Teoría del Control Optimo: Horizonte In nito

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría del Control Optimo: Horizonte In nito"

Transcripción

1 Teoría del Control Optimo: Horizonte In nito Economía Matemática EcMat (FCEA, UdelaR) TCOIn nito 1 / 11

2 Principio del máximo En el caso de T jo teníamos que: J ε jε = 0 = TZ 0 ( H y + λ)q(t) + H u p(t) dt + [H] t=t T λ(t ) y T = 0 (1) Cuando t!, tenemos J ε jε = 0 = limλ(t) y T t! {z } (3) Z ( H y + λ)q(t) + H u p(t) dt + lim [H] T t! 0 {z } {z } (2) (1) = 0 (2) Diego Aboal (FCEA, UdelaR) TCOIn nito 2 / 23

3 Principio del máximo Los tres componentes tienen diferentes cosas arbitrarias: la integral contiene curvas de perturbación p(t) y q(t), mientras que los otros dos involucran T y y T ; de este modo, se deben igualar cada uno de los términos que multiplican a estas cosas arbitrarias a 0 para asegurarnos que estamos en un Igualando el término dentro de la integral a cero, podemos deducir 2 condiciones: H y H u = λ (3) = 0 (4) Estas condiciones son iguales al caso de T jo que habíamos visto antes Diego Aboal (FCEA, UdelaR) TCOIn nito 3 / 23

4 Principio del máximo Condiciones terminales alternativas T ahora no es jo, entonces para que (2) sea cero: Con respecto a (3) pueden pasar 2 cosas, lim [H] = 0 (5) t! Primero que el estado (y T ) sea libre entonces en este caso: limλ(t) = 0 (6) t! En caso contrario, es decir en que existe un estado terminal jo, en ese caso y T = 0 y por tanto no deberemos imponer ninguna condición adicional Diego Aboal (FCEA, UdelaR) TCOIn nito 4 / 23

5 El Modelo Neoclásico del Crecimiento max U(0) = Z e ρt log[c(t)]dt (7) 0 (a) Acumulación de capital : (b) Condición inicial : k(0) = 1 sa k(t) = [y(t) c(t) δk(t)] (c) Función de producción : y(t) = k(t) α donde 0 < α < 1 k libre A partir de (a) y (b) tenemos: k(t) = [k(t) α c(t) δk(t)] Para resolver el problema de Optimización, planteamos el Hamiltoneano: H(c, k, t, λ) = e ρt log(c) + λ(k α c δk) (8) Diego Aboal (FCEA, UdelaR) TCOIn nito 5 / 23

6 El Modelo Neoclásico del Crecimiento Condiciones de primer orden: Condiciones de transversalidad: H c = e ρt (1/c) λ = 0 (9) H k = λ(αk α 1 δ) = λ (10) lim H(t) t! = 0 (11) λ(t) = 0 (12) lim t! Diego Aboal (FCEA, UdelaR) TCOIn nito 6 / 23

7 El Modelo Neoclásico del Crecimiento Si despejamos λ de (9), tomamos logaritmos, y derivamos con respecto a t, tenemos: ρ c/c = λ/λ (13) Sustituimos en (10): c/c = (αk α 1 ρ δ) (14) Además tenemos que: k = [k α c δk] (15) Diego Aboal (FCEA, UdelaR) TCOIn nito 7 / 23

8 El Modelo Neoclásico del Crecimiento Equilibrio de estado estacionario: c y k/ċ = k = 0 Entonces imponemos esta condición de equlibrio sobre la ecuaciones anteriores: c = (αk α 1 ρ δ)c = 0 (16) k = k α c δk = 0 (17) Dejando de lado los equilibrios que surgen cuando c = 0, tenemos que el equilibrio es (a partir de αk α 1 ρ δ = 0 y k α c δk = 0): k = [α/(ρ + δ)] 1/(1 α) (18) c = k α δk (19) Diego Aboal (FCEA, UdelaR) TCOIn nito 8 / 23

9 El Modelo Neoclásico del Crecimiento El grá co de (16) es, ċ/c = (αk α 1 ρ δ): Diego Aboal (FCEA, UdelaR) TCOIn nito 9 / 23

10 El Modelo Neoclásico del Crecimiento El grá co de (17) es, k = k α c δk: Diego Aboal (FCEA, UdelaR) TCOIn nito 10 / 23

11 El Modelo Neoclásico del Crecimiento El grá co de (16) y (17) es, ċ/c = (αk α 1 ρ δ); k = k α c δk: Diego Aboal (FCEA, UdelaR) TCOIn nito 11 / 23

