema Problema 1: El sistema de la figura está formado por dos masas entre las que existe un rozamiento. La masa m 1 descansa sobre el suelo sin rozamiento. Inicialmente las dos masas están en reposo cuando

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

Introducción a las EDP A 21 de Abril de 2016

Introducción a las EDP A 21 de Abril de 2016 2 de Abril de 26 Ejercicio [.4 puntos] Resolver el siguiente problema, cuando x >, 2xu x (x, y) + yu y (x, y) + 3u(x, y) = 5x + 2y + 3, u(x, ϕ(x)) = 3x +, en los siguientes casos: ϕ(x) = x y ϕ(x) =. u

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Inecuaciones. x 3 > 2. a) z 1 z 2 b) z 1 z 2 c) z 1 /z Calcula: a) (1 + i) (3 2i) b) ( i) ( 14 10i) c) (4 + 5i) 2

Inecuaciones. x 3 > 2. a) z 1 z 2 b) z 1 z 2 c) z 1 /z Calcula: a) (1 + i) (3 2i) b) ( i) ( 14 10i) c) (4 + 5i) 2 Operaciones con expresiones fraccionarias.. Opera y simplifica: a) x x + 3x + x x x 3 x 4 + Å x + x x x + x + 0 x 8 ã Å : x x ã x. Localiza los errorres que se han cometido al escribir las siguientes igualdades:

Más detalles

Soluciones de ecuaciones de primer orden

Soluciones de ecuaciones de primer orden GUIA 2 Soluciones de ecuaciones de primer orden Dada una ecuación diferencial, la primera pregunta que se presenta es cómo hallar sus soluciones? Por cerca de dos siglos (XVIII y XIX ) el esfuerzo de los

Más detalles

2. Métodos analíticos para la resolución de ecuaciones diferenciales de primer orden

2. Métodos analíticos para la resolución de ecuaciones diferenciales de primer orden E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 7: EDO s de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

[0.8 p.] c) Resolver la EDO lineal no homogénea de segundo orden a coeficientes variables

[0.8 p.] c) Resolver la EDO lineal no homogénea de segundo orden a coeficientes variables 4 Problemas (8 puntos Problema 1 [2 puntos] Problema computacional Es importante no cometer errores Todas las soluciones de la EDO no homogénea son polinomios de grado cuatro No podeis usar esta información

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque.

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 203 OBSERVACIONES: FASE ESPECÍFICA MATEMÁTICAS El alumno deberá responder únicamente a una

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

PRÁCTICA 9. TRANSFORMADA DE FOURIER

PRÁCTICA 9. TRANSFORMADA DE FOURIER PRÁCTICA 9. TRANSFORMADA DE FOURIER Ejercicio. Teorema de la integral de Fourier: sea f una función casi continua en todo intervalo finito del eje x tal que existe la f(x) dx ; sea f (x) la función definida

Más detalles

1.1. Clasificación de las ecuaciones diferenciales

1.1. Clasificación de las ecuaciones diferenciales Capítulo 1 1.1. Clasificación de las ecuaciones diferenciales Una ecuación diferencial tiene como incógnita una función y que puede depender de una, y(x), o de más variables independientes, y(x 1,...,

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles