A) Posición, velocidad, desplazamiento, espacio recorrido: MRU

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A) Posición, velocidad, desplazamiento, espacio recorrido: MRU"

Transcripción

1 A) Posición, velocidad, desplazamiento, espacio recorrido: MRU 1.- Un móvil se mueve sobre un plano horizontal de la siguiente forma: primero 5 m hacia el norte, a continuación 3 m al oeste, seguido de 2 m hacia el sur, para finalizar con 6 m hacia el este. Indicar: a) La posición al final de cada movimiento. Sol: (5 j) m; (- 3 i, 5 j ) m; (- 3 i, 3 j) m; (3 i, 3 j) m b) El espacio total recorrido. Sol: 16 m c) El desplazamiento total. Sol: (3 i, 3 j) m 2.- Una persona va y vuelve en moto todos los días a su trabajo. Si el lugar en el que trabaja se encuentra a 40 Km de su casa, se pregunta: a) Qué desplazamiento realiza a lo largo del día? Sol: ninguno b) Cuál es el espacio total que recorre? Sol: 80 Km c) Cuál es la posición del lugar de trabajo? Sol: (40 i) Km d) Cuánto vale la posición si está en su casa? Sol: (0,0) 3.- Una de las atracciones que no puede faltar en ninguna feria es la noria. Cuando te subes en ella: a) Qué tipo de trayectoria describes? b) Cuál es el espacio que recorres al completar 10 vueltas? Sol: 691,1 m Dato: L (circunferencia) = 2 π r ; r ( radio ) = 11 m. c) Cuál será el desplazamiento al completar 10 vueltas? d) Y cuando te encuentras en el punto más alto de la noria? Sol: 22 m 4.- En los Juegos Olímpicos de 2008, el velocista jamaicano Usain Bolt sorprendió al mundo al correr la carrera de 100 metros en 9,69 segundos. Determinar la velocidad media de Usain durante la carrera. Sol: 10.3 m/s 5.- En la competición de Fórmula Uno de 2 Km de recorrido celebrada en Joliet, Illinois, en octubre de 2004, John Force completó la carrera en un tiempo récord de 123,437 segundos. Determinar la velocidad media de su coche en m / s. Sol: m/s 6.- En la fase de clasificación del campeonato de selecciones nacionales de natación de 50 m estilos libres, Dugan consiguió una clara ventaja sobre el resto de los nadadores al hacer los primeros 25,00 m de ida en un tiempo oficioso de 10,01 segundos. Posteriormente Dugan hizo la vuelta (distancia m) en 10,22 segundos. Determina su velocidad media a lo largo de toda la carrera. Sol: a) 2,472 m/s

2 7.- El guepardo puede llegar a correr a 30 m/s. Calcula: a) Cuál es su velocidad en km/h. Sol: 108 Km/h b) Cuánto tiempo tardaría en recorrer 1 km. Sol: 33,3 s 8.- Un coche circula a una velocidad de 60 km/h durante 1 hora y 15 minutos, después se para durante 5 minutos y luego regresa hacia el punto de partida a una velocidad de 10 m/s durante 45 minutos. Halla: a) La posición final. Sol: 48 i Km b) El espacio total recorrido. Sol: 102 Km c) La velocidad media. Sol: 13,6 m/s <> 48,96 Km/h 9.- Ken Runfast es la estrella del equipo de cross-country. Durante una reciente carrera por la mañana, Durante los primeros 12,9 minutos, Ken corrió con una velocidad media de 5,8 m / s. Mientras que los 7,1 minutos restantes Ken corrió con una velocidad media de 6,10 m / s. Determina la distancia total que corrió Ken durante su trote de 20 minutos. Sol: 7088 m 10.- Un coche de Fórmula Uno es un coche de carreras de un solo asiento con una cabina abierta con dos alas importantes ubicadas en la parte delantera y trasera. A altas velocidades, la aerodinámica del coche ayuda a crear una fuerte fuerza hacia abajo que permite que el coche frene de 27,8 m / s a 0 en tan solo una distancia de 17 metros. Determinar la tasa de deceleración (es decir, la aceleración) alcanzado por un coche así. Sol: 22.7 m / s 2 B) Posición - Tiempo; Velocidad Tiempo: Gráficos: MRU; MRUA 11.- La gráfica posición-tiempo que puedes ver más abajo representa el movimiento del entrenador de fútbol Paco Jémez durante los últimos dieciséis segundos del partido del pasado fin de semana.

