Superficies. Primera Forma Fundamental

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Superficies. Primera Forma Fundamental"

Transcripción

1 Tema Superficies. Primera Forma Fundamental Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso

2 Tema. Superficies. Primera Forma Fundamental 1. Curvas sobre superficies Dada una superficie regular de ecuación vectorial r u, v) = xu, v), yu, v), zu, v)), con u, v) D R 1) cualquier curva contenida en dicha superficie debe satisfacer la ecuación 1) y puede venir dada de alguno de los siguientes modos: a) Si expresamos los parámetros u y v como funciones de un tercer parámetro t, esto es, u = ut) y v = vt), sustituyendo en 1), tenemos r t) = r ut), vt)) = x ut), vt)), y ut), vt)), z ut), vt))) cuyo vector tangente es d r dt = du r u dt + dv r v dt En general, puesto que el vector tangente a una curva r viene dado por la derivada de dicho vector r respecto a cualquier parámetro en el que venga definida, usaremos la expresión d r = r u du + r v dv ) que representa las coordenadas cartesianas de dicho vector. Obsérvese que r u y r v son elementos de la superficie, mientras que du y dv son elementos de la curva. De hecho, nótese en ) que el vector tangente viene expresado como combinación lineal de r u y r v, por lo que diremos que du, dv) son las coordenadas paramétricas de dicho vector respecto de la base { r u, r v } y, en consecuencia, du, dv) es la dirección del vector tangente a la curva respecto de la base anterior.

3 b) Si uno de los dos parámetros viene expresado como función del otro, por ejemplo, u = uv), entonces, denotando por u = du dv, se cumple que du = u dv, por lo que sustituyendo en ), tenemos que d r = r u du + r v dv = r u u + r v ) dv y du, dv) = u, 1)dv es decir, en coordenadas cartesianas, la dirección del vector tangente es r u u + r v, mientras que en paramétricas la dirección es u, 1). El razonamiento es análogo si expresamos v = vu). c) Cuando los parámetros u y v están relacionados mediante una función implícita fu, v) = 0. En este caso, si f v 0, aplicando el Teorema de la Función Implícita, existe v = vu) aunque nosotros no seamos capaces de despejar v como función de u) y además, dv = f u du. En tal caso, sustituyendo en ), el vector tangente en f v cartesianas resulta ser d r = r u du + r v dv = r u du + r v f ) u du = [ r f v u + r v f )] u du f v mientras que en paramétricas, du, dv) = 1, f ) u du f v con lo que su dirección es 1, f ) u f f v, f u) v 1.1. Algunos tipos de curvas sobre superficies Para finalizar esta sección de curvas sobre superficies, vamos a ver algunos tipos importantes de curvas. Sea S una superficie regular de ecuaciones paramétricas r u, v) = xu, v), yu, v), zu, v)), con u, v) D R 3

4 1) Curvas coordenadas. a) Fijado un valor cualquiera u = u 0, definimos la curva r u0 v) = r u 0, v) = xu 0, v), yu 0, v), zu 0, v)) Su vector tangente, en este caso, es d r = r u du + r v dv = r v dv ya que du = 0, puesto que u es constante. Por tanto, su dirección en cartesianas es r v, mientras que en paramétricas, du, dv) = 0, dv) 0, 1) por lo que la dirección es 0, 1). b) Fijado un valor cualquiera v = v 0, definimos la curva r v0 u) = r u, v 0 ) = xu, v 0 ), yu, v 0 ), zu, v 0 )) Su vector tangente, en este caso, es d r = r u du + r v dv = r u du ya que dv = 0, puesto que v es constante. Por tanto, su dirección en cartesianas es r u, mientras que en paramétricas, du, dv) = du, 0) 1, 0) por lo que en este caso, la dirección es 1, 0). Definición 1.1 A las curvas r u0 v) y r v0 u), con u 0, v 0 ) D R se les llaman curvas o líneas coordenadas. Obsérvese que por cada punto P de la superficie pasa una única curva coordenada del tipo r u0 v) y una única curva coordenada del tipo r v0 u). En efecto, dado un punto P de la superficie, existe un único par u 0, v 0 ) D R tal que r u 0, v 0 ) = P. Por tanto, las únicas curvas coordenadas que pasan por P son r u0 v) y r v0 u). Al par u 0, v 0 ) se le conoce con el nombre de coordenadas curvilíneas de P. 4

5 ) Curvas ortogonales. Dos curvas r 1 y r se dicen ortogonales en un punto, si sus vectores tangentes por dicho punto son perpendiculares, es decir, si r 1 r = 0 Sean r 1 y r dos curvas contenidas en la superficie r u, v). Los vectores tangentes a cada curva vienen dados por d r 1 = r u du 1 + r v dv 1 d r = r u du + r v dv Para que dichos vectores sean perpendiculares, se debe cumplir que d r 1 d r = 0 3) Curvas de nivel. Se definen las curvas de nivel como las ecuaciones de la forma zu, v) = C, siendo C una constante. Para cada constante C obtenemos una curva de nivel diferente. 4) Curvas de máxima pendiente. Las curvas de máxima pendiente en una superficie S vienen dadas por la familia de las curvas ortogonales a las curvas de nivel.. Primera Forma Fundamental. Aplicaciones Dada una superficie regular S, de ecuación r u, v) = xu, v), yu, v), zu, v)), con u, v) D R recordemos que d r = r u du + r v dv Definición.1 Se define la Primera Forma Fundamental como I = d r d r = r u r u du + r u r v dudv + r v r v dv = Edu + F dudv + Gdv 5

6 donde denotamos por E = r u r u F = r u r v G = r v r v Obsérvese que la Primera Forma Fundamental podemos expresarla en notación matricial como I = d r d ) r = du dv E F du F G dv.1. Aplicaciones de la Primera Forma Fundamental La Primera Forma Fundamental es muy útil para el cálculo de longitudes de arco de curva o ángulo entre dos curvas sobre una superficie, así como para calcular el área de un trozo de superficie. 1) Longitud de un arco de curva. Dada una curva r contenida en una superficie r u, v), recuérdese que si denotamos por s al parámetro longitud de arco, se tiene que ds = d r d r donde d r = r u du + r v dv. Así que la longitud de arco viene dada por s = λ1 λ 0 Edu + F dudv + Gdv ) Ángulo entre dos curvas. Sean r 1 y r dos curvas sobre una superficie. El ángulo α que forman ambas curvas es el que forman sus vectores tangentes, d r 1 y d r, donde d r 1 = r u du 1 + r v dv 1 d r = r u du + r v dv Recuérdese que d r 1 d r = d r 1 d r cos α, de donde deducimos que cos α = d r 1 d r d r 1 d r 6

7 Nótese asimismo que d r 1 d r = r u du 1 + r v dv 1 ) r u du + r v dv ) = r u r u du 1 du + r u r v du 1 dv + du dv 1 ) + r v r v dv 1 dv = Edu 1 du + F du 1 dv + du dv 1 ) + Gdv 1 dv ) = du 1 dv 1 E F du F G dv Análogamente, podemos comprobar que d r 1 = Edu 1 + F du 1 dv 1 + Gdv 1 d r = Edu + F du dv + Gdv Por tanto, cos α = De aquí se deduce el siguiente resultado. ) du 1 dv 1 E F F G d r 1 r du dv Corolario. Sea S una superficie dada por r u, v) = xu, v), yu, v), zu, v)) y denotemos por E, F, G a los coeficientes de la Primera Forma Fundamental. Entonces dos curvas, r 1 y r sobre S son ortogonales si y sólo si ) du 1 dv 1 E F du = 0 F G dv Caso particular: Ángulo que forman las curvas coordenadas. Supongamos que r 1 = r u0 v 1 ) y r = r v0 u ). En este caso, d r 1 = r v dv 1, du 1 = 0 por ser u = u 0 ) d r = r u du, dv = 0 por ser v = v 0 ) Luego, las coordenadas paramétricas de r 1 y r son du 1, dv 1 ) = 0, dv 1 ) 0, 1) y du, dv ) = du, 0) 1, 0), respectivamente. Por tanto, ) 0 1 E F 1 F G 0 cos α = d r 1 d = r 7 F d r 1 d r

8 De aquí deducimos el siguiente resultado. Corolario.3 Sea S una superficie regular dada por r u, v) = xu, v), yu, v), zu, v)) y denotemos por E, F, G a los coeficientes de la Primera Forma Fundamental. Entonces dos curvas coordenadas son ortogonales si y sólo si F = 0. 3) Área de un trozo de superficie. Sea S una superficie regular de ecuación r u, v) = xu, v), yu, v), zu, v)), con u, v) D R, cuyos coeficientes de la Primera Forma Fundamental son E, F, G. Sabemos que AS) = r u r v dudv Pero, r u r v = r u r v ) r u r v ) = r u r u ) r v r v ) r u r v ) = EG F Por tanto, AS) = EG F dudv D D Ejemplo.4 Sea S una superficie cuyos coeficientes de la Primera Forma Fundamental son E = v, F = 0 y G = u. Sea r 1 una curva contenida en S dada por la relación uv = λ, siendo λ una constante. Hallar la familia de curvas contenidas en S y ortogonales a r 1. Resolución. La curva r 1 fu, v) = uv λ. Así que derivando, tenemos que sobre S viene dada por la relación fu, v) = 0, donde f f du + u v dv = 0 v du + u dv = 0 du = u v dv con lo que la dirección en paramétricas de su vector tangente en cada punto es u ) v dv, dv u ) v, 1 u, v). Sea r una curva ortogonal a r 1 y denotemos por du, dv) a la dirección del vector tangente a r en paramétricas. Como conocemos los coeficientes de la Primera Forma Fundamental, para que r y r 1 sean ortogonales, debe cumplirse que u ) v E F du = 0 3) F G dv 8

9 Operando en 3), tenemos que ) u v v 0 0 u du dv = 0 uv du + u vdv = 0 vdu + udv = 0 du u = dv v ln u = ln v + ln C u = Cv Luego, la familia de curvas ortogonales a uv = λ es u v = C, con C R. Ejemplo.5 En el paraboloide hiperbólico, expresado mediante la ecuación vectorial r u, v) = u, v, uv), hallar las trayectorias ortogonales a la familia de curvas v = λ, λ R. Resolución. En este problema, no nos dan los coeficientes de la Primera Forma Fundamental, pero a cambio, sí nos dan la curva parametrizada. Así que vamos a calcular dichos coeficientes: r u = 1, 0, v), r v = 0, 1, u) Luego, E = r u r u = 1 + v, F = r u r v = uv, G = r v r v = 1 + u. La curva r 1 viene dada por la ecuación fu, v) = v λ = 0. Así que derivando, tenemos que Luego, el vector tangente a r 1 f f du + dv = 0 0 du + 1 dv = 0 dv = 0 u v en cada punto tiene coordenadas paramétricas du, dv) = du, 0) 1, 0). Por consiguiente, si denotamos por r a una curva ortogonal a r 1, y por du, dv) a la dirección en paramétricas del vector tangente a r en cada 9

10 punto, se debe cumplir que ) 1 0 E F du F G dv = ) 1 + v uv uv 1 + u du dv = v )du + uvdv = 0 du u = v 1 + v dv ln u = 1 ln1 + v ) + ln C ln u = ln 1 + v ) 1/ + ln C u = C 1 + v Por tanto, la familia de curvas ortogonales está formada por todas las curvas del tipo C u =, con C R. 1 + v Ejemplo.6 Dado el cono r u, v) = v cos u, v sin u, v) hallar las curvas de máxima pendiente. Resolución. Las curvas de máxima pendiente son las trayectorias ortogonales a las curvas de nivel zu, v) = C, con C R. Como zu, v) = v, nuestro problema se reduce a determinar la familia de curvas ortogonales a r 1 : {v = C}. Calculamos los coeficientes de la Primera Forma Fundamental: r u = v sin u, v cos u, 0), r v = cos u, sin u, 1) Luego, E = r u r u = v sin u + 4v cos u F = r u r v = 3v sin u cos u G = r v r v = cos u + 4 sin u + 1 Como r 1 viene definida por la relación fu, v) = v C = 0 entonces derivando llegamos a f f du + dv = 0 0 du + 1 dv = 0 u v 10

11 con lo que el vector tangente a r 1 tiene dirección du, dv) = du, 0) 1, 0). Así que si denotamos por du, dv) a la dirección de las trayectorias ortogonales a r 1, se verifica que ) 1 0 v sin u + 4v cos u 3v sin u cos u du = 0 3v sin u cos u cos u + 4 sin u + 1 dv Operando, nos queda v sin u + 4v cos u)du + 3v sin u cos u)dv = 0, ecuación de variables separables que resolvemos: sin u + 4 cos u du = dv 3 sin u cos u v dv 1 3 sin u cos u du cos u du = dv sin u v 1 3 ln cos u + 4 ln sin u = ln v + ln C 3 ) sin 4 1/3 u ln = ln C cos u v ) sin 4 1/3 u = C cos u v Luego, las curvas de máxima pendiente en S son las dadas por la relación ) sin 4 1/3 u = C, con C R. cos u v Ejemplo.7 Hallar las curvas contenidas en el cilindro de ecuación vectorial r u, v) = cos u, sin u, v) que forman un ángulo constante α con las generatrices de éste. Resolución. Calculamos los coeficientes de la Primera Forma Fundamental: r u = sin u, cos u, 0) r v = 0, 0, 1) E = r u r u = sin u + cos u = 1; F = r u r v = 0; G = r v r v = 1. Las generatrices del cilindro son las rectas del tipo r 1 : {fu, v) = C}, siendo fu, v) = u. Así que derivando, f f du + dv = 0 1 du + 0 dv = 0 du = 0. Por tanto, el u v vector tangente a r 1 tiene dirección du, dv) = 0, dv) 0, 1) en paramétricas. Sea r una curva sobre S y denotemos por du, dv) a la dirección de su vector tangente en paramétricas. Para que las curvas r 1 y r formen un ángulo α en el punto de corte, sus 11

12 respectivos vectores tangentes han de formar ese mismo ángulo α y, por tanto, se debe cumplir la ecuación ) 0 1 E F du F G dv cos α = d r 1 d 4) r Tenemos que d r 1 = E 0 + F G 1 = G = 1 Luego, sustituyendo en 4), nos queda d r = Edu + F dudv + Gdv = du + dv cos α = dv dv cos α = du + dv Elevando al cuadrado ambos miembros, obtenemos du + dv cos α du + dv ) = dv cos α du = 1 cos α) dv cos α du = sin α dv du = tan α dv du = ± tan α dv y finalmente, integrando, deducimos que u = ± v tan α + K 1

SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones.

SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones. SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones. 2.1 Superficie parametrizacida. Ecuaciones implícitas. Curvas paramétricas. 2.2

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

Superficies. Conceptos generales

Superficies. Conceptos generales Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere sustancialmente del de Análisis Matemático I. Estudiamos

Más detalles

4 Superficies regulares

4 Superficies regulares 4 Superficies regulares Una superficie en R 3 se puede decir que es, de forma intuitiva, un subconjunto en R 3 donde en cada punto podemos encontrar una porcin de plano que ha sido deformada de forma suave.