12 El Modelo Neoclásico del Crecimiento El grá co de (16) y (17) es: Diego Aboal (FCEA, UdelaR) TCOIn nito 12 / 23

13 Condiciones de transversalidad Lo que vamos a mostrar ahora es que en el equilibrio tambien se cumplen las condiciones de transversalidad Notar que el Hamiltoneano en el equilibrio se puede escribir como: H(c, k, t, λ) = e ρt log(c ) + λ(k α c δk ) (20) Pero sabemos a partir de (18) y (19) que log(c ) =constante y que k α c δk = 0 Entonces lim t! = lim e ρt log(c ) + lim λ(k α t! t! c {z δk ) = } =0 = log(c ) lim t! e ρt = 0 (21) ya que 1 e ρt! 0 y log(c ) = constante Diego Aboal (FCEA, UdelaR) TCOIn nito 13 / 23

14 El Modelo Neoclásico del Crecimiento Ahora notar que a partir de (10) tenemos que λ λ = (αk α 1 δ) A partir de (16) sabemos que en equilibrio (αk α 1 δ) = ρ, entonces λ λ = ρ ) λ = λ(0)e ρt (22) A partir de acá es fácil veri car que también se cumple la segunda condición de transversalidad lim λ = lim λ(0)e ρt = 0 (23) t! t! Diego Aboal (FCEA, UdelaR) TCOIn nito 14 / 23

15 Solución analítica del Modelo Neoclásico del Crecimiento Nuestro modelo esta resumido en el siguiente sistema de ecuaciones diferenciales: k = k α c δk (24) c = (αk α 1 ρ δ)c (25) Si conocemos el valor de los distintos parametros podríamos encontrar una solución analítica Supongamos que α = 0, 3, δ = 0, y ρ = 0, 06 Entonces tenemos, k = k 0,3 c (26) c = (0, 3k 0,7 0, 06)c (27) Es fácil ver que en equilibrio, c = 2 y k = 10 Diego Aboal (FCEA, UdelaR) TCOIn nito 15 / 23

16 Linealizando el sistema Nuestro modelo esta resumido en el siguiente sistema de ecuaciones diferenciales: k = 0, 3k 07 (k k ) (c c ) (28) c = 0, 021c k 1,7 (k k ) + (0, 3k 0,7 0, 06)(c c ) (29) Notar que (0, 3k 0,7 0, 06) = 0 en equilibrio, entonces el sistema queda como: k = 0, 06k c + 1, 4 (30) c = 0, 008k + 0, 08 (31) Diego Aboal (FCEA, UdelaR) TCOIn nito 16 / 23

17 Solución sistema de ecuaciones diferenciales Sistema de ec diferenciales en notación matricial:! 1 0 ḳ k 1, 4 + = 0 1 c c 0, 08 (32) o 1 0 Donde I 0 1 k y y C c I ẏ + My = C (33)! 006 1, M, ẏ ḳ, c 1, 4 0, 08 Solución particular El equilibrio que encontramos antes, c = 2 y k = 10, no es otra cosa que la solución particular del sistema (veri carlo) Diego Aboal (FCEA, UdelaR) TCOIn nito 17 / 23

18 Solución sistema de ecuaciones diferenciales Solución Homogenea Pruebo con y Entonces tendre: m n I ẏ + My = 0 (34) m e rt, ẏ re n rt m (ri + M) n e rt = 0 (35) Diego Aboal (FCEA, UdelaR) TCOIn nito 18 / 23

19 Solución sistema de ecuaciones diferenciales Para una solución no trivial, impongo jri + Mj = r r = 0 (36) Entonces r 1, r 2 = 0, 06 p 0, ) r 1 = 0, 125, r 2 = 0, (37) m Es fácil veri car que el vector asociado con r n 1 = 0, 125 es m 1 (mostrarlo como ejercicio) 0, 065m 1 m Mientras que el asociado con r 2 = 0, 065 es 2 0, 125m 2 (mostrarlo como ejercicio) Diego Aboal (FCEA, UdelaR) TCOIn nito 19 / 23

20 Solución sistema de ecuaciones diferenciales Por tanto la solución homogenea es: k m = 1 e 0,125t + c 0, 065m 1 Por tanto la solución general es: k m = 1 e 0,125t + c 0, 065m 1 m 2 0, 125m 2 m 2 0, 125m 2 e 0,065t (38) e 0,065t (39) Al ser r 1 > 0 y r 2 < 0, estamos ante un punto de silla, esto signi ca que con excepción de si estamos en el camino de ensilladura (o brazo estable), en los demás puntos tendemos a diverger del equilibrio Sobre el camino de ensilladura el sistema tiende a converger Diego Aboal (FCEA, UdelaR) TCOIn nito 20 / 23

21 Solución sistema de ecuaciones diferenciales El camino de ensilladura podemos encontrarlo haciendo m 1 =0 y suponiendo m 2 6=0 En ese caso tendremos: k m = 2 e 0,065t 10 + c 0, 125m 2 2 (40) y por tanto (encontrando la relación implicita entre k y c, a partir del sistema de ecuaciones anteriores), el camino de ensilladura es: c = 0125k (41) Notar que en general el camino de ensilladura no es lineal, pero en un entorno del equilibrio podemos aproximarlo por la ecuación lineal anterior Por supuesto que nada nos garantiza a priori que estaremos en una situación donde m 1 =0 Esto podra suceder si tenemos condiciones iniciales (o terminales) adecuadas que nos lleven a concluir eso En general en los modelos económicos hacemos supuestos (razonables) que nos permitan partir de un punto sobre el camino de ensilladura Diego Aboal (FCEA, UdelaR) TCOIn nito 21 / 23

22 Solución sistema de ecuaciones diferenciales El camino de ensilladura (como se puede ver no esta dibujado como lineal, pero se puede aproximar por función lineal cerca del equilibrio): Diego Aboal (FCEA, UdelaR) TCOIn nito 22 / 23

23 El porque del nombre camino de ensilladura Unicamente si una bolilla cae sobre la parabola que está dibujada con linea negra, tendera al equilibrio que esta en el centro de la silla de montar Diego Aboal (FCEA, UdelaR) TCOIn nito 23 / 23

Ejemplo Sist. Ec. Diferenciales: el Modelo de Crecimiento Neoclásico

Ejemplo Sist. Ec. Diferenciales: el Modelo de Crecimiento Neoclásico Ejeplo Sist Ec Diferenciales: el Modelo de Creciiento Neoclásico Econoía Mateática () Ej Ec Dif 1 / 2 El Modelo Neoclásico del Creciiento Equilibrio de estado estacionario: c y k/ċ = k = 0 Entonces iponeos

Más detalles

Economía Matemática - Teoría de Control Óptimo

Economía Matemática - Teoría de Control Óptimo Martín Brun - Facultad de Ciencias Económicas y de Administración - UdelaR Agosto - Diciembre, 217 Índice 1 Introducción 2 Teoría del Control Óptimo 3 El Principio del máximo 4 El Hamiltoniano de valor

Más detalles

Aplicaciones de Ec. en Diferencias a la Economía

Aplicaciones de Ec. en Diferencias a la Economía Aplicaciones de Ec. en Diferencias a la Economía Economía Matemática. (FCEA, UdelaR) Aplicaciones 1 / 21 Nota previa sobre raices complejas Antes de ver algunos ejemplos aplicados a la economía, una nota

Más detalles

Clase 3: Un modelo IS-LM dinámico

Clase 3: Un modelo IS-LM dinámico Clase 3: Un modelo IS-LM dinámico José L. Torres Universidad de Málaga Macroeconomía Avanzada José L. Torres (Universidad de Málaga) Clase 3: Un modelo IS-LM dinámico Macroeconomía Avanzada 1 / 26 Estructura

Más detalles

Auxiliar N o 1 : Control Óptimo

Auxiliar N o 1 : Control Óptimo Macroeconomía I Universidad de Chile Auxiliar N o 1 : Control Óptimo 10 de Marzo José DeGregorio Esta clase tienen material tomado directamente del libro Macroeconomía: Teoría y Poĺıticas De Gregorio (2007).

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

Economía Matemática. 15 de noviembre de Facultad de Ciencias Económicas y de Administración - UDELAR. Economía Matemática

Economía Matemática. 15 de noviembre de Facultad de Ciencias Económicas y de Administración - UDELAR. Economía Matemática Facultad de Ciencias Económicas y de Administración - UDELAR 15 de noviembre de 2016 Comentarios iniciales 1 Como se ha visto hasta el momento, el Principio del Máximo suministra un conjunto de condiciones

Más detalles

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1.

1. Introducción. En (1.1) y (1.2), y es la variable dependiente y t es la variable independiente, a, c son parámetros. dy dt = aet, (1. . Introducción Definición.. Una ecuación que contiene derivadas de una o más variables dependientes con respecto a una o más variables independientes se llama ecuación diferencial. En (.) y (.2), y es

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior MATEMÁTICAS II Práctica 3: Ecuaciones diferenciales de orden superior DEPARTAMENTO DE MATEMÁTICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 En esta

Más detalles

Lección 6: Ecuaciones diferenciales

Lección 6: Ecuaciones diferenciales Lección 6: Ecuaciones diferenciales 61 Introducción La estática comparativa ha dominado el estudio de la economía durante mucho tiempo, y aún hoy se sigue utilizando para resolver muchos problemas económicos

Más detalles

Semana 05 EDOs Exactas - Aplicaciones

Semana 05 EDOs Exactas - Aplicaciones Matemáticas Aplicadas MA101 Semana 05 EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería EDOs de 1er orden (Semana 01) Ecuaciones no lineales

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

Sistemas dinámicos - Estabilidad

Sistemas dinámicos - Estabilidad Sistemas dinámicos - Estabilidad Por correcciones, dudas o sugerencias escribir a mijailapor@gmail.com 1. Caracterización general A diferencia de los análisis estático o estático-comparativo, donde se

Más detalles

Clase 3: El modelo de Ramsey

Clase 3: El modelo de Ramsey Clase 3: El modelo de Ramsey Hamilton Galindo Macrodinámica Hamilton Galindo (Macrodinámica) Clase 3: El modelo de Ramsey 1 / 19 Outline 1 Equilibrio del planificador social Restricción global de recursos

Más detalles

Clase 5: El desbordamiento del tipo de cambio

Clase 5: El desbordamiento del tipo de cambio Clase 5: El desbordamiento del tipo de cambio José L. Torres Universidad de Málaga Macroeconomía Avanzada José L. Torres (Universidad de Málaga) Clase 5: El desbordamiento del tipo de cambio Macroeconomía

Más detalles

Ecuaciones Diferenciales II. Tema 3: El entorno de los puntos críticos

Ecuaciones Diferenciales II. Tema 3: El entorno de los puntos críticos Ecuaciones Diferenciales II Tema 3: El entorno de los puntos críticos José C. Sabina de Lis Universidad de La Laguna La Laguna, 24 de febrero de 2013 1.Puntos críticos no degenerados. Se considera la ecuación

Más detalles

Notas de clase Economía Internacional. Determinación de la cuenta corriente Parte de mayo 2009

Notas de clase Economía Internacional. Determinación de la cuenta corriente Parte de mayo 2009 Notas de clase Economía Internacional Determinación de la cuenta corriente Parte 2 20 de mayo 2009 1. Dinámica comparativa (Análisis de shocks a la CC El problema de optimización dado por (5 se puede resolver

Más detalles

Teoría Moderna de Control Lineal

Teoría Moderna de Control Lineal Teoría Moderna de Control Lineal 2 Índice general 1. Sistemas lineales determinísticos multivariables, invariantes, continuos 1 1.1. Introducción....................................... 1 1.1.1. Descripción

Más detalles

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax.

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax. Examen Final de Ecuaciones Diferenciales Fecha: 7 de junio de 013 3 Problemas (7.5 puntos) Tiempo total: horas 30 minutos Problema 1 [.5 puntos]. Consideramos la matriz A = α 1 0 1 α 0, α R, 0 0 cuyos

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

Problemas resueltos del Boletín 1

Problemas resueltos del Boletín 1 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín Problema. Dada la curva r (t) = t [0, π], parametrizarla naturalmente. ( (cos t + t sen t), (sen t t cos t), t ), con En primer

Más detalles

Clase 3: Teoría Macroeconómica II

Clase 3: Teoría Macroeconómica II Clase 3: Teoría Macroeconómica II Carlos Rojas Quiroz UNI 17 de abril del 2017 Carlos Rojas Quiroz (UNI) Clase 3 17 de abril del 2017 1 / 30 Contenido 1 Equilibrio Comportamiento del consumo Comportamiento

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Clase 4: Modelo de Campbell (1994)

Clase 4: Modelo de Campbell (1994) Clase 4: de Campbell (1994) Macrodinámica I Hamilton Galindo Junio - Agosto 2015 Bosquejo de la clase Paper base 1 Paper base 2 Descripción Ecuaciones principales Ecuaciones log-lineal Método de coeficientes

Más detalles

OPTIMIZACIÓN DINÁMICA

OPTIMIZACIÓN DINÁMICA OPTIMIZACIÓN DINÁMICA Francisco Alvarez González fralvare@ccee.ucm.es TEMA 6 Algunas aplicaciones del principio del máximo de Pontryagin 1. Modelo de Ramsey en horizonte finito sin descuento.. Recursos

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales Semana 8 - Clase 5// Tema 4: Sistemas y Series Sistemas de Ecuaciones Diferenciales Cuando consideramos la evolución de sistemas con varios grados de libertad o con varias partículas, naturalmente arribamos

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Existencia y Unicidad de soluciones

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Existencia y Unicidad de soluciones Lección 4 Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Existencia y Unicidad de soluciones 4.1. Introducción Cuando aplicamos técnicas cualitativas para estudiar los problemas

Más detalles

Clase 2: Modelo de Long y Plosser (1983)

Clase 2: Modelo de Long y Plosser (1983) Clase 2: Modelo de Long y Plosser (1983) Macrodinámica I Hamilton Galindo Junio - Agosto 215 Contenido Características del modelo 1 Características del modelo Supuestos del modelo Función de utilidad 2

Más detalles

Clase 12: El modelo básico de equilibrio general dinámico

Clase 12: El modelo básico de equilibrio general dinámico Clase 12: El modelo básico de equilibrio general dinámico José L. Torres Universidad de Málaga Macroeconomía Avanzada José L. Torres (Universidad de Málaga) Clase 12: Equilibrio general dinámico Macroeconomía

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos numéricos para EDOs Complementos de Matemáticas, ITT Telemática Tema 4. Solución numérica de problemas de valor inicial para ecuaciones diferenciales ordinarias Departamento de Matemáticas,

Más detalles

Ecuaciones Diferenciales I (C - piloto) Soluciones del parcialillo 1 (29/10/08)

Ecuaciones Diferenciales I (C - piloto) Soluciones del parcialillo 1 (29/10/08) Ecuaciones Diferenciales I (C - piloto) Soluciones del parcialillo (9//8) Sea y = by+t t a] Si b=, hallar su solución general y dibujar isoclinas y curvas integrales b] Discutir la estabilidad de la solución

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Consistencia, Estabilidad y Convergencia

Consistencia, Estabilidad y Convergencia Consistencia, Estabilidad y Convergencia 1. étodos a un paso Para aproximar la solución x = x(t) del problema de valores iniciales (PVI) x = f(t, x) a t b x(a) = α consideramos el método numérico a un

Más detalles

Métodos Multipaso lineales

Métodos Multipaso lineales Elementos de Cálculo Numérico - Cálculo Numérico Segundo Cuatrimestre de 2008 (FCEN - UBA) Métodos Multipaso lineales Consideramos el problema de valores iniciales (PVI) y = f(x, y) a x b y(a) = α Dado

Más detalles

Apuntes sobre el modelo de Ramsey

Apuntes sobre el modelo de Ramsey Apuntes sobre el modelo de Ramsey Teoría Macroeconómica IV: Crecimiento Económico Profesor: Fernando García-Belenguer Campos Dos modelos de elección intertemporal. Un modelo de elección intertemporal de

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

MODELO DE SOBREREACCIÓN DEL TIPO DE CAMBIO Versión preliminar e inconclusa

MODELO DE SOBREREACCIÓN DEL TIPO DE CAMBIO Versión preliminar e inconclusa MODELO DE SOBREREACCIÓN DEL TIPO DE CAMBIO Versión preliminar e inconclusa DERRY QUINTANA AGUILAR derryquintana@yaoo.es economatrix_group@yaoo.es ttp://www.economatrix.es.mw Lima, enero del 2004 Dornbusc

Más detalles

Polinomios ortogonales. Polinomios de Legendre Polinomios de Hermite Polinomios de Laguerre

Polinomios ortogonales. Polinomios de Legendre Polinomios de Hermite Polinomios de Laguerre Polinomios ortogonales Polinomios de Legendre Polinomios de Hermite Polinomios de Laguerre Ec. de Legendre de orden α (1 t 2 )x (t) 2tx (t) + α(α + 1)x(t) = 0. α es un parámetro real. Surge al resolver

Más detalles

Capítulo 2: La contabilidad del crecimiento

Capítulo 2: La contabilidad del crecimiento Índice Curso 2009-10 Índice Índice 1 Modelización económica 2 La función de producción agregada 3 La contabilidad del crecimiento Modelización económica Trade-off para teorías: Cuanto más cerca a los datos,

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Sistemas de Control lineal óptimo con realimentación de estado

Sistemas de Control lineal óptimo con realimentación de estado Capítulo 5 Sistemas de Control lineal óptimo con realimentación de estado La principal restricción de este sistema de control es suponer que se puede medir en todo instante de tiempo el estado completo

Más detalles

Índice de diapositivas en Tr2009_5_Ramsey_continuo.doc

Índice de diapositivas en Tr2009_5_Ramsey_continuo.doc Departamento de Economía, Facultad de Ciencias Sociales, Universidad de la República, Uruguay Maestría en Economía Internacional 2009. Macroeconomía. Alvaro Forteza Índice de diapositivas en Tr2009_5_Ramsey_continuo.doc

Más detalles

No usar por academias

No usar por academias ECUACIONES DIFERENCIALES I Grupo D 1 de septiembre de 003 Apellidos: Nombre: D.N.I.: Firma: 1. Considérese la ecuación y = 1 + y x. i) Hallar su solución general. ii) Dibujar aproximadamente sus curvas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Tema 9 Ecuaciones diferenciales ordinarias Versión: 13 de mayo de 29 9.1 Introducción El objetivo de este tema es exponer muy brevemente algunos de los conceptos básicos relacionados con las ecuaciones

Más detalles

MATEMÁTICAS II Notas de clase

MATEMÁTICAS II Notas de clase MATEMÁTICAS II Notas de clase Ramón Espinosa Departamento de Matemáticas, ITAM Resumen El propósito de estas notas es presentar algunos temas que se ven en el curso de Matemáticas II en el ITAM. En particular

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva 2, Ejercicio 4, Opción A Reserva

Más detalles

Tema 3: Crecimiento económico

Tema 3: Crecimiento económico Tema 3: Crecimiento económico Maribel Jiménez Abril de 2015 Desarrollo Económico Facultad de Ciencias Económicas - UNSa Esta clase en una filmina 1 Tasa de crecimiento 2 Modelos de crecimiento económico

Más detalles

Ecuaciones Diferenciales Ordinarias MA26A Sistemas No Lineales

Ecuaciones Diferenciales Ordinarias MA26A Sistemas No Lineales Ecuaciones Diferenciales Ordinarias MA26A Sistemas No Lineales Profesor: Axel Osses, Auxiliares: Jorge Lemus,Oscar Peredo 7 de Noviembre del 2005 1. Definiciones y Propiedades Definición 1 (SNLA). Dado

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden.

MATEMÁTICAS ESPECIALES II PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. MATEMÁTICAS ESPECIALES II - 8 PRÁCTICA 5 Parte I - Sistemas de ecuaciones diferenciales de primer orden. Considere el sistema de ecuaciones diferenciales ordinarias (EDOs) de primer orden dx dt = f (t,

Más detalles

1. Hay otro uso de fondos-inversión. Así demanda agregada es C + I 2. Desplazamientos de la función de producción

1. Hay otro uso de fondos-inversión. Así demanda agregada es C + I 2. Desplazamientos de la función de producción 1 I. La Inversión-ejemplos específicos A. La inclusión de inversión implica dos cambios importantes en el modelo. 1. Hay otro uso de fondos-inversión. Así demanda agregada es C + I 2. Desplazamientos de

Más detalles

Modelos malthusianos. Tema 3. Ecuaciones diferenciales. Modelo de Malthus discreto. Modelos malthusianos. Ejemplo

Modelos malthusianos. Tema 3. Ecuaciones diferenciales. Modelo de Malthus discreto. Modelos malthusianos. Ejemplo Tema 3. Ecuaciones diferenciales Las ecuaciones diferenciales son una potente herramienta matemática para elaborar modelos. En una ecuación diferencial la incógnita es una función. Una ecuación expresa

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Formulación variacional de la estimación del movimiento en uidos incompresibles a partir de secuencias PIV

Formulación variacional de la estimación del movimiento en uidos incompresibles a partir de secuencias PIV Formulación variacional de la estimación del movimiento en uidos incompresibles a partir de secuencias PIV Luis Alvarez Univ. Las Palmas de G.C. Mayo 2009 Luis Alvarez (Univ. Las Palmas de G.C. ) Modelos

Más detalles

Interpretación Gráfica

Interpretación Gráfica Matemáticas Aplicadas MA101 Semana 04 Interpretaciones Gráficas de las EDO EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Interpretación

Más detalles

Tema 3. Ecuaciones diferenciales

Tema 3. Ecuaciones diferenciales Tema 3. Ecuaciones diferenciales 1 / 39 Las ecuaciones diferenciales son una potente herramienta matemática para elaborar modelos. En una ecuación diferencial la incógnita es una función. Una ecuación

Más detalles

ECUACIONES Y SISTEMAS EN DIFERENCIAS

ECUACIONES Y SISTEMAS EN DIFERENCIAS Tema 9 ECUACIONES Y SISTEMAS EN DIFERENCIAS 9.1. Introducción En ocasiones, al construir un modelo matemático interesa elegir una variable que tome valores discretos. Así ocurre, por ejemplo, con el tiempo,

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

Capítulo 3: Acumulación de capital y crecimiento (I). El modelo de Harrod-Domar

Capítulo 3: Acumulación de capital y crecimiento (I). El modelo de Harrod-Domar Índice Capítulo 3: Acumulación de capital y crecimiento (I). El modelo de Harrod-Domar Curso 2008-09 Índice Índice 1 Un poco de matemáticas 2 Población e inversión 3 La teoría de la brecha financiera 4

Más detalles

Reacciones Químicas. (molaridad) pues una mol de sustancia química contiene el mismo número de moléculas.

Reacciones Químicas. (molaridad) pues una mol de sustancia química contiene el mismo número de moléculas. Reacciones Químicas Consideremos una reacción química que ocurre en una disolución bien mezclada. Se supondrá que la reacción es irreversible y que ningún otro proceso se lleva a cabo para afectar la cantidad

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas

AMPLIACIÓN DE MATEMÁTICAS. Curso 2013/14 Examen final de junio Teoría y Problemas AMPLIACIÓN DE MATEMÁTICAS. Curso 23/4 Examen final de junio. 8 6 24 Teoría y Problemas. Contestar a las siguientes cuestiones: (a) (.5 puntos) Dada una función :[ ) R de clase,demostrarlafórmula L[ ]()

Más detalles

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

INTRODUCCION A LAS ECUACIONES DIFERENCIALES TEMA N o INTRODUCCION A LAS ECUACIONES DIFERENCIALES De nición. Una ecuación diferencial, es una ecuación que establece una relación de una o más varibales dependientes y sus derivadas con respecto a una

Más detalles

Matemáticas Empresariales I Lección 10 Ecuaciones Dinámicas

Matemáticas Empresariales I Lección 10 Ecuaciones Dinámicas Matemáticas Empresariales I Lección 10 Ecuaciones Dinámicas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 19 Ecuaciones Dinámicas Modelizar de forma

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales En las materias de análisis estudiamos las propiedades de funciones y definimos distintas operaciones entre ellas tales como suma, producto, composición, tomar derivada o primitiva, entre otras. Es natural

Más detalles

Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera (Eco-44105), 2015 Mercados de activos financieros: un ejemplo

Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera (Eco-44105), 2015 Mercados de activos financieros: un ejemplo Instituto Tecnológico Autónomo de México Maestría en Finanzas Economía Financiera Eco-4405, 205 Mercados de activos financieros: un ejemplo Ricard Torres Índice general Estructura básica 2 Óptimos de Pareto

Más detalles

Solución Práctica 3 - Primer Trimestre

Solución Práctica 3 - Primer Trimestre Solución Práctica 3 - Primer Trimestre Ecuaciones diferenciales y Estabilidad en tiempo continuo Ejercicio 1.- La dinámica del precio de mercado. Suponga un modelo de un solo mercado, donde las funciones

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

2. Métodos analíticos para la resolución de ecuaciones diferenciales de primer orden

2. Métodos analíticos para la resolución de ecuaciones diferenciales de primer orden E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 7: EDO s de primer orden Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS

COLEGIO UNIVERSITARIO CARDENAL CISNEROS COLEGIO UNIVERSITARIO CARDENAL CISNEROS Apuntes de Matemáticas Empresariales I Tema 4 Ecuaciones Dinámicas Manuel León Navarro 1. Lección 10 - Ecuaciones dinámicas En este tema se estudiaran las ecuaciones

Más detalles

Profesora Margarita Ospina (coordinadora del curso y autora del texto) SISTEMAS DE ECUACIONES LINEALES

Profesora Margarita Ospina (coordinadora del curso y autora del texto) SISTEMAS DE ECUACIONES LINEALES MATEMÁTICAS BÁSICAS PARA CH Y CS Y PRECÁLCULO PRIMER SEMESTRE DE 01 MATERIAL COMPLEMENTARIO AL TEMA 8 DE PRECÁLCULO Y AL TEMA 6 DE MATEMÁTICAS BÁSICAS PARA CH Y CS. Tema útil para desarrollar los ejercicios

Más detalles

Tema 2: Consumo versus Trabajo

Tema 2: Consumo versus Trabajo Tema 2: Consumo versus Trabajo Teoría Macroeconomica III Universidad Autónoma de Madrid Octubre 2010 Teoría Macroeconomica III (UAM) Tema 2: Consumo versus Trabajo Octubre 2010 1 / 53 1 La Economía de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

Bloque 1: Función de producción neoclásica y tasas de crecimiento

Bloque 1: Función de producción neoclásica y tasas de crecimiento Hoja de ejercicios 1. Grupo 88 Macroeconomía IV: Crecimiento Económico Febrero 2012 Prof. Fernando García-Belenguer Campos Bloque 1: Función de producción neoclásica y tasas de crecimiento 1. Compruebe

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA N o ECUACIONES DIFERENCIALES DE PRIMER ORDEN En general una ecuación diferencial de primer orden se puede escribir de la siguiente manera: F (; y; y 0 ) = 0 (Forma Implicíta) Sí en está ecuación es

Más detalles

Sistemas autónomos. Introducción a la teoría cualitativa.

Sistemas autónomos. Introducción a la teoría cualitativa. Lección 4 Sistemas autónomos. Introducción a la teoría cualitativa. 4.1 Sistemas autónomos. Mapas de fase. En esta lección nos centraremos en el estudio de sistemas autónomos, es decir, aquellos que pueden

Más detalles

f(x(t), y(t), z(t)) = k

f(x(t), y(t), z(t)) = k Plano tangente a cuádrica Cada una de las supercies cuádricas es el lugar geométrico de los punto del espacio que satisfacen una ecuación polinomial en tres variables, el problema de dar un método para

Más detalles

y tenemos que f(x) > M < 1 M 1 f(x) < 1 M 3x 5 (x 2) 2 = +

y tenemos que f(x) > M < 1 M 1 f(x) < 1 M 3x 5 (x 2) 2 = + Teorema. Suponga que f() > 0 ( 0 δ, 0 + δ) donde 0 es punto de acumulación del Dom f, Demostración. ( ) Supongamos que esto quiere decir f() = + 0 f() = + 0 0 M > 0 R δ > 0 A con 0 < 0 < δ f() > M si M

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2014/15 Examen final Análisis Complejo

AMPLIACIÓN DE MATEMÁTICAS. Curso 2014/15 Examen final Análisis Complejo AMPLIACIÓN DE MATEMÁTICAS. Curso 04/5 Examen final. 0 7 05 Análisis Complejo Nombre y apellidos: DNI: En los ejercicios prácticos se valorará que estén explicados, indicando qué resultado o propiedad se

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli de aplicación económica Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo

Más detalles

Ejercicio 1 de la Opción A del modelo 2 de Solución

Ejercicio 1 de la Opción A del modelo 2 de Solución Ejercicio 1 de la Opción A del modelo 2 de 2003 En la figura adjunta puedes ver representada parte de la gráfica de una función f que está definida en el intervalo (-3, 3) y que es simétrica respecto al

Más detalles

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada CONTROL MODERNO Y ÓPTIMO (MT 227B) Clase09-03 Elizabeth Villota En esta parte presentaremos

Más detalles

Por lo tanto, son linealmente independientes y la dimensión de E 1 es 3. Veamos el otro subespacio:

Por lo tanto, son linealmente independientes y la dimensión de E 1 es 3. Veamos el otro subespacio: Problema. (6 puntos) La empresa Pantone Inc. ideó el sistema de representación de colores conocido como Hexachrome (también llamado CMYKOG) que permitía imprimir las imágenes con una reproducción de los

Más detalles

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes Fecha: 25 de junio de 2 Problema [2 puntos] Conviene recordar los problemas Depósito de salmuera y Grandes Lagos En los primeros apartados se preparan algunos cálculos previos [4 p] a) Resolver la EDO

Más detalles

2 2 y 2 +p(y) 2 y U= y y4 +q( ) y y 2 = C y = ± 4 +C 2. z = 2z. y 2y z = C y 2 1 y 2

2 2 y 2 +p(y) 2 y U= y y4 +q( ) y y 2 = C y = ± 4 +C 2. z = 2z. y 2y z = C y 2 1 y 2 Ecuaciones Diferenciales I (C - piloto) Soluciones del parcialillo (8//9) Sea dy d y +y a] Resolverla por dos de estos tres caminos: i) hallando un factor integrante g(y), ii) como homogénea, iii) como

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

AUTOVECTORES GENERALIZADOS Y SOLUCIONES DE SEDL HOMOGÉNEAS A COEFICIENTES CONSTANTES

AUTOVECTORES GENERALIZADOS Y SOLUCIONES DE SEDL HOMOGÉNEAS A COEFICIENTES CONSTANTES AUTOVECTORES GENERALIZADOS Y SOLUCIONES DE SEDL HOMOGÉNEAS A COEFICIENTES CONSTANTES JOSÉ CARLOS MARTÍN Damos en estas notas una forma alternativa a la dada en [], para calcular las soluciones de un sistema

Más detalles

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0. CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión

Más detalles