3 Usa la gráfica para contestar las siguientes preguntas: a. Determina la distancia total de Paco durante esos 16 segundos. b. Determina el desplazamiento de Paco durante estos 16 segundos. c. Determina el desplazamiento de Paco después de 12,0 segundos. d. En qué momento/s el entrenador tiene el mayor desplazamiento de su posición inicial? e. Cuál fue la mayor velocidad del entrenador durante los últimos 16,0 segundos? f. Cuál fue la velocidad media del entrenador para estos 16,0 segundos? Sol: a) 24 m; b) 0 m; c) 6 m; d) s 4-6 y de nuevo a 14 s; e) 4 m / s; f)1,5 m/ s 12.- La gráfica posición-tiempo de abajo representa el movimiento de dos estudiantes - Mac (en rojo) y Tosh (en azul) - a medida que entran y salen de la biblioteca de la escuela durante un período de paso. Usa la gráfica para determinar las velocidades a las que los dos estudiantes se mueven. (No tengas en cuenta el período de reposo de Tosh) A continuación, determina cuánto más rápido se mueve un estudiante con respecto al otro. Sol: Velocidad de Mac: 2,5 m / s; velocidad de Tosh: 4 m / s; Diferencia: 1,5 m / s 13.- Renatta Gas volvió a despistarse de nuevo. Ella olvidó llenar su depósito de gasolina durante las últimas cuatro semanas. La gráfica velocidad-tiempo a continuación representa los últimos seis segundos de movimiento de su coche antes de pararse en una carretera en el camino hacia la universidad.

4 Utilice este gráfico para determinar: a) La aceleración del coche de Renatta. Sol: - 3 m/s 2 b) La distancia recorrida durante sus últimos 6,0 segundos de movimiento. Sol: 54 m 14.- Marcus Tardee está llevando a sus hijos a la escuela en su coche. La primera clase de sus hijos empieza en pocos minutos, y, por desgracia le ha tocado tener que seguir a un camión de la basura que va muy lento. El camión finalmente da esquinazo en una calle lateral y Marcus por fin puede acelerar hasta una velocidad mucho más habitual. La gráfica velocidad-tiempo abajo representa su movimiento. Usa la gráfica para contestar las siguientes preguntas. a) A qué velocidad se desplaza Marcus mientras sigue el camión de la basura? Sol: 4 m/s b) Determinar la distancia recorrida durante los primeros 4,0 segundos representados en el gráfico. Sol: 16 m c) Determine la aceleración del coche una vez que el camión de la basura le dio esquinazo. Sol: 2,67 m/s 2 d) Determinar la distancia recorrida por el vehículo durante los últimos 6,0 segundos de movimiento. Sol: 72 m 15.- Después de un partido de fútbol en Los Manantiales - Alhaurín de la Torre un alumno del IES Huerta Alta comienza a caminar por la empinada calle de Las Malagueñas hacia su casa de Fuensanguínea. En un momento determinado dicho alumno le da una patada al balón haciéndolo rodar pendiente arriba mientras el estudiante continúa caminando hasta encontrarse con él cuando éste viene rodando hacia abajo. La gráfica velocidad-tiempo a continuación muestra el movimiento de la pelota. Usa la gráfica para contestar las siguientes preguntas.