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere del de Análisis Matemático I, porque allí diferenciable

Más detalles

1 Estudio local de curvas

1 Estudio local de curvas E.T.S. Arquitectura. Curvas y Super cies.1 1 Estudio local de curvas Sea una curva C R 3 con representación paramétrica regular ~r(t), t 2 I R, de clase mayor o igual a 3 y sea s = s(t) = Z t t 0 k~r 0

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

SUPERFICIES. 2.4 Forma y curvatura: Curvatura normal. Curvaturas principales, fórmula de Euler. Curvatura de Gauss y media. Clasificación de puntos

SUPERFICIES. 2.4 Forma y curvatura: Curvatura normal. Curvaturas principales, fórmula de Euler. Curvatura de Gauss y media. Clasificación de puntos SUPERFICIES. 2.4 Forma y curvatura: Curvatura normal. Curvaturas principales, fórmula de Euler. Curvatura de Gauss y media. Clasificación de puntos 2.1 Superficie parametrizacida. Ecuaciones implícitas.

Más detalles

1 Estudio local de una super cie

1 Estudio local de una super cie 1 Estudio local de una super cie Sea S R 3 una super cie con parametrización regular: Se tiene ~r : D R 2! R 3 ; ~r(u; v) = (x(u; v); y(u; v); z(u; v)) : ~r u (u; v) = (x u (u; v); y u (u; v); z u (u;

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

Tema 6 La recta Índice

Tema 6 La recta Índice Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

6.14 Descomposición ortogonal y proyección ortogonal

6.14 Descomposición ortogonal y proyección ortogonal CAPÍTULO. ESPACIO EUCLÍDEO CANÓNICO IR N 282.14 Descomposición ortogonal y proyección ortogonal El resultado W W = IR n, significa que cada y IR n se puede escribir de forma única como suma de un vector

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Problemas resueltos del Boletín 1

Problemas resueltos del Boletín 1 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín Problema. Dada la curva r (t) = t [0, π], parametrizarla naturalmente. ( (cos t + t sen t), (sen t t cos t), t ), con En primer

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 17 ÁLGEBRA II (LSI PI) UNIDAD Nº GEOMETRÍA ANALÍTICA Facultad de Ciencias Exactas y Tecnologías aa Error! No hay texto con el estilo especificado en el documento. 1 UNIVERSIDAD NACIONAL DE SANTIAGO DEL

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL

AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL Índice 1. Introducción a las curvas en E 3 2 1.1. Definición matemática de curva.............................. 2 1.2. Cambio de parámetro....................................

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Capítulo 8: Vectores

Capítulo 8: Vectores Capítulo 8: Vectores 1. Lección 30. Operaciones con vectores 1.1. Vectores El concepto de vector aparece en Física para describir magnitudes, tales como la fuerza que actúa sobre un punto, en las que no

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 2: Puntos, rectas y planos del espacio.

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 2: Puntos, rectas y planos del espacio. MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA TEMA 2: Puntos, rectas y planos del espacio. 2.1 SISTEMA DE REFERENCIA. COORDENADAS DE UN PUNTO Elegimos un punto del espacio que llamamos origen

Más detalles

El Problema de Cauchy para EDPs de Primer Orden

El Problema de Cauchy para EDPs de Primer Orden Capítulo 2 El Problema de Cauchy para EDPs de Primer Orden Este capítulo está dedicado al estudio de EDPs de primer orden, esto es, ecuaciones en las que sólo aparecen derivadas parciales de a lo sumo

Más detalles

f(x(t), y(t), z(t)) = k

f(x(t), y(t), z(t)) = k Plano tangente a cuádrica Cada una de las supercies cuádricas es el lugar geométrico de los punto del espacio que satisfacen una ecuación polinomial en tres variables, el problema de dar un método para

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Paralelismo Ángulos Otras figuras d Triángulos

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos.

