Funciones de varias variables
|
|
|
- Héctor Cordero Bustamante
- hace 8 años
- Vistas:
Transcripción
1 Tema 5 Funciones de varias variables 5.1. Introducción Supongamos que tenemos una placa rectangular R y necesitamos conocer la temperatura T en cada uno de sus puntos. T es una función que depende de las coordenadas (x, y) de cada uno de los puntos de R. La función que describe este fenómeno T = f(x, y) (x, y) R es un ejemplo típico de una función de dos variables; en este caso, las coordenadas del punto donde evaluamos la temperatura. No es difícil encontrar ejemplos de fenómenos que a la hora de describirlos necesitemos hacer servir funciones de tres, cuatro o más variables. Tenemos la siguiente definición: Definición Sea D un subconjunto de R n. Una función f de D en R se llama un campo escalar o una función real de n variables. Las funciones de varias variables son esenciales en muchos problemas importantes de la ciencia, la ingeniería, la economía, etc... Veamos algunos ejemplos: Ejemplo 5.1 (1) La magnitud de la fuerza gravitatoria ejercida por un cuerpo de masa M situado en el origen de coordenadas sobre un cuerpo de masa m situado en el punto (x, y, z) viene dada por F (x, y, z) = GmM x 2 + y 2 + z 2 81
2 82 Funciones de varias variables (2) La ley de los gases ideales dice que la presión P de un gas es una función del volumen V y la temperatura T según la ecuación donde c es una constante. P = ct V (3) La desviación S en el punto medio de una viga rectangular cuando está sujeta por ambos extremos y soporta una carga uniforme viene dada por S(L, w, h) = CL3 wh 3 donde L es la longitud, w la anchura, h la altura y C una constante. Nota Las definiciones de dominio de un campo escalar f (denotado por Dom(f)) y de una imagen de un campo escalar (denotado por Im(f)) son análogas a las correspondientes para funciones de una variable. Si el dominio de un campo escalar no viene dado explícitamente, entendemos que el dominio es el conjunto de todos los puntos para los que la definición de f tiene sentido Estrategias para estudiar funciones de varias variables Podemos obtener información sobre el fenómeno descrito por una función de diversas variable si variamos una o más variables y dejamos el resto fijas. Concretaremos esta idea para funciones de dos variables. Definición Para una función f(x, y), la función que se obtiene al mantener la variable x fija y variando la variable y se llama sección transversal de f con x fija. Análogamente se define una sección transversal de f con y fija. Ejemplo 5.2 Vamos a calcular la sección transversal de la función f(x, y) = x 2 + y 2 para x = 2.
3 5.2 Estrategias para estudiar funciones de varias variables 83 Solución: La sección transversal que hemos de encontrar es precisamente f(2, y) = 4 + y 2. Por tanto es una función de y, digamos g, definida como g(y) = 4 + y 2. Se trata de una parábola simétrica respecto del eje x. En general, obtenemos las secciones transversales de f como funciones de y haciendo x = c en f(x, y). Las secciones son, por tanto, g c (y) = c 2 + y 2, c R. Ejercicio 5.1 Calcular las secciones transversales, primero fijando la variable x y después la variable y, del campo escalar f(x, y) = x 2 y 2. (Sol.: g b (x) = x 2 b 2, g c (y) = c 2 y 2 ) ) Otra manera de obtener información sobre una función de varias variables es por medio de las llamadas hipersuperficies de nivel. Si tenemos un campo escalar f(x 1, x 2,..., x n ), una hipersuperficie de nivel se obtiene mediante la ecuación f(x 1, x 2,..., x n ) = c, c Im(f). En el caso de funciones de dos variables, las hiperfunciones de nivel reciben el nombre de curvas de nivel y en el caso de funciones de tres variables de superficies de nivel. La idea de las curvas de nivel es un método de representar superficies que utilizamos en la elaboración de mapas. Para representar terrenos montañosos es práctica común dibujar curvas que unen los puntos de la misma altura. Una colección de estas curvas, rotuladas de forma adecuada, da una buena idea de las variaciones de altitud de una región (Fig. 5.2). Las hipersuperficies de nivel son una generalización de esta idea.
4 84 Funciones de varias variables Figura 5.1: Curvas de nivel Ejemplo 5.3 Analizar las curvas de nivel del campo escalar z = x 2 + y 2. Solución: Hemos de estudiar las curvas de ecuación x 2 + y 2 = c, c 0. Hemos considerado que c 0 porque es imposible que x 2 + y 2 sea negativo. Las curvas de nivel son circunferencias centradas en el origen de coordenadas y de radio c si c > 0 y se reduce al origen de coordenadas si c = 0 (Fig. 2). Figura 5.2: Curvas de nivel
5 5.2 Estrategias para estudiar funciones de varias variables 85 Ejemplo 5.4 Consideremos el campo escalar z = 4 x y la gráfica del cual es un plano. Si calculamos sus curvas de nivel. 4 x y = c, c R obtenemos una familia de rectas paralelas (Fig. 3). Figura 5.3: Curvas de nivel Dibujar las gráficas de las funciones de dos variables es en general una tarea difícil. Dibujar la gráfica de una función de tres variables es sencillamente imposible. Para dibujarlas necesitaríamos un espacio de cuatro dimensiones; el propio dominio ha de ser una porción del espacio tridimensional. Lo que haremos es intentar representar el comportamiento de una función f de tres variables mediante las superficies de nivel de f que son los subconjuntos del dominio con ecuaciones de la forma: f(x, y, z) = c, donde c es un valor en Im(f). Ejemplo 5.5 Si calculamos las superficies de nivel del campo escalar f(x, y, z) = Ax + By + Cz obtenemos las superficies de ecuación Ax + By + Cz = c, c R que son planos paralelos.
6 86 Funciones de varias variables Ejemplo 5.6 Consideremos el campo escalar f(x, y, z) = x 2 + y 2 + z 2. Sus superficies de nivel x 2 + y 2 + z 2 = c 2, c R son esferas concéntricas centradas en el origen de coordenadas. Ejemplo 5.7 Calcular las superficies de nivel del campo escalar definido como f(x, y, z) z x 2 + y 2 si (x, y, z) (0, 0, z), 0 si (x, y, z) = (0, 0, 0). Solución: Para calcular sus superficies de nivel, observamos que sólo toma valores no negativos y que no está definida en los puntos del eje z diferentes del origen. Teniendo en cuenta que f sólo se anula cuando z = 0, la superficie de nivel cuando c = 0 es el plano xy. Para encontrar las otras superficies de nivel, consideramos c > 0 y hacemos f(x, y, z) = c. Entonces z x 2 + y 2 = c, y por tanto z = c (x2 + y 2 ) que son paraboloides dobles de revolución (Fig. 4). Figura 5.4: Curvas de nivel
7 5.3 Funciones vectoriales Funciones vectoriales Una función f : D R n R m con m > 1 se llama una función vectorial de diversas variables. Si n = m > 1, la función se llama campo vectorial. Una función vectorial f : D R n R m se puede estudiar de forma natural por medio de m campos escalares f : D R n R m x ( f 1 (x),..., f n (x) ) sin más que considerar las componentes del vector f(x). Estos campos escalares se llaman las funciones componentes de f. Ejemplo 5.8 Si consideramos la función vectorial de R 2 en R 3 definida como f(x, y) = (x 2 + y, sin x, x + e 2 ), las funciones componentes de f son: f 1 (x, y) = x 2 + y f 2 (x, y) = sin x f 3 (x, y) = x + e 2
Clase 1: Funciones de Varias Variables
Clase 1: Funciones de Varias Variables C. J. Vanegas 29 de abril de 2008 1. La geometría de funciones con valores reales Considere la siguiente función f: donde x = (x 1,..., x n ). f : A R n R m x A f(x)
Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables.
Empezaremos el curso introduciendo algunos conceptos básicos para el estudio de funciones de varias variables, que son el objetivo de la asignatura: Funciones escalares de dos y tres variables. Conjuntos
Función de dos variables
Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - [email protected] 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el
Funciones de varias variables
Tema 5 Funciones de varias variables Supongamos que tenemos una placa rectangular R y determinamos la temperatura T en cada uno de sus puntos. Fijado un sistema de referencia, T es una función que depende
FUNCIONES Y SUPERFICIES
FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com
Lección 50. Funciones II. Plano cartesiano
Lección 50 Funciones II Plano cartesiano Un sistema de coordenadas rectangulares o cartesianas, llamado también plano cartesiano o plano xy, está formado por dos rectas coordenadas perpendiculares (rectas
3. Funciones de varias variables
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n
FUNCIONES DE VARIAS VARIABLES PRIMEROS CONCEPTOS
Índice Presentación... 3 Funciones de varias variables... 4 Ejemplos... 5 Otros ejemplos económicos... 7 Dominio e imagen... 9 Gráficas... 10 Curvas de nivel... 11 Ejemplos de curva de nivel... 12 Curvas
1.2 CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES
1.. Conjuntos definidos mediante funciones 1. CONJUNTOS DEFINIDOS MEDIANTE FUNCIONES A lo largo de este texto se verá la necesidad de diferenciar dos eventos: dada una función, encontrar los diferentes
ECUACIONES DE RECTAS Y PLANOS
ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La
Funciones de varias variables
Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder
Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio
Grado en Ingeniería agrícola y del medio rural Tema 3 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative Commons 4.0 Internacional J.
Funciones de varias variables: continuidad derivadas parciales y optimización
Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio
Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio
Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected]
Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena
1 Universidad Simón Bolívar. Preparaduría nº 3. [email protected] ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada
COORDENADAS POLARES O CILÍNDRICAS
COORDENADAS POLARES O CILÍNDRICAS Para definir la posición de un punto en un plano (o en el espacio) podemos utilizar distintos tipos de coordenadas, siendo las más normales las coordenadas rectangulares
La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.
La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el
Superficies paramétricas
SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando
1. EL SISTEMA POLAR 2. ECUACIONES EN COORDENADAS POLARES 3. GRÁFICAS DE ECUACIONES EN
1. EL SISTEMA POLAR. ECUACIONES EN COORDENADAS POLARES 3. GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro.
Cónicas 1.- Circunferencia Definición 1 (Definición geométrica) Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Analíticamente la circunferencia
son dos elementos de Rⁿ, definimos su suma, denotada por
1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores
Tema 3. Magnitudes escalares y vectoriales
1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,
Cambio de coordenadas
Capítulo Cambio de coordenadas Problema Tenemos 3 puntos P, P y P 3, la idea es representar P en términos de esos puntos y de otros tres Q,Q y Q 3. El problema, es cómo ven P P P 3 a P y cómo Q Q Q 3 a
x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca
1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las
Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Pauta Control 1 - MA2A1 Agosto 2008 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla
DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica
ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,
Unidad 5: Geometría Analítica
Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r
TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO
Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio
5 Continuidad y derivabilidad de funciones reales de varias variables reales.
5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El
Curso Propedéutico de Cálculo Sesión 1: Funciones
Curso Propedéutico de Cálculo Sesión 1: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 Esquema 1 2 El cálculo se basa en las propiedades de los
SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:
SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie
Derivadas para estudiantes de economía
Derivadas para estudiantes de economía Eliseo Martínez H. Noviembre 2015 Abstract A partir de una función regular con cierta simetría se inicia el estudio de monotonía (creciente o decreciente), mínimos
4 Superficies regulares
4 Superficies regulares Una superficie en R 3 se puede decir que es, de forma intuitiva, un subconjunto en R 3 donde en cada punto podemos encontrar una porcin de plano que ha sido deformada de forma suave.
Capítulo VI. Diferenciabilidad de funciones de varias variables
Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector
Superficies parametrizadas
1 Universidad Simón Bolívar.. Preparaduría nº 1. [email protected] ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es
Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =
Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula:
PROBLEMAS MÉTRICOS ÁNGULOS ÁNGULO QUE FORMAN DOS RECTAS Necesitamos tener los vectores de dirección de ambas rectas. Para calcular el ángulo que forman, aplicamos la siguiente fórmula: cos α = ÁNGULO QUE
Tema 7: Derivada de una función
Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia
Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica
Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se
Lección 4. Integrales múltiples. 4. Superficies parametrizadas.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera
6 Vectores. Dependencia e independencia lineal.
6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar
CALCULO DE CENTROS DE MASA
CALCULO DE CENTOS DE MASA Determinar la posición del C.M. de un semicono. Solución: I.T.I., I.T.T., 4 Sea el semicono de la figura orientado a lo largo del eje X, de altura radio. Dado que el plano XY
Algebra Lineal y Geometría
Algebra Lineal y Geometría Unidad n 11:Ecuación General de Segundo Grado en Tres Variables. Algebra Lineal y Geometría Esp.Liliana Eva Mata 1 Contenidos Superficies. Relaciones elementales entre propiedades
Análisis II Análisis matemático II Matemática 3.
Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto
Funciones de R en R n
Funciones Vectoriales Funciones de R en R n Llamaremos función vectorial de variable real o simplemente función vectorial, a aquellas con dominio en un subconjunto de R y contradominio en un espacio vectorial
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
Unidad III: Curvas en R2 y ecuaciones paramétricas
Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una
En esta sección, aprenderás cómo graficar y estirar las funciones de seno y coseno.
Representación gráfica del seno En esta sección, aprenderás cómo graficar y estirar las funciones de seno y coseno. LA C O R R I E N T E A L T E R N A : Se denomina corriente alterna a la corriente eléctrica
FUNCIONES Y GRÁFICAS
FUNCIONES Y GRÁFICAS Material de clase INTRODUCCIÓN: EJEMPLOS Una función es una correspondencia (relación) entre dos conjuntos (magnitudes ), de forma que a cada elemento (objeto) del primer conjunto
Coordenadas polares. Si P es un punto cualquiera del plano, su posición queda determinada con el par ( r, ), donde: Ejemplo
Coordenadas polares Sobre el plano elijamos un punto O, que denominamos Polo (u origen) y un rayo con origen O, que denominamos Eje Polar 1 2 Si P es un punto cualquiera del plano, su posición queda determinada
Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.
Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites
Fundamentos matemáticos. Tema 4 Funciones de una y varias variables
Grado en Ingeniería agrícola y del medio rural Tema 4 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative Commons 4.0 Internacional J.
Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.
Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase
Campos escalares y vectoriales
SESIÓN 1 1.1 Introducción En los cursos de Cálculo I y II se ha trabajado con funciones reales de una variable real. En este curso de Cálculo III se han introducido y trabajado las funciones de varias
SUPERFICIES CUÁDRICAS
SUPERFICIES CUÁDRICAS Un cuarto tipo de superficie en el espacio tridimensional son las cuádricas. Una superficie cuádrica en el espacio es una ecuación de segundo grado de la forma Ax + By + Cz + Dx +
y v 0, 0, 1 y v 1, 0, 1 se tiene la ecuación
SUPERFICIES Mostraremos varios métodos para generar superficies y encontrar sus ecuaciones. 1. Superficies cilíndricas Dada una curva en el plano de ecuación y un vector con Γ 0, es decir, no horizontal,
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante
A pesar de la importancia de las cónicas como secciones de una superficie cónica, para estudiar los elementos y propiedades de cada una de ellas en
SECCIONES CÓNICAS Las secciones cónicas se pueden definir como lugares geométricos en el plano, sin embargo la definición clásica de las cónicas, que se debe a Apolonio de Perga, se hizo mediante un procedimiento
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
ESTÁTICA 3 3 VECTORES
ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
FUNCIONES VECTORIALES DE VARIABLE ESCALAR
CAPITULO II CALCULO II 2.1 CONCEPTOS BÁSICOS FUNCIONES VECTORIALES DE VARIABLE ESCALAR Una función vectorial (o a valores vectoriales) de una variable real (escalar), es una función del en la cual, a cada
Funciones de varias variables.
Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía
SERIE # 1 CÁLCULO VECTORIAL
SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
Funciones reales de variable real.
CONOCIMIENTOS PREVIOS. Funciones reales de variable real.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.
Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre
Variable Compleja I Maite Fernández Unzieta Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía Complex Analysis 3rd ed. Ahlfors Basic Complex Analysis Functions of one
Problemas métricos. 1. Problemas afines y problemas métricos
. Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
Lección 51. Funciones III. Funciones lineales
Lección 51 Funciones III Funciones lineales Una función lineal es una función de la forma f (x) = mx + b, donde m y b son constantes. Se llama lineal porque su gráfica es una línea recta, en el plano R
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA
Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de
CAPÍTULO 10. Teoremas Integrales.
CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado
Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.
Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son
FUNCIONES Y SUPERFICIES
FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Octubre de 2012 1 Visita http://sergiosolanosabie.wikispaces.com
IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A
Opción A Ejercicio n 1 de la opción A del modelo 1 del libro 96_97 De una función continua f : R R se sabe que si F : R R es una primitiva suya, entonces también lo es la función G dada por G(x) 3 - F(x).
Aplicaciones Lineales. Diagonalización de matrices.
Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)
(tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A
IES Fco Ayala de Granada Modelo 1 del 1999. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 1998999. Opción A Ejercicio 1, Opción A, Modelo 1 de 1999. x si x
Funciones de dos o más variables. Gráficas. Curvas de nivel
Funciones de dos o más variables. Gráficas. Curvas de nivel 1 1 Departamento de Física y Matemáticas. Universidad de Alcalá de Henares. Contenidos Introducción 1 Introducción 2 3 4 Índice Introducción
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría
Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.
Funciones Diferenciables. Superficies.
CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere sustancialmente del de Análisis Matemático I. Estudiamos
Planos y Rectas. 19 de Marzo de 2012
el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos
Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =
Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z
Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.
ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS
LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica
ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior
RESUMEN TEORIA MATEMATICAS 5
RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,
Bloque 2. Geometría. 4. Iniciación a las Cónicas
Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado
Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m
Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que
Cónicas. Clasificación.
Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión
Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.
Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía
