4.3 Leyes de los logaritmos
|
|
|
- José Luis Duarte Araya
- hace 9 años
- Vistas:
Transcripción
1 352 CAPÍTULO 4 Funciones exponenciales y logarítmicas 83. Dificultad de una tarea La dificultad en lograr un objetivo (como usar el ratón para dar clic en un icono en la pantalla de la computadora) depende de la distancia al ob-jetivo y el tamaño de éste. De acuerdo con la ley de Fitts, el índice de dificultad (ID), está dado por ID log2a/w2 log 2 donde W es el ancho del objetivo y A es la distancia al centro del objetivo. Compare la dificultad de dar clic en un icono cuyo ancho es de 5 mm con la de dar clic en uno de 0 mm de ancho. En cada caso, suponga que el ratón está a 00 mm del icono. Descubrimiento Debate 84. Altura de la gráfica de una función logarítmica Suponga que la gráfica de y 2 x se traza en un plano coordenado donde la unidad de medición es una pulgada. a) Muestre que a una distancia 2 pies a la derecha del origen la altura de la gráfica es aproximadamente 265 millas. b) Si la gráfica de y log 2 x se traza en el mismo conjunto de ejes, qué tan lejos a la derecha del origen se tiene que ir antes de que la altura de la curva alcance 2 pies? 85. Googolplex Un googol es 0 00, y un googolplex es 0 googol. Encuentre logloggoogol Comparación de logaritmos Qué es más grande, log 4 7 o log 5 24? Explique su razonamiento. y loglogloggoogolplex Número de dígitos en un entero Compare log 000 con el número de dígitos en 000. Haga lo mismo para Cuántos dígitos tiene cualquier número entre 000 y 0 000? Entre cuáles dos valores debe quedar el logaritmo común de tal número? Use sus observaciones para explicar por qué el número de dígitos en cualquier entero positivo x es log x. (El símbolo n es la máxima función de enteros definida en la sección 2.2.) Cuántos dígitos tiene el número 2 00? 4.3 Leyes de los logaritmos En esta sección se estudian las propiedades de los logaritmos. Estas propiedades dan a las funciones logarítmicas una amplia variedad de aplicaciones, como se verá en la sección 4.5. Leyes de los logaritmos Puesto que los logaritmos son exponentes, las leyes de los exponentes dan lugar a las leyes de los logaritmos. Leyes de los logaritmos Sea a un número positivo, con a. Sea A, B y C números reales cualesquiera con A 0 y B 0. Ley Descripción. log a AB2 log a A log a B El logaritmo de un producto de números es la suma de los logaritmos de los números. 2. El logaritmo de un cociente de números es log a a A B b log a A log a B la diferencia de los logaritmos de los números. 3. log a A C 2 C log a A El logaritmo de una potencia de un número es el exponente multiplicado por el logaritmo del número.