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. 3.1 DISTANCIAS EN EL ESPACIO 3.1.1 Distancia entre dos puntos Dados los puntos A(x 0, y 0, z

Más detalles

Lección 4. Integrales múltiples. 4. Superficies parametrizadas.

Lección 4. Integrales múltiples. 4. Superficies parametrizadas. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera

Más detalles

Concepto de superficie

Concepto de superficie Capítulo IV Concepto de superficie 1. Parametrizaciones regulares Intuitivamente, una superficie de R 3 es un subconjunto S R 3 con la siguiente propiedad: cada punto P S tiene un entorno abierto en S

Más detalles

t'' B' t' La recta "t" es la trayectoria de la gota de agua

t'' B' t' La recta t es la trayectoria de la gota de agua EJERCICIO 1 ABD y BDC son dos planos que forman parte de un tejado. Trazar una horizontal del plano ABD de cota 3 Dibujar la trayectoria de una gota de agua que parte de un punto medio de la recta BC B"

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 2 de la opción A de sobrantes de 2001 Sea f: R R la función dada por f(x) = 8 x 2. (a) [1 punto] Esboza la gráfica y halla los extremos relativos de f (dónde se alcanzan y cuáles

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1 Problema 1 Estudia la posición relativa de los planos siguientes según los distintos valores de m: π 1 x + y + z = m + 1 π 2 mx + y + ) z = m π 3 x + my + z = 1 Si vemos los tres planos como un sistema

Más detalles

1 Parametrización de super cies regladas

1 Parametrización de super cies regladas Dpto. Matemática Aplicada E.T.S. Arquitectura, U.P.M. Curvas y Super cies HOJA DE PROBLEMAS: SUPERFICIES REGLADAS 1 Parametrización de super cies regladas Parametrizar las siguientes super cies regladas:

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Capítulo 3. Funciones con valores vectoriales

Capítulo 3. Funciones con valores vectoriales Capítulo 3. Funciones con valores vectoriales 3.1. Curvas: recta tangente y longitud de arco 3.2. Superficies parametrizadas 3.3. Campos vectoriales, campos conservativos Capítulo 3. Funciones con valores

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:

Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2013 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

Tema 9: Vectores en el Espacio

Tema 9: Vectores en el Espacio 9..- Vectores Fijos: Un vector fijo del plano y su extremo en el punto B. Tema 9: Vectores en el Espacio AB es un segmento orientado que tiene su origen en punto A Un vector viene caracterizado por su

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I

Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I Unidad 8. Geometría analítica BACHILLERATO Matemáticas I Determina si los puntos A(, ), B (, ) y C (, ) están alineados. AB (, ) (, ) (, ) BC (, ) (, ) ( 8, ) Las coordenadas de AB y BC son proporcionales,

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

V = v 1 +2v 2 +3v 3. v 2. v 1

V = v 1 +2v 2 +3v 3. v 2. v 1 Coordenadas Hay muchas maneras de darle coordenadas a los puntos del espacio, las ecuaciones de las curvas o superficies dependen de las coordenadas que utilicemos y eligiendo las coordenadas adecuadas

Más detalles

GEOMETRIA EN EL ESPACIO

GEOMETRIA EN EL ESPACIO GEOMETRIA EN EL ESPACIO ECUACIONES DE LA RECTA Y EL PLANO EN EL ESPACIO Una recta queda determinada por un punto conocido P, y un vector director. Luego, si X es un punto genérico de la recta, se obtiene

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 2

CURVAS Y SUPERFICIES. RELACIÓN 2 CURVAS Y SUPERFICIES. RELACIÓN 2 SUPERFICIES EN EL ESPACIO Curso 2015-16 1. Demostrar que las siguientes cuádricas reales son superficies. Obtener una parametrización de cada una de ellas. En cada caso,

Más detalles

Tema 3: Cinemática del punto

Tema 3: Cinemática del punto Tema 3: Cinemática del punto FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Ecuaciones de una curva Velocidad y aceleración Movimientos

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Tema 4 Aplicaciones lineales. Definición 4. Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: a f(u + v = f(u + f(v; u, v V, b f(ku = kf(u;

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta. 1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela

Más detalles

1 Super cies regladas

1 Super cies regladas 1 Super cies regladas 1.1 De nición y ejemplos Vamos a estudiar una clase importante de super cies que son aquellas generadoas por una recta que se mueve a lo largo de una curva. Por tanto, son aquellas

Más detalles

Geometría diferencial de curvas y superficies - Taller 4

Geometría diferencial de curvas y superficies - Taller 4 Geometría diferencial de curvas y superficies - Taller 4 G. Padilla. http://gabrielpadillaleon.wordpress.com Ofic. 315-404 Departamento de Matemáticas. Facultad de Ciencias. Universidad Nacional de Colombia.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5) CURSO 04 05 SOLUCIONES (Modelo 5) JUNIO Opción A Ejercicio.- ['5 puntos] Se quiere vallar un campo rectangular que está junto a un camino. Si la valla del lado del camino cuesta 80 euros/metro y la de

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Líneas geodésicas Angel Montesdeoca

Líneas geodésicas Angel Montesdeoca Línea geodéica Angel Montedeoca Lune 12 de Mayo del 2008 1 ara que do uperficie e corten bajo un ángulo contante, e neceario y uficiente que la curva interección tenga la mima torión geodéica relativa

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

RECTAS EN EL PLANO FORMAS DE EXPRESAR LA ECUACIÓN DE UNA RECTA

RECTAS EN EL PLANO FORMAS DE EXPRESAR LA ECUACIÓN DE UNA RECTA RECTS EN EL PLNO Una recta queda determinada cuando se conoce un vector que marca la dirección de la recta, denominado vector director de la recta, un punto. Cuando no nos dan un vector director nos tiene

Más detalles

Seis problemas resueltos de geometría

Seis problemas resueltos de geometría Problema 1 a) Dados los puntos P(4, 2, 3) y Q(2, 0, 5), da la ecuación implícita del plano π de modo que el punto simétrico de P respecto a π es Q. b) Calcula el valor del parámetro λ R para que el plano

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Clase 14: Fórmula del Cambio de Variables

Clase 14: Fórmula del Cambio de Variables Clase 4: Fórmula del Cambio de Variables C.J. Vanegas 4 de junio de 8 Recordemos.. Método de sustitución en integrales de una variable: b f(g(t))g (t) dt g(b) a g(a) f(s) ds s g(t) ds g (t)dt t a s g(a)

Más detalles

Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la

Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la Geometría Analítica Preliminares Identidades Trigonométricas Definición: Se llama pendiente de una recta a la tangente de un ángulo de inclinación formado por el eje X y la recta, tal que, esto es Recta

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Distancia entre dos rectas que se cruzan Perpendicular común

Distancia entre dos rectas que se cruzan Perpendicular común Perpendicular común En un espacio de tres dimensiones dos rectas se cruzan cuando no tienen ningún punto en común y no están contenidas en el mismo plano. Si no tienen ningún punto en común pero sí que

Más detalles

10. Geometría diferencial de curvas y superficies.

10. Geometría diferencial de curvas y superficies. 10. Geometría diferencial de curvas y superficies. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 10 Geometría diferencial

Más detalles

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica. Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Super cies. 1 Representación analítica de super cies Representación explícita o de Monge... 6

Super cies. 1 Representación analítica de super cies Representación explícita o de Monge... 6 Super cies M. Eugenia Rosado María Departamento de Matemática Aplicada Escuela Técnica Superior de Arquitectura, UPM Avda. Juan de Herrera 4, 28040-Madrid, Spain E-mail: eugenia.rosado@upm.es Índice 1

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles