4 Superficies regulares
|
|
|
- Luz Ruiz Rivero
- hace 9 años
- Vistas:
Transcripción
1 4 Superficies regulares Una superficie en R 3 se puede decir que es, de forma intuitiva, un subconjunto en R 3 donde en cada punto podemos encontrar una porcin de plano que ha sido deformada de forma suave. Por lo general, una superficie puede definirse como la contraimagen de una aplicación de clase C bajo ciertas propiedades. Sea U R 3 un abierto de R y F : U R una función cuyas componentes son todas de clase C en U. Consideramos c R, tal que el conjunto S = {(x, y, z R 3 : F (x, y, z = c} no es vacío y además verifica que para todo P = (x 0, y 0, z 0 S, ( F F F (P, (P, x (P (0, 0, 0. Entonces S es una superficie regular. Ejemplo: El conjunto S = {(x, y, z R 3 : x + y + z = 1} es la superficie dada por la esfera de centro (0, 0, 0 y radio 1. Para comprobarlo, basta tener en cuenta que S no es un conjunto vacío pues el punto (1, 0, 0 S. Además, si P = (x 0, y 0, z 0 es un punto en S y llamamos F (x, y, z = x + y + z, para que ocurriera que ( F F F (P, (P, x (P = (x 0,, y 0, z 0 = (0, 0, 0, debera ser (x 0, y 0, z 0 = (0, 0, 0, pero esto no puede ocurrir cuando P S ya que x 0 + y 0 + z 0 = 1. Otra forma forma de definir una superficie es a partir de parametrizaciones. Una superficie, desde el punto de vista de las parametrizaciones, es un conjunto S R 3 que verifica que para cada punto P S, ciertos puntos en S que rodean a P vienen dados por la imagen de una parametrización X : U R 3, (u, v X(u, v S 1
2 que cumple que X(U es homeomorfo a U (moldeando adecuadamente U obtenemos X(U y además que si X(u, v = (x(u, v, y(u, v, z(u, v, entonces x (u x u 0, v 0 (u v 0, v 0 rango y (u y u 0, v 0 (u v 0, v 0 =, z (u z u 0, v 0 (u v 0, v 0 para cada punto P = X(u 0, v 0 en S. Ejemplo: Los puntos en la esfera x + y + z = 1 con última coordenada positiva pueden parametrizarse de esta forma: X : {(u, v R : u + v < 1} R 3 Se puede comprobar que, si (u, v (u, v, + 1 u v. x(u, v = u, y(u, v = v y z(u, v = + 1 u v, (1 entonces en un punto P = X(u 0, v 0 se cumple que x (u x u 0, v 0 (u v 0, v rango y (u y u 0, v 0 (u v 0, v 0 = rango 0 1 z (u z u 0, v 0 (u v 0, v 0 u 0 1 u 0 v 0 v 0 1 u 0 v 0 =. Dada una superficie regular S y un punto P en ella, se llama plano tangente a S en P al plano que pasa por P y, si X = (x(u, v, y(u, v, z(u, v es una parametrización que contiene al punto P = (x(u 0, v 0, y(u 0, v 0, z(u 0, v 0, entonces el plano tangente está generado por los vectores u (P, (P, u u (P y v (P, (P, v v (P Ejemplo: Considerando la parametrización dada en (1 para el hemisferio norte de la esfera, vamos a calcular el plano tangente por cada uno de sus puntos. Sea P = X(u 0, v 0 un punto en esta superficie. Por un lado, u (P, (P, u u (P = (1, 0, u 0 1 u 0 v 0.
3 y por otro, v (P, (P, v v (P = (0, 1, v 0 1 u 0 v 0. El plano tangente a S por P viene dado, de forma paramétrica por (x, y, z = (u 0, v 0, 1 u 0 v0+t(1, u 0 v 0, +s(0, 1, 0, 1 u 0 v0 1 u 0 v0 t, s R; o también: x u 0 y v 0 z 1 u 0 v0 1 0 u 0 1 u 0 v u 0 1 u 0 v 0 = 0, que, simplificando, corresponde al plano de ecuación u 0 x + v 0 y + 1 u 0 v0z = 1. Por ejemplo, para el punto (0, 0, 1 = X(0, 0 se tiene u 0 = v 0 = 0 y el plano tangente es z = 1, como era esperado. Una superficie se dice que es reglada si por cada punto de S pasa una recta, llamada generatriz, que está toda ella contenida en S. Ejemplos de superficies regladas son el plano, el cilindro y el cono. Una parametrización de una superficie reglada S es la siguiente: X(u, v = α(u + ve(u, u I, v R, siendo I el intervalo de definición de una curva alabeada (I, α cumpliendo que α(i S y que tiene un único punto en común con cada una de las generatrices. A esta curva se le llama directriz; además, e : I R 3 es cierta curva alabeada con e(i contenido en la esfera de radio 1 y centro el origen de coordenadas que indica la dirección de la recta contenida en S desde cada punto en la generatriz. Ejemplos: 1. α(t = (t, 0, 0, e(t = (0, 1, 0 produce el plano {z = 0}.. α(t = (cos(t, sin(t, 0, e(t = (0, 0, 1 produce el cilindro {x + y = 1}. 3
4 3. α(t = (0, 0, 0, e(t = 1 (cos(t, sin(t, 1 produce el cono {x + y = z }. Destacamos tres tipos de superficies regladas: 1. Superficie cónica: cuando la curva α se reduce a un único punto P. En este caso, la superficie viene dada por la parametrización X(u, v = P + ve(u.. Superficie cilíndrica: cuando el vector de dirección e(u es constante, e. En este caso, la superficie viene dada por la parametrización X(u, v = α(u + v e. 3. Superficie tangencial: Viene dada por X(u, v = α(u + vα (u. Ejemplos: La superficie cónica de directriz el punto P = (0, 0, 1 que contiene los puntos en la circunferencia C = {x + y = 1, z = 0} viene dada por las ecuaciones paramétricas (x, y, z = (0, 0, 1 + v e(u, siendo e(u la curva paramétrica dada por el vector desde P hasta la circunferencia C, es decir, e(u = (cos(u, sin(u, 1. Las ecuaciones paramétricas son: x(u, v = v cos(u, y(u, v = v sin(u, z(u, v = 1 v, La superficie cilíndrica de directriz la elipse x vector de dirección e = (0, 1, 1 viene dada por + y 4 9 v R, u (0, π. = 1, z = 0 con (x, y, z = ( cos(u, 3 sin(u, 0 + v (0, 1, 1, u (0, π, v R. La superficie tangencial asociada a la generatriz α(t = (1, t, t para t R viene dada por X(u, v = (1, u, u + v (0, 1, u = (1, u, u + uv, u R, v R. 4
5 Dadas una curva α : I R 3, a la que llamaremos directriz, y otra curva β : J R 3, a la que conocemos como generatriz, de forma que tienen un punto P = (x 0, y 0, z 0 en común, se llama superficie de traslación de directriz α y generatriz β a la superficie S generada por el movimiento de la generatriz de forma paralela a sí misma, mientras el punto P describe la trayectoria de la directriz. Las ecuaciones paramétricas vendrán dadas por (x, y, z = α(u + β(v P, (u, v I J. Ejemplo: Si se considera la curva α(u = (u, cos(u, 0, u (0, π como directriz y la curva β(v = (0, 0, v, v (0, 1 como generatriz, el punto en común de ambas es P = (0, 0, 0. La superficie de traslación a la que dan lugar es 4.1 Ejercicios: (x, y, z = (u, cos(u, v, u (0, π, v (0, Sea f : R R 3 una función verificando que sus componentes son funciones de clase C en R. Comprobar que el grafo de f, es decir es una superficie regular. Gr(f = {(x, y, z R 3 : z = f(x, y} Nota: Toda superficie puede siempre parametrizarse a partir de grafos de funciones.. Se considera la superficie helicoidal dada por Se pide: S = {(v cos(u, v sin(u, u : v (0, 1, u (0, π}. - Comprobar que la helicoide es una superficie regular. - Calcular el plano tangente en cada punto de S. 3. Hallar la ecuación de la superficie cilíndrica de directriz d y generatrices paralelas a la recta r, siendo { y d 3 = x 4 z = 0 r { x + y = 0 x y + z = 0 5.
6 4. Hallar la ecuación de la superficie cónica, S, de vértice el punto P = (1, 1, 1 y directriz la curva de ecuaciones { z = 4 d x + y = Escribir su correspondiente ecuación implícita. 5. Hallar la superficie tangencial asociada a la curva α(t = (e t, e t, t, t R. 6. Hallar el paraboloide engendrado por la parábola z = by, x = 0, al trasladarse paralelamente a sí misma a lo largo de la parábola z = ax, y = 0. 6
Superficies paramétricas
SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
CURVAS Y SUPERFICIES. RELACIÓN 2
CURVAS Y SUPERFICIES. RELACIÓN 2 SUPERFICIES EN EL ESPACIO Curso 2015-16 1. Demostrar que las siguientes cuádricas reales son superficies. Obtener una parametrización de cada una de ellas. En cada caso,
3 Curvas alabeadas (curvas en R 3 )
3 Curvas alabeadas (curvas en R 3 ) El estudio de curvas en el espacio es, en varios aspectos, similar al de curvas en el plano. En este capítulo consideraremos como parametrización (I, α) a un par formado
Relación de ejercicios del tema 3
Relación de ejercicios del tema 3 Asignatura: Curvas y Superficies. Grado en Matemáticas. Grupo: 3 0 -B Profesor: Rafael López Camino (Do Carmo, sección 2.2) 1. Demostrar que el cilindro {(x, y, z) R 3
y v 0, 0, 1 y v 1, 0, 1 se tiene la ecuación
SUPERFICIES Mostraremos varios métodos para generar superficies y encontrar sus ecuaciones. 1. Superficies cilíndricas Dada una curva en el plano de ecuación y un vector con Γ 0, es decir, no horizontal,
Algebra Lineal y Geometría
Algebra Lineal y Geometría Unidad n 11:Ecuación General de Segundo Grado en Tres Variables. Algebra Lineal y Geometría Esp.Liliana Eva Mata 1 Contenidos Superficies. Relaciones elementales entre propiedades
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
3 Curvas alabeadas. Solución de los ejercicios propuestos.
3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA
Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de
1 Super cies regladas
1 Super cies regladas 1.1 De nición y ejemplos Vamos a estudiar una clase importante de super cies que son aquellas generadoas por una recta que se mueve a lo largo de una curva. Por tanto, son aquellas
Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1
Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +
Lección 4. Integrales múltiples. 4. Superficies parametrizadas.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera
SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:
SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:
Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/
Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general
Concepto de superficie
Capítulo IV Concepto de superficie 1. Parametrizaciones regulares Intuitivamente, una superficie de R 3 es un subconjunto S R 3 con la siguiente propiedad: cada punto P S tiene un entorno abierto en S
Vector Tangente y Vector Normal
Vector Tangente y Vector Normal enición. ada una supercie S = f) descrita por la función f : R 2 R 3 fu, v) = xu, v), yu, v), zu, v)) de clase c con u, v) y dado un punto u, v ) denimos los vectores f
Función lineal y cuadrática. Curvas de primer y segundo grado.
Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F
1.2 CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES
1.. Conjuntos definidos mediante funciones 1. CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES A lo largo de este texto se verá la necesidad de diferenciar dos eventos: dada una función, encontrar los diferentes
Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz
1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan
Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27,
Cónicas Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá November 27, 2013 [email protected] Cómo definir una cónica Como intersección de un plano y un cono recto de doble hoja
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA
Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA 6. LÍNEAS Y SUPERFICIES. 6.1. Líneas 6.1.1. Generación 6.2 Superficies. 6.2.2 Clasificación
B23 Curvas cónicas Curvas cónicas
Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección
Funciones Diferenciables. Superficies.
CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere sustancialmente del de Análisis Matemático I. Estudiamos
Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio
Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected]
x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8
Paralelismo y perpendicularidad MATEMÁTICAS II 1 1 Una recta es paralela a dos planos secantes, a quién es también paralela? Una recta paralela a dos planos secantes también es paralela a la arista que
1. Curvas Regulares y Simples
1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo
1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y
FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que
AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL
AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL Índice 1. Introducción a las curvas en E 3 2 1.1. Definición matemática de curva.............................. 2 1.2. Cambio de parámetro....................................
Superficies. Conceptos generales
Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición
Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio
Grado en Ingeniería agrícola y del medio rural Tema 3 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative Commons 4.0 Internacional J.
Cambio de coordenadas
Capítulo Cambio de coordenadas Problema Tenemos 3 puntos P, P y P 3, la idea es representar P en términos de esos puntos y de otros tres Q,Q y Q 3. El problema, es cómo ven P P P 3 a P y cómo Q Q Q 3 a
Cónicas y cuádricas. Circunferencia Elipse Parábola Hipérbola
Grado en Óptica y Optometría Curso 2009-2010 Cónicas y cuádricas. Curvas cónicas Entre las curvas, quizás más importante y con más renombre, figuran las conocidas como curvas cónicas, cuyo nombre proviene
Funciones de varias variables: continuidad derivadas parciales y optimización
Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio
Cálculo de Geodésicas en Superficies de Revolución
Cálculo de Geodésicas en Superficies de Revolución Superficies de Revolución Sea S R 3 la superficie de revolución obtenida al girar una curva regular del plano XZ que no corte al eje Z alrededor del mismo.
CÁLCULO II Funciones de varias variables
CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de
Cónicas. Clasificación.
Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión
SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta
LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y
Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA
Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA 6. LÍNEAS Y SUPERFICIES. 6.1. Líneas 6.1.1. Generación 6.2 Superficies. 6.2.2 Clasificación
Superficies parametrizadas
1 Universidad Simón Bolívar.. Preparaduría nº 1. [email protected] ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es
1.1 El caso particular de las curvas planas.
Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,
PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k).
PARABOLA Y ELIPSE 1. La ecuación general una parábola es: x + 0y 40 = 0. Poner la ecuación en la forma: (x h) = 4p (y k). x = 0 (y ) (x ) = 0y x = 0 (y ) x = 0 (y + ) (x 40) = 0y. Hallar la ecuación de
MATEMÁTICAS II (PAUU XUÑO 2011)
MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
Bloque 2. Geometría. 4. Iniciación a las Cónicas
Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente
Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.
Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía
Análisis II Análisis matemático II Matemática 3.
Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto
Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger
Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose
Super cies. 1 Representación analítica de super cies Representación explícita o de Monge... 6
Super cies M. Eugenia Rosado María Departamento de Matemática Aplicada Escuela Técnica Superior de Arquitectura, UPM Avda. Juan de Herrera 4, 28040-Madrid, Spain E-mail: [email protected] Índice 1
Tema 3. GEOMETRIA ANALITICA.
Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase
Geometría del plano y del espacio
Tema 6 Geometría del plano y del espacio 6.. Sistemas de coordenadas 6... Sistema de coordenadas en el plano Vamos a describir dos sistemas de coordenadas en el plano: sistema de coordenadas cartesiano
NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular.
ÁLGEBRA Práctica 15 Cónicas (Curso 2008 2009) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. Para las siguientes cónicas (1) 5x
1 CUÁDRICAS Cuádricas. Estudio particular. 1 x y z. 1 x y z. a 00 a 01 a 02 a 03 a 10 a 11 a 12 a 13 a 20 a 21 a 22 a 23 a 30 a 31 a 32 a 33
CUÁDRICAS. CUÁDRICAS.. Cuádricas. Estudio particular. Una cuádrica se dene como el lugar geométrico de los puntos del espacio euclídeo que, respecto de una referencia cartesiana rectangular, satisfacen
Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio.
SUPERFICIES SUPERFICIES Se puede considerar una superficie, como una lámina infinitamente delgada, que recubre un cuerpo, separa dos medios o dos regiones del espacio. Una Superficie puede estar engendrada
3 Aplicaciones de primer orden
CAPÍTULO 3 Aplicaciones de primer orden 3.7.1 Traectorias ortogonales Si consideramos la familia de curvas C c; con c > 0; podemos decir que esta familia es el conjunto de las circunferencias de radio
1 Super cies regladas
E.T.S. Arquitectura. Curvas y Super cies.1 1 Super cies regladas En la lección anterior de nimos las super cies regladas asi como las super cies cónicas, cilíndricas (cónicas cuyo vértice es un punto del
UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas
009 UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas Se hace referencia a las definiciones, fórmulas y algunos ejemplos sobre los temas indicados Iván Moyota Ch.
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
Superficies Parametrizadas y Áreas
Superficies Parametrizadas y Áreas 1 Superficies Parametrizadas y Áreas Hasta ahora hemos estudiado (tema de matemáticas 5) superficies definidas como gráficas de funciones de la forma z = f (x, y). El
Clase 1: Funciones de Varias Variables
Clase 1: Funciones de Varias Variables C. J. Vanegas 29 de abril de 2008 1. La geometría de funciones con valores reales Considere la siguiente función f: donde x = (x 1,..., x n ). f : A R n R m x A f(x)
Tema 6 La recta Índice
Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma
Prof. Enrique Mateus Nieves. Doctorando en Educación Matemática. Cálculo multivariado REPASO DE SECCIONES CONICAS
REPASO DE SECCIONES CONICAS SUPERFICIES CUADRICAS Y SUS TRAZAS Elipsoide x z Ecuación canónica: 1 a b c Secciones paralelas al plano x: Elipses; Secciones paralelas al plano xz: Elipses; Secciones paralelas
Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =
b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas.
UTN. FRBA ÁLGEBRA Y GEOMETRÍA ANALÍTICA de Mayo de01 Tema: 1 Apellido y nombres del alumno:...legajo:. 1 4 5 Calificación final La condición para aprobar el examen es tener como mínimo tres ejercicios
Formulario de Geometría Analítica
1. El Punto 1.1. Distancia entre dos puntos Sean A(x 1, y 1 ) y B(x, y ) dos puntos en el plano. La distancia d entre ambos está dada por la ecuación: d(a, B) = (x x 1 ) + (y y 1 ) 1.. Punto medio: Sean
INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96
INDICE Geometría Analítica Plana Capitulo Primero Sistema de Coordenadas Articulo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5
ÁLGEBRA LINEAL II Práctica 4.1
ÁLGEBRA LINEAL II Práctica 4.1 Cónicas (Curso 2010 2011) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. En el plano afín euclídeo
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
Geometría Analítica Enero 2015
Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. A( 2,, B( 8,, C( 5, 10) R( 6, 5) S( 2, - T(3,- U( -1, - V( 2, - W( 9, 4) II.- Demuestre
Funciones de varias variables
Tema 5 Funciones de varias variables 5.1. Introducción Supongamos que tenemos una placa rectangular R y necesitamos conocer la temperatura T en cada uno de sus puntos. T es una función que depende de las
Funciones de R en R n
Funciones Vectoriales Funciones de R en R n Llamaremos función vectorial de variable real o simplemente función vectorial, a aquellas con dominio en un subconjunto de R y contradominio en un espacio vectorial
1 Parametrización de curvas
Dpto. Matemática Aplicada E.T.S. Arquitectura, U.P.M. Curvas y Super cies HOJA DE PROBLEMAS: CURVAS 1 Parametrización de curvas 1. Obtener una parametrización de cada una de las siguientes cónicas: (a
UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS
Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta
Geometría de las cáscaras
Geometría de las cáscaras Geometría de las cáscaras Las curvaturas correspondientes a los arcos diferenciales dsx y dsy : 1 2 cte cte x x 1 2 1 r' y 1 r' K 2 K1 El factor K= K1.K2 es el denominado Indice
LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica
ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior
SERIE # 2 CÁLCULO VECTORIAL
SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo
V = v 1 +2v 2 +3v 3. v 2. v 1
Coordenadas Hay muchas maneras de darle coordenadas a los puntos del espacio, las ecuaciones de las curvas o superficies dependen de las coordenadas que utilicemos y eligiendo las coordenadas adecuadas
5.- Superficies Superficies regladas
5.- Superficies 5.1.- Superficies regladas Una de las grandes aportaciones de Gaudí a la arquitectura moderna ha sido el uso constructivo de las superficies regladas. Muchas de ellas contaban con una historia
Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática
/ 010 Ayudantía 4 1. Regla de la Cadena Proposición 1 Regla de la Cadena - 1. Sea f : U R n R diferenciable y γ : I R R n una curva diferenciable contenida en U. Entonces, la función gt = f γt es derivable
Se clasifican en dos grandes familias: las desarrollables y las alabeadas. Las propiedades fundamentales que caracterizan estas superficies son:
A I: SUPERFICIES REGLADAS Reciben este nombre [67] las superficies generadas por el movimiento de una recta que es la generatri. A estas superficies puede adaptárseles el canto de una regla, de modo que
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que
3º B.D. opción Social-Económico Matemática III. Parábola.
Parábola. Definición: Lugar geométrico de los puntos del plano que equidistan de un punto fijo F, llamado foco y de una recta fija z llamada directriz. Siendo F no perteneciente a z. Entonces siendo P
Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.
Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =
CAPÍTULO I CAPÍTULO II
ÍNDICE Advertencia preliminar... 11 Desarrollo histórico de la geometría descriptiva... 13 CAPÍTULO I Conceptos generales... 17 Definiciones: 1. Geometría descriptiva. 2. Espacio geométrico. 3. Proyección.
ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R
ALGEBRA Y GEOMETRÍA I DPTO. DE MATEMÁTICA ESCUELA DE FORMACIÓN BÁSICA F.C.E.I.A U.N.R SUPERFICIES ING. RICARDO F. SAGRISTÁ -2006- SUPERFICIES.- 1.- Ecuaciones de superficies. Ya hemos estudiado la superficie
Construcción de Superficies Definidas a partir de Curvas Planas
1 SUPERFICIE BILINEAL Construcción de Superficies Definidas a partir de Curvas Planas Rubén T. Urbina Guzmán [email protected] Universidad Nacional de Piura Resumen Este artículo presenta algunas técnicas
ÁLGEBRA LINEAL I Práctica 5
ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2
Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone
Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática
UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL PARANÁ
UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL PARANÁ ELECTROMECÁNICA 2014 TRABAJO INTEGRADOR Nº2 APLICACIONES DE LA INTEGRAL DEFINIDA GEOMETRÍA ANALÍTICA CÓNICAS Y CUÁDRICAS MÉTODO DE LOS MÍNIMOS
Subspacios Vectoriales
Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es