2 SECCIÓN 4.3 Leyes de los logaritmos 353 Demostración Se hace uso de la propiedad log a a x x de la sección 4.2. Ley. Sea log a A u and y log a B. Cuando se escriben en forma exponencial, estas ecuaciones se convierten en a u A and y a B Así log a AB2 log a a u a 2 log a a u 2 u log a A log a B Ley 2. Usando la ley, se tiene log a A log a ca A B b Bd log aa A B b log a B por lo tanto, log a a A B b log a A log a B. Sea log a A u. Entonces a u A, por lo tanto log a A C 2 log a a u 2 C log a a uc 2 uc C log a A Ejemplo Evalúe cada expresión. Uso de las leyes de los logaritmos para evaluar expresiones a) log 4 2 log 4 32 b) log 2 80 log 2 5 c) 3 log 8 a) log 4 2 log 4 32 log 4 2# 322 Ley log Porque b) log 2 80 log 2 5 log 2 A 80 5B Ley 2 log Porque c) 3 log 8 log 8 /3 loga2b Propiedad de exponentes negativos 0.30 Resultado de la calculadora Expansión y combinación de expresiones logarítmicas Las leyes de los logaritmos permiten escribir el logaritmo de un producto o un cociente como la suma o diferencia de logaritmos. Este proceso, conocido como expansión de una expresión logarítmica, se ilustra en el ejemplo siguiente. Ejemplo 2 Expandir expresiones logarítmicas Use las leyes de los logaritmos para expandir o desarrollar cada expresión. a) log b) log 5x 3 y 6 2 6x2 2 c) a) log 2 6x2 log 2 6 log 2 x Ley lna ab 3 c b
3 354 CAPÍTULO 4 Funciones exponenciales y logarítmicas b) log 5 x 3 y 6 2 log 5 x 3 log 5 y 6 3 log 5 x 6 log 5 y Ley c) lna ab 3 c b lnab2 ln 3 c ln a ln b ln c /3 ln a ln b 3 ln c Ley 2 Ley Las leyes de los logaritmos permiten también invertir el proceso de expansión hecho en el ejemplo 2. Es decir, se pueden escribir sumas y diferencias de logaritmos como un solo logaritmo. Este proceso, llamado combinación de expresiones logarítmicas, se ilustra en el siguiente ejemplo. Ejemplo 3 Combinar expresiones logarítmicas Combine 3 log x 2 logx 2 en un solo logaritmo. 3 log x 2 logx 2 log x 3 logx 2 /2 logx 3 x 2 /2 2 Ley Ejemplo 4 Combinar expresiones logarítmicas Combine 3 ln s 2 ln t 4 lnt 2 2 en un solo logaritmo. 3 ln s 2 ln t 4 lnt 2 2 ln s 3 ln t /2 lnt lns 3 t /2 2 lnt s 3 t lna t 2 2 4b Ley Ley 2 ADVERTENCIA Aunque las leyes de los logaritmos indican cómo calcular el logaritmo de un producto o cociente, no hay regla de correspondencia para el logaritmo de una suma o diferencia. Por ejemplo, log a x y2 log a x log a y De hecho, se sabe que el lado derecho es igual a log a xy2. También, no simplifique de manera inapropiada cocientes o potencias de logaritmos. Por ejemplo, log 6 log 2 loga 6 2 b and y log 2 x23 3 log 2 x Los logaritmos que se emplean para modelar diversas situaciones tienen que ver con el comportamiento humano. Un tipo de comportamiento es qué tan rápido olvidamos las cosas que hemos aprendido. Por ejemplo, si se aprende álgebra a cierto nivel de desempeño (p. ej., 90% en una prueba) y después no se usa el álgebra durante un tiempo, cuánto se retendrá después de una semana, un mes o un año? Hermann Ebbinghaus ( ) estudió este fenómeno y formuló la ley descrita en el siguiente ejemplo.
4 SECCIÓN 4.3 Leyes de los logaritmos 355 Ejemplo 5 Ley del olvido La ley de Ebbinghaus del olvido establece que si se aprende una tarea a un nivel de desempeño P 0, entonces después de un intervalo de tiempo t el nivel de desempeño P satisface log P log P 0 c logt 2 Olvidar lo que se aprende es una función logarítmica de cuánto hace que se aprendió. donde c es una constante que depende del tipo de tarea y t se mide en meses. a) Despeje P. b) Si su puntuación en una prueba de historia es 90, qué puntuación esperaría obtener en una prueba similar dos meses después? Después de un año? (Suponga que c 0.2.) a) Primero se combina el miembro derecho. log P log P 0 c logt 2 log P log P 0 logt 2 c log P log P 0 t 2 c Ecuación dada Ley 2 P P 0 t 2 c b) Aquí P 0 90, c 0.2, y t se mide en meses. Porque log es uno a uno 90 En In two dos months: meses: t 2 and y P En In one un año: year: t 2 and y P Se esperaría que las puntuaciones después de dos meses y un año sean 72 y 54, respectivamente. Cambio de base Para algunos propósitos, se encuentra que es útil cambiar de logaritmos de una base a logaritmos de otra base. Suponga que se da log a x y se quiere hallar log b x. Sea y log b x Se escribe esto en forma exponencial y se toma el logaritmo, con base a, de cada lado. b y x y 2 log a x y log a x y log a x Forma exponencial Tome el log a de cada lado Divida entre Esto demuestra la siguiente fórmula.
5 356 CAPÍTULO 4 Funciones exponenciales y logarítmicas Se puede escribir la fórmula de cambio de base como log b x a b log a x Por consiguiente, log b x es sólo un múltiplo constante de log a x; la constante es. Fórmula de cambio de base log b x log a x En particular, si x a, entonces log a a y esta fórmula se convierte en log b a Ahora se puede evaluar un logaritmo para cualquier base usando la fórmula del cambio de base para expresar el logaritmo en términos de logaritmos comunes o logaritmos naturales y luego usar una calculadora. Se obtiene la misma respuesta si se usa log 0 o ln: _ Figura log 8 5 ln 5 ln fx2 log 6 x ln x ln 6 Ejemplo 6 Evaluar logaritmos con la fórmula de cambio de base Use la fórmula de cambio de base y logaritmos comunes o naturales para evaluar cada logaritmo, correcto hasta cinco decimales. a) log 8 5 b) log 9 20 a) Se usa la fórmula de cambio de base con b 8 y a 0: b) Se usa la fórmula de cambio de base con b 9 y a e: Ejemplo 7 log 8 5 log 0 5 log log 9 20 ln 20 ln Usar la fórmula de cambio de base para graficar una función logarítmica Use una calculadora de graficación para graficar fx2 log 6 x. Las calculadoras no tienen una tecla para log 6, así que se usa la fórmula de cambio de base para escribir fx2 log 6 x ln x ln 6 Puesto que las calculadoras tienen una tecla LN se puede introducir esta nueva forma de la función y graficarla. La gráfica se muestra en la figura. 4.3 Ejercicios 2 Evalúe la expresión.. log log 2 60 log log 4 log log log 4 92 log log 2 9 log log 2 6 log 2 5 log log 3 00 log 3 8 log 3 50
6 SECCIÓN 4.3 Leyes de los logaritmos log log loglog 0 0, lnln e e Use las leyes de los logaritmos para desarrollar la expresión. 3. log 2 2x2 4. log 3 5y2 5. log 2 xx log log 20. log AB log 22. log 2 xy2 0 3 x y log a a x 2 log 5 23 x 2 yz 3b 25. ln ab 26. ln 2 3 3r 2 s 27. loga x 3 y 4 b log 2 a xx x 2 b y 3x 2 3. lnax 32. ln Bz b x log x 24 x 2 y loga 3 x b x log 36. log 3x2yz Bx 2 2x x 37. lna x 3 x 38. loga 3x 4 b xx 2 2x 4 22 b Use las leyes de los logaritmos para combinar la expresión. 39. log log log 2 A log 2 B 2 log 2 C ln 5 2 ln x 3 lnx log 5 x 2 log 5 y 3 log 5 z2 47. z 6 log 5 x 2 2 log 5 x 2 4 log x 3 logx logx 2 lna b2 lna b2 2 ln c 3 log2x 2 23logx 42 logx 4 x c log a d r log a s x log 5 2 ln z Use la fórmula de cambio de base y una calculadora para evaluar el logaritmo, correcto hasta seis decimales. Use logaritmos naturales o comunes. 49. log log 5 2 loga a2 b 4 c b log 5 B x x 5. log log 6 92 log 2 2 log 7 log log log log log Use la fórmula de cambio de base para mostrar que Después use este hecho para dibujar la gráfica de la función fx2 log 3 x. 58. Dibuje las gráficas de la familia de funciones y log a x para a 2, e, 5 y 0 en la misma pantalla, con el rectángulo de visión 30, 54 por 3 3, 34. Cómo están relacionadas estas gráficas? 59. Use la fórmula de cambio de base para mostrar que 60. Simplifique: log 2 52log Muestre que lnx 2x 2 2 lnx 2x 2 2. Aplicaciones log 3 x ln x ln 3 log e ln Olvido Use la ley de Ebbinghaus del olvido (ejemplo 5) para estimar la puntuación de un alumno en una prueba de biología dos años después de que obtuvo una puntuación de 80 en una prueba que abarca el mismo material. Suponga que c 0.3 y t se mide en meses. 63. Distribución de la riqueza Vilfredo Pareto ( ) observó que la mayor parte de la riqueza de un país la poseen algunos miembros de la población. El principio de Pareto es log P log c k log W donde W es el nivel de riqueza (cuánto dinero tiene una persona) y P es el número de personas en la población que tiene esa cantidad de dinero. a) Resuelva la ecuación para P. b) Suponga que k 2., c 8000 y W se mide en millones de dólares. Use el inciso a) para hallar el número de personas que tienen dos millones o más. Cuántas personas tienen 0 millones o más? 64. Biodiversidad Algunos biólogos modelan el número de especies S en un área fija A (como una isla) mediante la relación especies-área log S log c k log A donde c y k son constantes positivas que dependen del tipo de especies y el hábitat. a) De la ecuación despeje S.
Funciones Exponenciales y Logarítmicas
Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,
1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.
. Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.
Escribiendo números usando la notación
Unidad 2: Introducción a la notación Bitácora del Estudiante Escribiendo números usando la notación Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. La distancia al satélite es
Funciones exponenciales y logarítmicas
Funciones exponenciales y logarítmicas - Funciones exponenciales y sus gráficas Un terremoto de 85 grados en la escala de Richter es 00 veces más potente que uno de 65, por qué?, cómo es la escala de Richter?
Explorando la ecuación de la recta pendiente intercepto
Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se
La función exponencial natural. Ejemplo 6 Evaluar la función exponencial
SECCIÓN 4. Funciones eponenciales 333 =3 La función eponencial natural =2 =e 0 Figura 5 Gráfica de la función eponencial natural La función eponencial natural es la función eponencial f2 e con base e.
Unidad 1: Números reales.
Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales
Explorando el Teorema de Pitágoras
Bitácora del Estudiante Explorando el Teorema de Pitágoras Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El satélite del tiempo recibirá energía a través de su:. 2. Cada panel
INTRODUCCIÓN. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
INTRODUCCIÓN. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS Tradicionalmente, el estudio de los logaritmos ha ido inevitablemente acompañado de las tablas logarítmicas y del estudio de conceptos tales como el
UNIDAD 3 LOGARITMOS EJERCICIOS RESUELTOS. Objetivo general.
. UNIDAD LOGARITMOS EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad comprenderás la importancia histórica de los logaritmos y resolverás ejercicios y problemas en los que apliques los logaritmos
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
1 CONOCIMIENTOS PREVIOS. 1 Logaritmos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con números reales. Propiedades de
Fracciones y decimales (páginas 62 66)
A NOMRE FECHA PERÍODO Fracciones y decimales (páginas 6 66) Un decimal que termina, tal como 0, es un decimal terminal Todos los decimales terminales son números racionales 0,000 Un decimal que se repite,
LOGARITMOS. El logaritmo de un número es, entonces, el exponente a que debe elevarse otro número que llamado base, para que dé el primer número.
LOGARITMOS A. DEFINICIONES La función y=2 x se puede representar gráficamente. Para ello se debe tabular de la siguiente forma. X - -4-3 -2-1 0 1 2 3 Y=2 x 0.0625.125.25.5 1 2 4 8 La gráfica sería esta:
MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011
MODULO DE LOGARITMO Nombre:.. Curso : Medio Los aritmos están creados para facilitar los cálculos numéricos. Por aritmo podemos convertir los productos en sumas, los cocientes en restas, las potencias
Un plan para resolver problemas (páginas 6 9)
A NOMRE FECHA PERÍODO Un plan para resolver problemas (páginas 6 9) Puedes usar un plan de cuatro pasos para resolver un problema. Explora Planifica Resuelve Examina Lee cuidadosamente el problema. Hazte
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS
LOGARITMOS Introducción El empleo de los logaritmos es de gran utilidad para entender muchos de los desarrollos que se analizan en la Matemática, y para explicar una variedad muy extensa de problemas que
MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77
MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.
VOCABULARIO HABILIDADES Y CONCEPTOS
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9.doc 1 DE 7 Nombre: Fecha: VOCABULARIO A. Valor absoluto de un número complejo B. Eje de simetría C. Completar el cuadrado D. Número complejo E. Plano de números
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
Sucesiones (páginas 511 515)
A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier
Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y
Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,
MATEMÁTICA CPU Práctica 1 NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO
MATEMÁTICA CPU Práctica NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades
FUNCIONES LINEAL Y POTENCIA
FUNCIONES LINEAL Y POTENCIA La función lineal La función lineal puede describirse en forma genérica con la fórmula y = ax + c, donde a (la pendiente) y c (la ordenada al origen) son constantes. La gráfica
Distribuciones bidimensionales. Regresión.
Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos
Funciones lineales y no lineales (páginas 560 563)
A NOMRE FECHA PERÍODO Funciones lineales y no lineales (páginas 560 563) Las funciones lineales tienen gráficas que son líneas rectas. Estas gráficas representan tasas de cambio constantes. Las funciones
Construyamos una tabla de valores que incluya valores negativos y positivos de.
Materia: Matemáticas de 4to año Tema: Representación gráfica de una función exponencial Marco teórico Funciones exponenciales Iniciemos esta sección construyendo las gráficas de algunas funciones exponenciales.
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama
1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:
Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 8 vo grado
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Algebra I 8 vo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Algebra I 8 vo grado periodo 11 al 22 de agosto
Número de estudiante: Instrucciones: Se permite el uso de calculadoras científicas. El examen tiene un valor total de 105 puntos.
Departamento de Ciencias Matemáticas Tercer Examen MATE 3171 Universidad de Puerto Rico Mayagüez 17 de noviembre de 2015 Nombre: Número de estudiante: Profesor: Sección: Instrucciones: Se permite el uso
Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra
Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que
RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11
RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,
PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino
PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino Los problemas fueron extraídos de B. Zolkower: Handbook of Mathematical-Didactical Activities. 2004 (con autorización de la autora). 1. Cuál es mayor? Consideremos
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES 1 1.- FUNCIONES. CARACTERÍSTICAS Concepto de función. Una función es una forma de hacerle corresponder a un valor x un único
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )
Números imaginarios. x 2 +1 = 0,
Números imaginarios El problema de encontrar la raíz cuadrada de determinados números ( 2, por ejemplo) provocó la ampliación de los números racionales a los números reales. Con el desarrollo del álgebra,
Funciones constantes, lineales y afines 1.
Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto
Cuaderno de Actividades 4º ESO
Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á
NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0
Área de paralelogramos, triángulos y trapecios (páginas 314 318)
NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de
RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I
Dto. de MATEMÁTICAS RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1. Calcular, de forma exacta las siguientes operaciones. a) 1, 0, b) 0,7:0,916. Representa el conjunto
XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...
TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos
Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas
REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y
[email protected]!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.
FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices
36 CAPÍTULO Sistemas de ecuaciones lineales y matrices Escriba, en un comentario, la ecuación del polinomio cúbico que se ajusta a los cuatro puntos. Sea x el vector columna que contiene las coordenadas
2. SISTEMAS DE ECUACIONES LINEALES. Introducción
2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente
N = {1, 2, 3, 4, 5,...}
Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus
3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada
SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función
Cálculo de Derivadas
Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
Introducción. Objetivos de aprendizaje
Comunica información por medio de expresiones algebraicas Interpretación de expresiones algebraicas equivalentes para expresar el área de rectángulos Introducción Figura 1. Enchape Objetivos de aprendizaje
Problemas de 4 o ESO. Isaac Musat Hervás
Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................
SESIÓN 8 EXPONENTESY RADICALES
SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y
( ) es aceptable. El grado del
POLINOMIOS 8.1.1 8.1.3 El capítulo eplora funciones polinómicas en maor profundidad. Los alumnos aprenderán cómo bosquejar funciones polinómicas sin su herramienta de graficación, utilizando la forma factorizada
UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA.
UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA Históricamente, los exponentes fueron introducidos en matemáticas para dar un método corto que indicara el producto de varios factores semejantes,
UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA
UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA FUNCIÓN EXPONENCIAL. Se llama función exponencial a la función de la forma y = a x en donde a R +, a y x es una variable. Existen muchos fenómenos
Lección 2-Multiplicación de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 2-Multiplicación de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Multiplicarán correctamente diferentes polinomios dados Aplicarán
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En
Materia: Matemática de 5to Tema: La Hipérbola. Marco Teórico
Materia: Matemática de 5to Tema: La Hipérbola Marco Teórico Las Hipérbolas son las relaciones que tienen dos asíntotas. Al graficar funciones racionales que a menudo producen una hipérbola. En este concepto,
Factorización prima (páginas 197 200)
A NOMRE FECHA PERÍODO Factorización prima (páginas 9 00) Un número primo es un número entero mayor que que tiene exactamente dos factores, y sí mismo. Un número compuesto es un número entero mayor que
ES.N.3.2, (+)ES.N.4.2, (+)ES.G.38.2 Enfoque de contenido Operaciones con números complejos. Destreza Sumar, restar y multiplicar números complejos
Semana 1 Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5 ES.N.3.1, ES.N.3.2, (+)ES.G.38.1 Números complejos Que existe un número complejo i tal que i 2 =-1. Cada número
Estándares de Contenido Sencillos de Entender Para Padres y Estudiantes: Matemáticas Estándares del Kindergarten de Matemáticas
Estándares de Contenido Sencillos de Entender Para Padres y Estudiantes: Matemáticas Estándares del Kindergarten de Matemáticas 1.0 Sentido Numérico Puedo comparar grupos y saber si son iguales, mayores
Propiedades (páginas 333 336)
A NOMRE FECHA PERÍODO Propiedades (páginas 333 336) Las propiedades son enunciados abiertos que satisfacen todos los valores de las variables. Para multiplicar una suma por un número, Propiedad 3(5 2)
Cómo introducir funciones en Geogebra y desplazarte por ellas para explorar sus propiedades.
Explorando funciones con Geogebra GeoGebra es un software de matemática que reúne geometría, álgebra y cálculo. Por un lado, GeoGebra es un sistema de geometría dinámica. Permite realizar construcciones
5. Al simplificar. expresión se obtiene:
ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo
USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA
USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA En la enseñanza de las matemáticas la calculadora básica o graficadora puede ayudar a que los estudiantes refinen sus conjeturas
TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1
Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
MATEMÁTICAS BÁSICAS. Autores: Margarita Ospina Pulido Lorenzo Acosta Gempeler Edición: Jeanneth Galeano Peñaloza Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autores: Margarita Ospina Pulido Lorenzo Acosta Gempeler Edición: Jeanneth Galeano Peñaloza Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede
y = f(x) = (10,000)2 x
SESION. EXPONENTES Y LOGARITMOS.. Eponentes.. Importancia de los eponentes Funciones eponenciales 0,000 = (0,000) 40,000 = (0,000) 80,000 = (0,000) 3 Usamos b > 0 para evitar las raíces de números negativos,
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 7 PRACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; 9 ;, 7; ),; ; b) Alguno de ellos es entero? c) Ordénalos de menor a mayor. a) Racionales: ; 9
INSTRUCCIONES PARA EL USO DEL SOFTWARE (IS)
INSTRUCCIONES PARA EL USO DEL SOFTWARE (IS) Pantalla Inicial de DERIVE for Windows Teniendo instalado el programa DERIVE sobre Windows, podemos ingresar al sistema de las siguientes formas: Haciendo clic
Matemática I - Problemas de Máximos y Mínimos
Conceptos previos de la materia a considerar: Concepto de Función. Dominio, codominio, imagen. Formas de expresar una función: mediante tablas, mediante gráficas y analíticamente. Funciones crecientes
Escribe expresiones y ecuaciones
A NOMRE FECHA PERÍODO Escribe expresiones y ecuaciones (páginas 150 152) Los problemas del mundo fuera del salón de clases, por lo general, se dan en palabras. Uno traduce estos problemas en expresiones
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del
Enteros y valor absoluto (páginas 106 108)
A NOMRE FECHA PERÍODO Enteros y valor absoluto (páginas 106 108) Un entero es cualquier número del conjunto {, 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores de 0 son enteros positivos. Los enteros menores
Razones (páginas 380 383)
A NOMRE FECHA PERÍODO Razones (páginas 80 8) Puedes comparar dos cantidades usando una razón. Comúnmente se expresa una razón como una fracción reducida. Si las dos cantidades que comparas tienen diferentes
Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 8vo Grado
Unidad 8.3 (Relaciones Eponenciales 8.N.1.1 8.N.1.2 8.N.1.3 1.0 Numeración y Operación Describe los números reales como el conjunto de todos los números decimales y utiliza la notación científica, la estimación
IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna
PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo
ESTALMAT-Andalucía Actividades 06/07
ACTIVIDAD 1. NÚMEROS RACIONALES esto? a) Efectúa las divisiones 1/3, 1/5, 1/7, 8/2. Son exactas? Se empiezan a repetir las cifras del cociente en algún momento? Cuándo sucede b) Sin efectuar 15/13, di
Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4
Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 25. El número 2 x es la mayor potencia entera de 2 entre las que tienen nueve dígitos en base 10, y sus nueve dígitos son distintos. Usando que
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos
Funciones. Resumen del contenido
C APÍTULO 7 Funciones Resumen del contenido En el Capítulo 7, los estudiantes aumentan su entendimiento del crecimiento lineal y de las ecuaciones observando en detalle una clase especial de relación llamada
2.4. Números complejos
2.4 Números complejos 95 83 Relaciones temperatura-latitud a tabla siguiente contiene promedios de temperaturas anuales para los hemisferios norte y sur a varias latitudes. atitud Hemisf. N. Hemisf. S.
3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI
TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)
1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)
Ejercicios resueltos de funciones
Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)
CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos
CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS Este capítulo comprende diversas propiedades geométricas de secciones (para casos prácticos, secciones de vigas) siendo la más importante el momento de inercia.
Logaritmos. Cuál es la etimología de la palabra logaritmo? Proviene del griego Lógos: estilo, manera, relación, razón Arithmós: número
Logaritmos La invención de los logaritmos se debe al matemático escocés John Neper quien, a principios del siglo XVII, intentó idear un método que aliviara los complejos cálculos que debían realizarse
log a A B = log a A + log a B
TEMA 5: LOGARITMOS Y EXPONENCIALES. ECUACIONES Y SISTEMAS 5.1 DEFINICIÓN Si a es un número real positivo y distinto de 1, el logaritmo en base a de un numero N es el exponente al que hay que elevar a la
UNIDAD DIDÁCTICA 5: Geometría analítica del plano
UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La