5 a) En qué momento la pelota se para y empieza a rodar calle abajo? Sol: 3 s b) Cuál es la aceleración de la pelota que rueda por la C/ Las Malagueñas hacia arriba? Sol: - 4 m/s 2 c) Qué distancia recorrió el balón por la calle Las Malagueñas antes de que comenzara a rodar hacia abajo? Sol: 18 m d) Determine la distancia total que recorrió el balón durante los 5,00 segundos - tanto la distancia a la colina y colina abajo. Sol: 26 m e. Qué distancia recorrió el estudiante entre el momento en que patea el balón hacia arriba y el momento en que se encuentra con él (en 5,0 segundos)? Sol: 10 m 16.- A Jeremy Ice le encanta el snowboard y lo lleva como un hobby. Él está aprendiendo a hacer nuevos giros en saltos por pendientes suaves. La gráfica velocidad-tiempo de abajo representa su movimiento subiendo y bajando por un terraplén. Usa la gráfica para contestar a las siguientes preguntas. a) Calcula la aceleración de Jeremy a los 8,0 segundos. Sol: - 2 m/s 2 b) Calcula la distancia que recorrió en los primeros 5 segundos. Sol: 60 m c) En qué momento Jeremy comienza a bajar por el terraplén? Sol: 11 s d) Calcula la distancia que recorre Jeremy en los 20 segundos. Sol: 141 m

6 C) Movimiento rectilíneo uniformemente acelerado (MRUA) y Caída libre 17.- Un avión Cessna 150 tiene una velocidad de despegue de 28 m/s. a) Determina la longitud mínima de la pista que se requeriría para que el avión despegue si su aceleración media es de 1,9 m/s 2. Sol: 206 m. b) Cuánto tiempo necesita el avión para despegar? Sol: 14,7 s 18.- Resuelve las siguientes cuestiones: a) Un avión acelera por una pista a 3,20 m/s 2 durante 32,8 s hasta que finalmente se levanta del suelo. Determina la distancia recorrida antes del despegue. Sol: m b) Un automóvil parte del reposo y acelera de manera uniforme durante un tiempo de 5,21 segundos para una distancia de 110 m. Determinar la aceleración del coche. Sol: 8,10 m/s Resuelve las siguientes cuestiones: a) Si un individuo cae al vacío durante 2,6 segundos en el planeta Tierra (g = 9,8 m/s 2 ), calcula cuál sería su velocidad final y desde qué altura habrá caído? Sol: 33 m; 25,5 m / s b) Un coche de carreras acelera uniformemente de 18,5 m / s a 46,1 m / s en 2,47 segundos. Determine la aceleración del coche y la distancia recorrida. Sol: 11,2 m/s 2 ; 79,8 m 20.- Resuelve las siguientes cuestiones: a) Una pluma se cae en la Luna desde una altura de 1,40 metros. La aceleración de la gravedad en la Luna es de 1.67 m/s 2. Determinar el tiempo de la pluma en caer a la superficie de la luna. Sol: 1,29 s b) Una bicicleta acelera uniformemente desde el reposo hasta una velocidad de 7,10 m/s sobre una distancia de 35,4 m. Determinar la aceleración de la moto. Sol: m/s Resuelve las siguientes cuestiones: a) El mirador de un rascacielos se encuentra a 370 m de altura. Determina el tiempo que tarda en llegar al suelo una moneda al dejarse caer desde dicho mirador. Sol: 8,7 s

7 b) Con qué velocidad debe ser lanzado un objeto para que alcance una altura de 91,5 m (equivalente a un campo de fútbol)? Supongamos que la resistencia del aire es insignificante. Cuánto tarda el objeto en alcanzar esa altura? Sol: 42,35 m / s y 4,32 s 22.- Un niño arroja una pelota hacia arriba con una velocidad de 15 m/s. Calcular: a) la altura máxima que alcanza la pelota. Sol: 11,48 m b) el tiempo que tarda en volver a las manos del niño Sol: 3,06 s 23.- Se arroja verticalmente hacia arriba una flecha con una velocidad de 50 m/s. Calcule: a) su velocidad a los 3 segundos. Sol: 20,6 m/s b) La altura alcanzada en esos 3 segundos. Sol: 105,9 m c) La máxima altura alcanzada. Sol: 127,55 m d) Cuando se alcanza la máxima altura. Sol: 5,10 s D) Composición de movimientos 24.- Dos familias, en coche, van a visitar una ciudad que se encuentra a 450 km de su lugar de origen. Una de ellas va a 100 km/h de media, mientras que la otra va a 120 km/h. a) Cuál debe salir primero para que al cabo de cierto tiempo se puedan encontrar en una gasolinera a 240 km del punto de partida? b) Si el coche que marcha a mayor velocidad sale 15 minutos más tarde, cuánto tiempo tardará en alcanzar al otro? Sol: 5395 s c) Qué distancia han recorrido ambos en ese momento? Sol: 149,8 Km 25.- Dos trenes salen al mismo tiempo de Madrid y de Sevilla. El tren que sale de Madrid hacia Sevilla es un tren de mercancías que circula a una velocidad media de 110 km/h, mientras que el que sale de Sevilla hacia Madrid es el AVE, que circula a una velocidad media de 250 km/h. Sabiendo que la distancia Madrid-Sevilla es de 480 km, calcula: a) El tiempo que tardan en cruzarse. Sol: 1 h y 20 b) El espacio recorrido por cada tren en ese momento. Sol: 146,6 Km y 333,4 Km 26.- Un camión que se desplaza a velocidad constante de 90 km/h adelanta a un coche que se encuentra parado en la carretera. Si éste arranca 5 segundos después con una aceleración constante de 3 m/s, calcula: a) El tiempo que tardará el coche en alcanzar al camión. Sol: 20,69 s b) La velocidad del coche cuando alcanza al camión. Sol: 62,1 m/s c) El espacio que recorre el camión antes de ser alcanzado. Sol: 642 m

8 27.- Se deja caer un balón desde 80 metros de altura. En ese mismo instante un segundo balón se lanza desde el suelo verticalmente hacia arriba con una velocidad inicial de 40 m/s. a) Determina el tiempo en el que se encuentran los dos balones. Sol: 2 s b) Que velocidad tendrá cada uno en ese momento? Sol: 19,6m/s y 20,4 m/s c) A qué altura se encuentran? Sol: 60,4 m 28.- Se deja caer una moneda desde 100 metros de altura. En ese mismo instante una segunda moneda se lanza desde el suelo verticalmente hacia arriba con una velocidad inicial de 25 m/s. a) Determina el tiempo en el que se encuentran las dos monedas. Sol:4 s b) Qué velocidad tendrá cada una en ese momento? Sol: 39,2 m/s; 14,2 m/s c) A qué altura se encuentran? Sol: 78,4 m 29.- Dos ciclistas parten de dos pueblos separados 10 Km. Circulan por la misma carretera, pero en sentidos opuestos. El primero va a 36 Km/h. El segundo circula a 27 Km/h, y sale un minuto después que el primer ciclista. Calcula el tiempo que tardan en encontrarse ambos ciclistas y en qué punto de la carretera se cruzan. Sol: 597,14 s; a 5979,4 m 30.- Dos proyectiles se lanzan verticalmente hacia arriba con dos segundos de intervalo; el 1º con una velocidad inicial de 50 m/s y el 2º con una velocidad inicial de 80 m/s. Calcula: a) el tiempo que pasa hasta que los dos se encuentren a la misma altura. b) A qué altura sucederá el encuentro? c) Velocidad de cada proyectil en ese momento. Sol.: a) 3,6 s b) 116,5 m c) 14,72 m/s y 64,32 m/s 31.- Dos coches salen a su encuentro, uno de Bilbao y otro de Madrid. Sabiendo que la distancia entre ambas capitales es de 443 Km. y que sus velocidades respectivas son 78 Km/h y 62 Km/h y que el coche de Bilbao salió hora y media más tarde, calcula: a) el tiempo que tardan en encontrarse. b) A qué distancia de Bilbao lo hacen? Sol: tardan en encontrarse a las 2,5 horas y a 195 km de Bilbao).

9 32.- Dos automóviles, que marchan en el mismo sentido, se encuentran a una distancia de 126 km. Si el más lento va a 42 km/h, calcula la velocidad del más rápido sabiendo que lo alcanza en seis horas. Sol: 63 Km/h 33.- Un Ferrari, que está parado, arranca con una aceleración de 1,5 m/s 2. En ese instante es adelantado por un tractor que circula a velocidad constante de 54 km/h. a) Cuánto tarda el Ferrari en alcanzar al tractor? Sol: 20 s b) A qué distancia del punto de partida alcanzará el Ferrari al tractor? c) Qué velocidad lleva el Ferrari en ese instante? Sol: 300 m, 30 m/s E) Movimiento Circular 34.- Durante el ciclo de centrifugado de una lavadora, la ropa se pega a la pared exterior del barril a medida que gira a una velocidad tan alta como revoluciones por minuto. El radio del cilindro es de 26 cm. a) Determinar la velocidad de la ropa (en m / s) que se encuentran en la pared del cilindro de giro. Sol: 49 m / s. b) Determinar la aceleración de la ropa. Sol: 9, m / s Un fabricante de unidades de CD-ROM afirma que sus discos pueden girar con la frecuencia que revoluciones por minuto. a) Si giran a este ritmo, cuál es la velocidad de la fila externa de los datos del disco; esta fila se encuentra 5,6 cm desde el centro del disco? Sol: 7 m/s b) Cuál es la aceleración de la fila externa de los datos? Sol: 8, m/s Dos amigos suben en un tiovivo. Carlos se sienta en un elefante situado a 5 m del centro y Antonio escoge un coche de bomberos situado a sólo 3,5 m del centro. Ambos tardan 4 min en dar 10 vueltas. a) Se mueven con la misma velocidad lineal? Y con la misma velocidad angular? Razónalo. b) Calcula las velocidades lineal y angular de ambos La rueda de una bicicleta tiene 30 cm de radio y gira uniformemente a razón de 25 vueltas por minuto. Calcula: a) La velocidad angular, en rad/s. b) La velocidad lineal de un punto de la periferia de la rueda Un satélite describe un movimiento circular uniforme alrededor de la Tierra. Si su frecuencia es de 0,4 vueltas por hora, calcula el número de vueltas que da en un día.

10 39.- Un ciclista recorre 5,4 km en 15 min a velocidad constante. Si el radio de las ruedas de su bicicleta es de 40 cm, calcula: a) la velocidad angular de las ruedas. b) el número de vueltas que dan las ruedas en ese tiempo. Sol.: 15 rad/s b) 2148,6 vueltas 40.- Una noria de 40 m de diámetro gira con una velocidad angular constante de 0,125 rad/s. Averigua: a) La distancia recorrida por un punto de la periferia en 1 min Sol: 150 m b) El número de vueltas que da la noria en ese tiempo. S: 1,2 vueltas 41.- Las aspas de un ventilador giran uniformemente a razón de 90 vueltas por minuto. Determina: a) su velocidad angular, en rad/s; b) la velocidad lineal de un punto situado a 30 cm del centro; c) el número de vueltas que darán las aspas en 5 min. Sol.: a) 9,4 rad/s b) 2,8 m/s c) 450 vueltas.

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 3 Fuerzas y movimientos circulares Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Cuestionarios

Más detalles

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO:

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: Estes exercicios foron sacados de www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: 1- Define brevemente los siguientes conceptos: Posición. Trayectoria. Espacio recorrido. Desplazamiento Velocidad

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

Para revisarlos ponga cuidado en los paréntesis. No se confunda.

Para revisarlos ponga cuidado en los paréntesis. No se confunda. Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA FÍSICA Y QUÍMICA Solucionario CINEMÁTICA 1.* Indicad qué tipo o tipos de movimiento corresponden a cada afirmación. a) MRU b) MRUA c) MCU d) Caída libre e) No hay movimiento 1.1. Una piedra lanzada desde

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

a) 2,8[m] ; 7,6 [m] b) 0,7[m/s]; 1,9[m/s]

a) 2,8[m] ; 7,6 [m] b) 0,7[m/s]; 1,9[m/s] 1m F Í S I C MOVIMIENTO Curso : Tercero Cinemática. Un móvil describe una trayectoria como indica la figura, a) Determina el desplazamiento y la distancia recorrida desde el punto hasta el punto, b) Si

Más detalles

Movimiento Rectilíneo Uniforme

Movimiento Rectilíneo Uniforme Movimiento Rectilíneo Uniforme 1. Teoría La mecánica es la parte de la física encargada de estudiar el movimiento y el reposo de los cuerpos, haciendo un análisis de sus propiedades y causas. La mecánica

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo.

Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. 1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo: el coche que se mueve cambia de posición respecto a unos

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.

Más detalles

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática Problemas de Cinemática Movimiento rectilíneo uniforme y uniformemente variado 1.- Un móvil recorre una recta con velocidad constante. En los instantes t1= 0,5s. y t2= 4s. sus posiciones son: X1= 9,5cm.

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 5 Trabajo, potencia y energía Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Página PRIMER CUESTIONARIO.

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

LA FORMA DE LA TIERRA

LA FORMA DE LA TIERRA La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

LANZAMIENTOS VERTICALES soluciones

LANZAMIENTOS VERTICALES soluciones LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA PAU FÍSICA LA RIOJA - CUESTIONES 1. Si un cuerpo pesa 100 N cuando está en la superficie terrestre, a qué distancia pesará la mitad? Junio 95 2. Sabiendo que M Luna = M Tierra

Más detalles

2.3 MOVIENTO CIRCULAR UNIFORME

2.3 MOVIENTO CIRCULAR UNIFORME 2.3 MOVIENTO CIRCULAR UNIFORME La trayectoria es una circunferencia. La elocidad es constante a N ω En un moimiento circular uniforme, tendremos dos tipos de elocidad: Velocidad Lineal (), que sería tangencial

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una

Más detalles

3 Estudio de diversos movimientos

3 Estudio de diversos movimientos 3 Estudio de diversos movimientos EJERCICIOS PROPUESTOS 3.1 Un excursionista, de pie ante una montaña, tarda 1,4 s en oír el eco de su voz. Sabiendo que el sonido viaja en el aire a velocidad constante

Más detalles

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO PUENTE DE PÌEDRA MADRID

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO PUENTE DE PÌEDRA MADRID TRABAJO DE RECUPERACION FISICA SEGUNDO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: Ing. ALEXANDER CABALLERO FECHA DE ENTREGA: Junio 5 de 2013 FECHA DE RECIBIDO: 1 TRABAJO DE RECUPERACION FISICA

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

PRIMERA EVALUACIÓN. Física del Nivel Cero A

PRIMERA EVALUACIÓN. Física del Nivel Cero A PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO

EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO NOTA DEL PROFESOR: La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

PROBLEMAS RESUELTOS. a) Qué ventajas tendría si se desplazase al trabajo en bicicleta en lugar de hacerlo andando?

PROBLEMAS RESUELTOS. a) Qué ventajas tendría si se desplazase al trabajo en bicicleta en lugar de hacerlo andando? PROBLEMAS RESUELTOS Una persona, de 34 años de edad y 76 kilos de peso, trabaja en una ciudad en la que hay un desnivel de 29 metros entre su casa y su lugar de trabajo, al que acude andando dos veces

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

ACTIVIDADES Y EJERCICIOS PARA JUGADORES MENORES DE 10 AÑOS

ACTIVIDADES Y EJERCICIOS PARA JUGADORES MENORES DE 10 AÑOS APÉNDICE ACTIVIDADES Y EJERCICIOS PARA JUGADORES MENORES DE 10 AÑOS Entrada en calor El calentamiento debe ayudar a los niños a desarrollar las habilidades físicas apropiadas para la edad, pero sobre todo

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

Campo Gravitatorio Profesor: Juan T. Valverde

Campo Gravitatorio Profesor: Juan T. Valverde 1.- Energía en el campo gravitatorio -1 http://www.youtube.com/watch?v=cec45t-uvu4&feature=relmfu 2.- Energía en el campo gravitatorio -2 http://www.youtube.com/watch?v=wlw7o3e3igm&feature=relmfu 3.- Dos

Más detalles

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

EJERCICIOS 4ºESO MOV. CIRCULAR

EJERCICIOS 4ºESO MOV. CIRCULAR EJERCICIOS 4ºESO MOV. CIRCULAR 1. Describe las características del movimiento circular uniforme 2. Puede existir un movimiento que tenga aceleración y, sin embargo, el valor de la velocidad sea constante?

Más detalles

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004 FÍSICA CUESTIONES Y PROBLEMAS BLOQUE II: INTERACCIÓN GRAVITATORIA PAU 2003-2004 1.- Resume la evolución de las distintas concepciones del universo hasta establecer las leyes cinemáticas de Kepler que describen

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

Ejercicios resueltos de movimiento circular uniformemente acelerado

Ejercicios resueltos de movimiento circular uniformemente acelerado Ejercicios resueltos de movimiento circular uniformemente acelerado 1) Una rueda de 50cm de diámetro tarda 10 segundos en adquirir una velocidad constante de 360rpm. a) Calcula la aceleración angular del

Más detalles

1. CARACTERÍSTICAS DEL MOVIMIENTO.

1. CARACTERÍSTICAS DEL MOVIMIENTO. Tema 6. Cinemática. 1 Tema 6. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL 1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza

Más detalles

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad TRIGONOMETRÍA EJERCICIOS PROPUESTOS.. Indica la medida de estos ángulos en radianes. a) º c) º b) º d) º a) º rad c) rad º rad b) rad º rad d) rad rad º º Epresa en grados los siguientes ángulos. a) rad

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

Prueba de competencia matemática

Prueba de competencia matemática 1 Evaluación de 3er. curso de Educación Primaria Prueba de competencia matemática Nombre y apellidos: 1º, 8+5-2= 3 5 + + 1 5 = = 3 2º,3 4 5 x 5 2 8 4 º... = 3 4 INSTRUCCIONES En esta prueba tendrás que

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

LOS11+ Un programa completo de calentamiento

LOS11+ Un programa completo de calentamiento LOS11+ Un programa completo de calentamiento Parte 1 & 3 A A }6m Parte 2! preparación A: Running del exercise terreno B: Jog back Se colocan 6 marcaciones en dos filas paralelas, con una separación de

Más detalles

TRABAJO Y ENERGÍA - EJERCICIOS

TRABAJO Y ENERGÍA - EJERCICIOS TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial.

2). a) Explique la relación entre fuerza conservativa y variación de energía potencial. Relación de Cuestiones de Selectividad: Campo Gravitatorio 2001-2008 AÑO 2008 1).. a) Principio de conservación de la energía mecánica b) Desde el borde de un acantilado de altura h se deja caer libremente

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

Recordando la experiencia

Recordando la experiencia Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 2 2013 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2013. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio)

Más detalles

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución.

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución. Problemas resueltos Problema 1. Con una llave inglesa de 25 cm de longitud, un operario aplica una fuerza de 50 N. En esa situación, cuál es el momento de torsión aplicado para apretar una tuerca? Problema

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles