Transformada discreta de Fourier

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transformada discreta de Fourier"

Transcripción

1 Transormada discreta de Fourier Convolución en el espacio = multiplicación de la TDF de la imagen por la TDF de la respuesta impulsional del iltro. Mayor rapidez de aplicación (algoritmo FFT) Permite aplicar iltros diseñados mediante técnicas de tratamiento de señal (versiones discretas de iltros analógicos conocidos: Butterworth, Chebychev, Elipticos) Principal aplicación: eliminación de ruído, iltrado de ciertas recuencias Otras aplicaciones: detección de movimiento, detección de patrones repetidos. T4. Filtrado. Dominio de la recuencia Transormada discreta de Fourier Transormada continua de Fourier (D) (TF) Todo el desarrollo matemático del tema se verá en clase. En estas notas solo se dan las principales ideas. Una señal continua variable, escalar (D), variable con el tiempo o el espacio, puede también expresarse en unción de la recuencia. h(t) <-> H() Frecuencia: Nueva variable, inversa del periodo espacial o temporal. Esta transormación es reversible: transormada de Fourier y transormada inversa de Fourier T4. Filtrado. Dominio de la recuencia 2

2 Transormada discreta de Fourier La Convolución entre dos señales, la Correlación entre dos señales, la Autocorrelación, la densidad espectral de potencia de una señal, y la potencia total de una señal, pueden expresarse en el dominio de la recuencia a partir de las transormadas de Fourier de las señales. Especialmente, la convolución en el dominio del tiempo o del espacio se convierte en una multiplicación en el dominio de la recuencia. Esto hace más sencilla la aplicación de iltros en el dominio de la recuencia. Dichos iltros pueden ser muy complicados en cuanto a su diseño, tener una respuesta impulsional grande, pero su aplicación en el dominio de la recuencia es siempre sencilla: una multiplicación. T4. Filtrado. Dominio de la recuencia 3 Transormada discreta de Fourier Transormada discreta de Fourier (D) (TDF) La TDF se deduce a partir de TF para señales discretas. Se aplican los conceptos de muestreo y reconstrucción. Aparece el enómeno de aliasing, solo existe un zona limitada de recuencias únicas, la mayor recuencia alcanzable en una señal discreta es /2 (recuéncia crítica de Nyquist). Las imágenes son señales de 2 dimensiones ya discretizadas, aunque normalmente no se conoce (ni importa) el periodo de muestreo (distancia entre píxeles). Por ello se suele tomar periodo de muestreo =. Es decir, = pixel, las recuencias se medirán en píxeles -. T4. Filtrado. Dominio de la recuencia 4

3 Transormada discreta de Fourier Transormada rápida de Fourier (D) (FFT) La FFT (Fast Fourier Transorm) es simplemente un algoritmo rápido para calcular la TDF. La aplicación de la órmula de la TDF, en D, tiene un coste cuadrático O(N 2 ). La FFT tiene un coste O(N logn) En 2D la TDF tiene un coste O(N 4 ). La FFT tiene un coste O( (N logn) 2 ) El algoritmo es debido a Danielson-Lanczos, 942. Requiere que la señales tengan una dimensión potencia de 2. En imágenes tanto ilas como columnas han de ser potencia de 2. T4. Filtrado. Dominio de la recuencia 5 Transormada discreta de Fourier Frecuencias en la TDF de una imagen La TDF de una imagen (real) es compleja. Normalmente la guardaremos en dos imágenes, donde los índices de ila y columna representan índices de recuencias verticales y horizontales. Al ser la imagen una señal real la parte real de la TDF es simétrica, y la parte imaginaria antisimétrica. Por tanto el módulo de la TDF es simétrico y la ase antisimétrica. Debido a la simetría existe una zona de recuencias únicas, que va de 0 a N/2 y de 0 a M/2 en una imagen de N x M. Las zonas restantes son relexiones de la zona única. T4. Filtrado. Dominio de la recuencia 6

4 Transormada discreta de Fourier Filtro de Buterworth Para realizar un iltrado en el dominio de la recuencia hay que multiplicar la TDF de la imagen por la TDF de la respuesta impulsional de iltro. Normalmente se conoce ya la TDF del iltro. Existen iltros muy usados en tratamiento de señal analógica, el más sencillo es el iltro de Butterworth. La expresión de un iltro de Butterworth paso bajo con recuencia de corte, es: En D: A( ) = 2n En 2D: + A(, ) = 2 + 2n + 2n 2 T4. Filtrado. Dominio de la recuencia 7 Transormada discreta de Fourier n: orden del iltro. Indica la caída de ganancia en la zona de transición entre la banda de paso y la banda eliminada. Dicha caída es de 20n db/década. El iltro de Butterworth tiene respuesta maximalmente plana en la zona de paso (=0) y en la zona eliminada (=ininito). Las recuencias de las expresiones anteriores son recuencias continuas. Se deben calcular a partir de la recuencia discreta, y esta a partir de los índices de recuencia, para poder multiplicar la TDF de una imagen por la TDF de un iltro de Butterworth: Índice de recuencia -> rec. discreta -> rec. Continua -> -> ormula del iltro de Butterworth T4. Filtrado. Dominio de la recuencia 8

5 Transormada discreta de Fourier Para aplicar técnicas de análisis de señal continua a señales discretas es necesario realizar una aproximación de la recuencia continua a discreta, pues la recuencia continua tiene un rango ininito y la recuencia discreta va de 0 a ½. Una de las aproximaciones más usadas es la tranormación bilineal, cuyo undamento transciende este curso, pero puede hallarse en cualquier libro de teoría de control. En dicha transormación la relación entre recuencias es: = tg π ( π ) continua discreta T4. Filtrado. Dominio de la recuencia 9 Transormada discreta de Fourier A partir de la expresión del iltro paso bajo de orden n y recuencia de corte, se pueden obtener, mediante cambios de variable, iltros con otra recuencia de corte y otros comportamientos: Filtro paso bajo: ' = 0 Filtro paso alto: ' = 0 Filtro paso banda: Filtro elimina banda: ' = + ' = 2 2 c, b = sup in, c = b b c sup in T4. Filtrado. Dominio de la recuencia 0

6 Manipulación del nivel de gris Bibliograía Numerical Recipes in C, the art o scientiic computing. Cambridge University Press. Capítulos 2 y 3. ( T4. Filtrado. Dominio de la recuencia

TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA.

TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA. TEMA 5 PROCESADO DE IMÁGENES EN EL DOMINIO DE LA FRECUENCIA. 1. - INTRODUCCIÓN Las operaciones que hemos realizado hasta ahora sobre una imagen, se realizaron en el dominio espacial, es decir, trabajando

Más detalles

Procesamiento de Imágenes

Procesamiento de Imágenes Procesamiento de Imágenes Curso 011 - Clase Filtros Espaciales Filtrado espacial Ya trabajamos procesando sólo al piel individualmente. Ahora vamos a hacer un procesamiento en una vecindad de cada piel.

Más detalles

Practica 5: Ventanas espectrales

Practica 5: Ventanas espectrales 1 Practica 5: Ventanas espectrales 2 1. Objetivos El objetivo principal es mostrar un amplio número de ventanas y una forma sencilla de caracterizarlas, así como la comparación de sus propiedades. 2. Ventanas

Más detalles

Funciones y sus gráficas

Funciones y sus gráficas Funciones y sus gráficas El concepto de función es de suma importancia en la matemática moderna, debido a esto vamos a estudiar este tema de una manera un poco detallada. Dos conjuntos de números, por

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Filtrado en el Dominio de la

Filtrado en el Dominio de la Filtrado en el Dominio de la Frecuencia Matlab para realizar una transformada discreta de Fourier a una matriz MxN usa el algoritmo: Transformada Rápida de Fourier (Fast Fourier Transform): F = fft2(f);

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

Una cita. importante

Una cita. importante Una cita importante Una cita importante La Consejería de Salud y Bienestar Social del gobierno de Castilla-La Mancha realiza un programa de detección precoz de cáncer de mama que ofrece gratuitamente a

Más detalles

FILTRADO DE IMÁGENES

FILTRADO DE IMÁGENES FILTRADO DE IMÁGENES 1 INDICE RUIDO Qué es el ruido? Tipos de ruido TECNICAS DE FILTRADO EN DOMINIO ESPACIAL Promediado de imágenes Filtros de orden Filtros de medias DOMINIO FRECUENCIAL FUNCIONES EN MATLAB

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

TEMA 5: HOJAS DE CÁLCULO. Edición de hojas de cálculo con OpenOffice Calc

TEMA 5: HOJAS DE CÁLCULO. Edición de hojas de cálculo con OpenOffice Calc TEMA 5: HOJAS DE CÁLCULO Edición de hojas de cálculo con OpenOffice Calc Qué vamos a ver? Qué es una hoja de cálculo y para qué sirve El entorno de trabajo de OpenOffice Calc Edición básica de hojas de

Más detalles

mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected]

mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Divisores de un número entero 2 2. Máximo común divisor

Más detalles

3. Equivalencia y congruencia de matrices.

3. Equivalencia y congruencia de matrices. 3. Equivalencia y congruencia de matrices. 1 Transformaciones elementales. 1.1 Operaciones elementales de fila. Las operaciones elementales de fila son: 1. H ij : Permuta la fila i con la fila j. 2. H

Más detalles

Relaciones entre conjuntos

Relaciones entre conjuntos Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto

Más detalles

Profr. Efraín Soto Apolinar. Función exponencial

Profr. Efraín Soto Apolinar. Función exponencial Función eponencial La función eponencial viene de la generalización de la función polinomial. Si consideramos la función: =, por ejemplo, cabe preguntarnos, «cómo se comportaría la función si cambiamos

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

LOS ANALIZADORES DE ESPECTROS. Ing. Rene Taquire Profesor Aux. TC.

LOS ANALIZADORES DE ESPECTROS. Ing. Rene Taquire Profesor Aux. TC. LOS ANALIZADORES DE ESPECTROS Ing. Rene Taquire Proesor Aux. TC. OBJETIVOS: En este tema vamos a abordar el estudio de los equipos que analizan la señal en el dominio de la recuencia, en concreto de los

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

Servicio de groupware

Servicio de groupware Servicio de groupware El groupware, también conocido como software colaborativo, es el conjunto de aplicaciones que integran el trabajo de distintos usuarios en proyectos comunes. Cada usuario puede conectarse

Más detalles

Filtros en el dominio de la frecuencia

Filtros en el dominio de la frecuencia Filtros en el dominio de la frecuencia Fundamentos de procesamiento de imágenes IIC / IEE 3713 1er semestre 2011 Cristián Tejos Basado en material desarrollado por Marcelo Guarini, Domingo Mery, libro

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad.

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad. MINERIA DE DATOS PREPROCESAMIENTO: LIMPIEZA Y TRANSFORMACIÓN El éxito de un proceso de minería de datos depende no sólo de tener todos los datos necesarios (una buena recopilación) sino de que éstos estén

Más detalles

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL

LABORATORIO Nº 2 GUÍA PARA REALIZAR FORMULAS EN EXCEL OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar formulas en Microsoft Excel 2010. 1) DEFINICIÓN Una fórmula de Excel es un código especial que introducimos

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Plataforma Helvia. Manual de Administración. Bitácora. Versión 6.06.04

Plataforma Helvia. Manual de Administración. Bitácora. Versión 6.06.04 Plataforma Helvia Manual de Administración Bitácora Versión 6.06.04 ÍNDICE Acceso a la administración de la Bitácora... 3 Interfaz Gráfica... 3 Publicaciones... 4 Cómo Agregar una Publicación... 4 Cómo

Más detalles

Manual Usuario Wordpress. Índice

Manual Usuario Wordpress. Índice 2 Índice 1. Manual usuario...2 1.1 Zona de mensajes...2 1.2 Zona de usuarios...5 1.2.1 Identificarse...5 1.2.2 Registrarse...6 1.3 Categorías...6 1.4 Subscribirse...6 1.5 Archivos...7 1.6 Calendario...7

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Manual etime para supervisores

Manual etime para supervisores Contenido Introducción...3 Empezando a usar etime...4 Cómo entrar a etime?...5 *Cambiar su propia contraseña...5 Partes de pantalla principal...6 Funcionamiento estándar de las pantallas de captura...7

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO

2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO 2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO 18 Introducción Hasta ahora hemos visto como abrir una imagen para tratarla en Photoshop CS3, y a guardarla en cualquiera de los estados en los que se encuentre en

Más detalles

102784 [20380] Visió per Computador Prueba 1 (2015) [A] Teoría (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada)

102784 [20380] Visió per Computador Prueba 1 (2015) [A] Teoría (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada) 102784 [20380] Visió per Computador Prueba 1 (2015) [A] Teoría (10p) (una pregunta test fallada descuenta 1/4 de pregunta acertada) 1. El gap del silicio es de 1.11eV (salto energético entre banda de valencia

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Un Apunte de Funciones "Introducción al Cálculo Dif. e Int."

Un Apunte de Funciones Introducción al Cálculo Dif. e Int. Un Apunte de Funciones "Introducción al Cálculo Dif. e Int." Las funciones son relaciones, las cuales, lo que hacen es tomar un elemento de un conjunto de partida (dominio) y transformarlo en otra cosa,

Más detalles

HERRAMIENTAS DE PHOTOSHOP

HERRAMIENTAS DE PHOTOSHOP HERRAMIENTAS DE PHOTOSHOP Photoshop nos ofrece 22 herramientas básicas con 54 variaciones, que nos permitirán modificar y crear nuestras imágenes. Todas las herramientas se activan con un clic y si mantienes

Más detalles

Ejercicio Nº 3: Realizar aumentos en una Tabla de Sueldos

Ejercicio Nº 3: Realizar aumentos en una Tabla de Sueldos SESION5: BASE DE DATOS PLANILLAS Ejercicio Nº : Realizar aumentos en una Tabla de Sueldos Veamos pues. En la hoja de calculo se tiene la Tabla de Sueldos de varios empleados (aquí ahora vemos solo empleados,

Más detalles

2. Aritmética modular Ejercicios resueltos

2. Aritmética modular Ejercicios resueltos 2. Aritmética modular Ejercicios resueltos Ejercicio 2.1 Probar, mediante congruencias, que 3 2n+5 + 2 4n+1 es divisible por 7 cualquiera que sea el entero n 1. Trabajando módulo 7 se tiene que 3 2n+5

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Operación de Microsoft Excel. Guía del Usuario Página 79. Centro de Capacitación en Informática

Operación de Microsoft Excel. Guía del Usuario Página 79. Centro de Capacitación en Informática Manejo básico de base de datos Unas de las capacidades de Excel es la de trabajar con listas o tablas de información: nombres, direcciones, teléfonos, etc. Excel puede trabajar con tablas de información

Más detalles

Software para Seguimiento de Clientes. Descripción del Producto

Software para Seguimiento de Clientes. Descripción del Producto Software para Seguimiento de Clientes Descripción del Producto Descripción del Sistema Es un completo sistema que permite tener un mejor control y manejo sobre clientes antiguos y nuevos, ya que permite

Más detalles

Modelos y Bases de Datos

Modelos y Bases de Datos Modelos y Bases de Datos MODELOS Y BASES DE DATOS 1 Sesión No. 8 Nombre: Normalización de base de datos Contextualización Sabes cuál es su proceso de la normalización? Tomando en cuenta todos los conceptos

Más detalles

Generación de números aleatorios

Generación de números aleatorios Generación de números aleatorios Marcos García González (h[e]rtz) Verano 2004 Documento facilitado por la realización de la asignatura Métodos informáticos de la física de segundo curso en la universidad

Más detalles

Funciones uno-uno, sobre y biunívocas

Funciones uno-uno, sobre y biunívocas Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo

Más detalles

Necesidades de agua en humedales costeros

Necesidades de agua en humedales costeros Autoridad Nacional del Agua ANA Necesidades de agua en humedales costeros Erick García Gonzales Especialista DCPRH ANA NECESIDADES DE AGUA EN HUMEDALES COSTEROS Erick García Gonzales-Especialista DCPRH,

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Conclusiones. Particionado Consciente de los Datos

Conclusiones. Particionado Consciente de los Datos Capítulo 6 Conclusiones Una de las principales conclusiones que se extraen de esta tesis es que para que un algoritmo de ordenación sea el más rápido para cualquier conjunto de datos a ordenar, debe ser

Más detalles

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística.

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Índice General 1 PRACTICAS CON MATHEMATICA 2 1.1 Introducción...

Más detalles

Aplicaciones lineales

Aplicaciones lineales aplicaciones_lineales.nb Aplicaciones lineales Práctica de Álgebra Lineal, E.U.A.T, Grupos ºA y ºB, 005 Aplicaciones lineales y matrices Hay una relación muy estrecha entre aplicaciones lineales y matrices:

Más detalles

MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0

MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 José Antonio Guijarro Guijarro Profesor de Secundaria Especialidad de Informática Profesor Técnico de F.P. Especialidad de Sistemas

Más detalles

Introducción a la Teoría del Procesamiento Digital de Señales de Audio

Introducción a la Teoría del Procesamiento Digital de Señales de Audio Introducción a la Teoría del Procesamiento Digital de Señales de Audio Transformada de Fourier Resumen el análisis de Fourier es un conjunto de técnicas matemáticas basadas en descomponer una señal en

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

PRÁCTICAS DE GESTIÓN GANADERA:

PRÁCTICAS DE GESTIÓN GANADERA: PRÁCTICAS DE GESTIÓN GANADERA: MANEJO DE HOJA DE CÁCULO (EXCEL) 1. INTRODUCCIÓN AL MANEJO DE EXCEL La pantalla del programa consta de una barra de herramientas principal y de una amplia cuadrícula compuesta

Más detalles

INSTRUCTIVO DEL COMANDO MAKE

INSTRUCTIVO DEL COMANDO MAKE INSTRUCTIVO DEL COMANDO MAKE Introducción Un programa escrito en C está normalmente compuesto por varios archivos. Estos archivos se van modificando según se va completando o cambiando el programa. Cada

Más detalles

Capítulo 6 Filtrado en el Dominio de la Frecuencia

Capítulo 6 Filtrado en el Dominio de la Frecuencia Capítulo 6 Filtrado en el Dominio de la Frecuencia...39 6. Método en el Dominio de la Frecuencia...39 6. Filtros Espaciales en la frecuencia...40 6.. Convolución Lineal y la Transformada Discreta de Fourier...45

Más detalles

Funciones elementales

Funciones elementales Funciones elementales En este capítulo repasamos las funciones elementales: polinómicas, exponenciales, logarítmicas, trigonométricas y trigonométricas inversas. Utilizaremos la representación gráfica

Más detalles

CREACIÓN DE E-POSTERS CON POWER POINT (Instructivo preparado por la Dra. PaulaOtero)

CREACIÓN DE E-POSTERS CON POWER POINT (Instructivo preparado por la Dra. PaulaOtero) CREACIÓN DE E-POSTERS CON POWER POINT (Instructivo preparado por la Dra. PaulaOtero) Abrir el programa POWER POINT desde el menú INICIO TODOS LOS PROGRAMAS MICROSOFT OFFICE MICROSOFT OFFICE POWER POINT

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

Equipos generadores de señal. - Introducción - Generadores de función analógicos - Generadores de función digitales: DDS y AWG

Equipos generadores de señal. - Introducción - Generadores de función analógicos - Generadores de función digitales: DDS y AWG - Introducción - Generadores de función analógicos - : DDS y AWG Introducción Los generadores de función también se denominan sintetizadores de función o multifunción y pueden generar distintas formas

Más detalles

Tutorial Sistema de indicadores Observatorio de la Persona Joven

Tutorial Sistema de indicadores Observatorio de la Persona Joven 1 Tutorial Sistema de indicadores Observatorio de la Persona Joven ESTADÍSTICAS Por este medio, usted puede consultar, información estadística básica, necesaria para analizar las tendencias anuales de

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

CAPÍTULO V METODOLOGÍA

CAPÍTULO V METODOLOGÍA CAPÍTULO V METODOLOGÍA Los objetivos planteados según la geología existente y el tiempo de su realización son: a) Aplicar el Método de Tomografía Eléctrica en una zona de alto contraste resistivo, mediante

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Modelos y Bases de Datos

Modelos y Bases de Datos Modelos y Bases de Datos MODELOS Y BASES DE DATOS 1 Sesión No. 10 Nombre: Álgebra Relacional Contextualización En qué consiste el álgebra relacional? Se ha planteado hasta el momento cada uno de los procesos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros AMPLIACIÓN DE MATEMÁTICAS REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto

Más detalles

Matemáticas para la Computación

Matemáticas para la Computación Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Encuentran nuevas propiedades ópticas que podrían revolucionar el mundo de la tecnología

Encuentran nuevas propiedades ópticas que podrían revolucionar el mundo de la tecnología Encuentran nuevas propiedades ópticas que podrían revolucionar el mundo de la tecnología Por Verenise Sánchez Ciudad de México. 18 de mayo de 2016 (Agencia Informativa Conacyt).- Israel de León Arizpe,

Más detalles

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948 1/10 CPE (SEGUNDO CURSO PRÁCICA 1 SOLUCIONES (Curso 2015 2016 1. Suponiendo que los sucesos terremotos y huracanes son independientes y que en un determinado lugar la probabilidad de un terremoto durante

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

MANUAL DE USUARIO SISTEMA DE ALMACEN DIF SONORA

MANUAL DE USUARIO SISTEMA DE ALMACEN DIF SONORA MANUAL DE USUARIO SISTEMA DE ALMACEN DIF SONORA DICIEMBRE 2007. El Sistema de Almacén fue desarrollado con la finalidad de facilitar a los usuarios el proceso de entradas y salidas del almacén mediante

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

CAPÍTULO I. FIBRA ÓPTICA. La fibra óptica se ha vuelto el medio de comunicación de elección para la

CAPÍTULO I. FIBRA ÓPTICA. La fibra óptica se ha vuelto el medio de comunicación de elección para la CAPÍTULO I. FIBRA ÓPTICA. 1.1 INTRODUCCIÓN. La fibra óptica se ha vuelto el medio de comunicación de elección para la transmisión de voz, video, y de datos, particularmente para comunicaciones de alta

Más detalles

Representación de señales de audio

Representación de señales de audio Representación de señales de audio Emilia Gómez Gutiérrez Síntesi i Processament del So I Departament de Sonologia Escola Superior de Musica de Catalunya Curso 2009-2010 [email protected] 28 de septiembre

Más detalles

Plataforma e-ducativa Aragonesa. Manual de Administración. Bitácora

Plataforma e-ducativa Aragonesa. Manual de Administración. Bitácora Plataforma e-ducativa Aragonesa Manual de Administración Bitácora ÍNDICE Acceso a la administración de la Bitácora...3 Interfaz Gráfica...3 Publicaciones...4 Cómo Agregar una Publicación...4 Cómo Modificar

Más detalles

Componentes del frontal de un receptor GPS

Componentes del frontal de un receptor GPS Chapter 2 Componentes del frontal de un receptor GPS El proceso de una señal GPS propagándose por el espacio y recorriendo 20,000 km de distancia hasta la superficie de la Tierra termina con su presencia

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

UNIDAD Nº IV ANALISIS FINANCIERO. Administración de Empresas. Prof. Robert Leal

UNIDAD Nº IV ANALISIS FINANCIERO. Administración de Empresas. Prof. Robert Leal UNIDAD Nº IV ANALISIS FINANCIERO Administración de Empresas. Prof. Robert Leal LAS FINANZAS Las finanzas son las actividades relacionadas con los flujos de capital y dinero entre individuos, empresas,

Más detalles

Problemas + PÁGINA 37

Problemas + PÁGINA 37 PÁGINA 37 Pág. Problemas + 6 Un grupo de amigos ha ido a comer a una pizzería y han elegido tres tipos de pizza, A, B y C. Cada uno ha tomado /2 de A, /3 de B y /4 de C; han pedido en total 7 pizzas y,

Más detalles

Tutorial de Introducción a la Informática Tema 0 Windows. Windows. 1. Objetivos

Tutorial de Introducción a la Informática Tema 0 Windows. Windows. 1. Objetivos 1. Objetivos Este tema de introducción es el primero que debe seguir un alumno para asegurar que conoce los principios básicos de informática, como el manejo elemental del ratón y el teclado para gestionar

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

2. GRAFICA DE FUNCIONES

2. GRAFICA DE FUNCIONES . GRAFICA DE FUNCIONES En vista de que el comportamiento de una función puede, en general, apreciarse mu bien en su gráfica, vamos a describir algunas técnicas con auda de las cuales podremos hacer un

Más detalles

Los Megapíxels y el tamaño de los sensores. Ni calidad ni cantidad ni todo lo contrario

Los Megapíxels y el tamaño de los sensores. Ni calidad ni cantidad ni todo lo contrario Los Megapíxels y el tamaño de los sensores. Ni calidad ni cantidad ni todo lo contrario Parecía que la guerra de los megapíxels ya había acabado, pero ahora se ha reiniciado, con otra finalidad. Con el

Más detalles

1. Conociendo el equipo

1. Conociendo el equipo 1. Conociendo el equipo Lo que vamos a aprender En este primer tema vamos a conocer los aparatos que componen un ordenador, su utilidad y la forma en que se conectan entre sí para funcionar correctamente.

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Hoja1!C4. Hoja1!$C$4. Fila

Hoja1!C4. Hoja1!$C$4. Fila CAPÍTULO 6......... Cálculo y funciones con Excel 2000 6.1.- Referencias De Celdas Como vimos con anterioridad en Excel 2000 se referencian las celdas por la fila y la columna en la que están. Además como

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

El desarrollo del pensamiento multiplicativo.

El desarrollo del pensamiento multiplicativo. El desarrollo del pensamiento multiplicativo. Análisis de las diferentes situaciones multiplicativas, su aplicación en el aula y en el desarrollo del pensamiento matemático. Autor: Mery Aurora Poveda,

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles