VIII Olimpíada Matemática de Centroamérica y El Caribe

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VIII Olimpíada Matemática de Centroamérica y El Caribe"

Transcripción

1 VIII Olimpíada Matemática de Centroamérica y El Caribe Panamá, 006 Primer ía Soluciones Problema 1 Se consideran los enteros positivos S d 1 C d C d C C d 006 ; con d 0; 1; ; : : : ; 9. Halle la última cifra del número S 0 C S 1 C S C C S 9 : enotaremos por U.S d / a la última cifra del número S d, se obtiene inmediatamente que U.S 0 / U.1/ 1 y U.S 1 / U.1 C 006/ 7: Para calcular los restantes U.S d / observamos que para todo k N; es U.d 4k C d 4kC1 C d 4kC C d 4kC3 / 0 excepto para d 6. En este caso es U.6 5k C 6 5kC1 C 6 5kC C 6 5kC3 C 6 5kC4 / 0:

2 Explícitamente: U.S / U 1 C. C C 3 C 4 / C C. 001 C : : : C 004 / C 005 C 006 U.1 C 0 C C 0 C C 4/ 7 U.S 3 / U 1 C.3 C 3 C 3 3 C 3 4 / C C C : : : C / C C U.1 C 0 C C 0 C 3 C 9/ 3; U.S 4 / U 1 C.4 C 4 C 4 3 C 4 4 / C C C : : : C / C C U.1 C 0 C C 0 C 4 C 6/ 1; U.S 5 / U 1 C.5 C 5 C 5 3 C 5 4 / C C C : : : C / C C U.1 C 0 C C 0 C 5 C 5/ 1; U.S 6 / U 1 C.6 C 6 C 6 3 C 6 4 C 6 5 / C C C : : : C C / C U.1 C 0 C C 0 C 0 C 6/ 7; U.S 7 / U 1 C.7 C 7 C 7 3 C 7 4 / C C C : : : C / C C U.1 C 0 C C 0 C 7 C 9/ 7; U.S 8 / U 1 C.8 C 8 C 8 3 C 8 4 / C C C : : : C / C C U.1 C 0 C C 0 C 8 C 4/ 3; U.S 9 / U 1 C.9 C 9 C 9 3 C 9 4 / C C C : : : C / C C Por tanto, U.1 C 0 C C 0 C 9 C 1/ 1: U.S 0 C S 1 C S C C S 9 / U.1 C 7 C 7 C 3 C 1 C 1 C 7 C 7 C 3 C 1/ 8 y hemos terminado. Sean y 0 dos circunferencias de igual radio con centros O y O 0 respectivamente. y 0 se cortan en dos puntos y A es uno de ellos. Se escoge un punto B cualquiera en. Sea C el otro punto de corte de la recta AB! con 0 y un punto en 0 tal que OBO 0 es un paralelogramo. emuestre que la longitud de C es constante, es decir, no depende de la elección de B. Como los triángulos OAB y O 0 AC son isósceles, se tiene que m OAB m OBA y m O 0 AC ˇ m O 0 CA. Se construye un punto E tal que AC sea paralelo a O 0 E, así m ACO 0 m CO 0 E ˇ por ser alternos internos, y m OBA m EO 0 porque OB es paralelo a O 0 y AB es paralelo a O 0 E. e allí que m OAO 0 C ˇ m CO 0 ; y dado que y 0 son circunferencias de radios iguales se concluye que el triángulo OAO 0 es congruente con el triángulo CO 0 y por lo tanto C tiene la misma longitud que OO 0, la cual es constante independientemente de la ubicación de B.

3 O A α β Ο β α α B β C E Problema 3 Para cada número natural n, se define f.n/ n C p n C 1. Pruebe que para cada k 1, la ecuación f.f.n// f.n/ k tiene exactamente k 1 soluciones. h Nota: i Si x es un número h real, el símbolo Œx denota al mayor entero que es menor o igual a x. Por ejemplo: 5 p i ; Œ 0;4 1; 1. Consideremos j la función g.n/ f.f.n// f.n/. e la definición de f se tiene que pf k g.n/.n/ C 1. Se trata entonces de resolver la ecuación: pf 1 g.n/.n/ C k; para k 1: Observemos lo siguiente: 1) f es estrictamente creciente ) g es creciente 3) g.k / k 4) g.k C 1/ k C 1: Veamos el caso k=1. Obviamente, n 1 es solución de la ecuación g.n/ 1, pues f.f.1// f.1/ f./ 3 1 Además g./ f.f.// f./ f.3/ 3 5 3, por lo que g.n/ para n. Así, la única solución es n 1 y esto prueba el resultado en el caso k 1: Suponemos de aquí en adelante que k, y tomamos n tal que: k k C n k : 3

4 Hay exactamente k 1 de tales n. Como g es creciente k g.k k C / g.n/ g.k / k: Por lo tanto, g.n/ k. Hemos encontrado k 1 soluciones de la ecuación. Para demostrar que no hay más soluciones, se observa que m k k C 1 implica que g.m/ g.k k C 1/ k 1 emostración de las afirmaciones 1-4. k C 1 m implica que k C 1 g.k C 1/ g.m/ Prueba de 1. Sea n 1, entonces: f.n C 1/ f.n/ n C 1 C pn 1 C 1 C Como p n C 1 C 1 > p n C 1, se tiene que pn C 1 C 1 Por lo tanto f.n C 1/ n pn 1 pn 1 C 1 C C 1 C pn 1 C 0: f.n/ > 0. Así f es estrictamente creciente. pn 1 C Prueba de. Sea n 1, entonces: g.n C 1/ g.n/ pf 1 pf 1.n C 1/ C.n/ C : Como f es estrictamente creciente: p f.n C 1/ C 1 > p f.n/ C 1 ; por lo tanto: pf 1.n C 1/ C Esto prueba que g es creciente. Prueba de 3. Como f.k / k.k C 1/, se tiene que q g.k / f.k / C 1 pf 1.n/ C : pk.k 1 C 1/ C : e las desigualdades: k < p k.k C 1/ C 1 < k C 1; se tiene g.k / k: Esto prueba (3). 4

5 Prueba de 4. Como k < k C 1 <.k C 1/, y g es creciente: k g.k / g.k C 1/ g..k C 1/ / k C 1: Probemos que g.k C 1/ > k. Supongamos que g.k C 1/ k, entonces q f.k C 1/ C 1 k; por lo tanto lo que implica que: Según la definición de f k k k q f.k C 1/ C 1 < k C 1 1 < f.k C 1/ < k C 1 : 1 < k C 1 C p k C 1 C 1 < k C 1 : Estas últimas desigualdades se pueden reescribir como: 5 p k 4 < k C 1 C 1 < k 3 4 ; por lo tanto p k C 1 C 1 < k; lo que implica que Esta desigualdad es imposible. Por lo tanto, g.k C 1/ k C 1. p k C 1 C 1 < k: 5

6 VIII Olimpíada Matemática de Centroamérica y El Caribe Panamá, 006 Segundo ía Soluciones Problema 4 El producto de varios números enteros mayores que 0 y distintos entre sí, es múltiplo de.006/. etermine el menor valor que puede tomar la suma de esos números. Primero notamos que , entonces A cada conjunto que cumple las condiciones del enunciado y tal que la suma de sus elementos es ese menor valor, lo llamaremos un conjunto mínimo. Primero veremos que cada conjunto mínimo tiene 6 o menos elementos. Consideremos un conjunto mínimo cualquiera. Marcamos algunos de sus elementos siguiendo los siguientes pasos: (a) Primero marcamos o bien dos elementos múltiplos de, o un elemento múltiplo de 4 (esto tiene que existir ya que el producto es múltiplo de 006 ). (b) Luego marcamos o bien dos elementos múltiplos de 17, o un elementos múltiplo de 17 (esto tiene que existir por la misma razón anterior). (c) Finalmente marcamos o bien dos elementos múltiplos de 59, o un elemento múltiplo de 59. Nótese que los elementos marcados satisfacen que su producto es múltiplo de 006, y no se marcaron más de 6 elementos. Además, la suma de los elementos marcados es menor o igual a la suma de todos los elementos del conjunto. ado que este conjunto es un conjunto mínimo, necesariamente se tienen que haber marcado todos sus elementos, por lo que el conjunto no tiene más de 6 elementos. Ahora veremos que ninguno de los elementos de un conjunto mínimo es múltiplo de 17 : Supongamos que un conjunto mínimo es de la forma f17 k; a 1 ; a ; : : : ; a n g (con k un entero positivo). Consideremos las parejas de números: 17k; 15 17k

7 17k; 14 17k 3 17k; 13 17k 4 17k; 1 17k : 7 17k; 9 17k En total hay 7 parejas, y no hay más de 6 elementos en el conjunto f17 k; a 1 ; a ; : : : ; a n g, por lo que una de las parejas satisface que ninguno de sus dos elementos está en ese conjunto. Sea a17k;.16 a/17k esa pareja. Consideremos entonces el nuevo conjunto fa17k;.16 a/17k; a 1 ; a ; : : : ; a n g. El nuevo conjunto satisface que el producto de sus elementos es múltiplo del producto de los elementos del conjunto original, y por lo tanto es múltiplo de 006. Además, la suma de los elementos de este nuevo conjunto es 16 17k C a i < 17 k C a i : i1 Por lo tanto el conjunto original no puede ser un conjunto mínimo, lo cual contradice lo asumido inicialmente. Usando el mismo argumento, pero con las parejas i1 59k; 15 59k 59k; 14 59k 3 59k; 13 59k 4 59k; 1 59k : 7 59k; 9 59k se tiene que ningún conjunto mínimo tiene un elemento múltiplo de 59. Ahora veremos que ningún conjunto mínimo tiene un elemento múltiplo de 17 59: Supongamos que algún conjunto mínimo es de la forma f17 59k; a 1 ; a ; : : : ; a n g (con k un entero positivo). Consideremos las parejas de números: 17k; 59k 17k; 59k 3 17k; 3 59k : 7 17k; 7 59k En total son 7 parejas, y el conjunto f1759k; a 1 ; a ; : : : ; a n g no tiene más de 6 elementos, por lo que alguna de las parejas satisface que ninguno de sus dos elementos está en f17 59k; a 1 ; a ; : : : ; a n g. Sea a 17k; a 59k dicha pareja. Consideramos entonces el nuevo conjunto fa17k; a59k; a 1 ; a ; : : : ; a n g:

8 El producto de los elementos del nuevo conjunto también es múltiplo de 006, y la suma de sus elementos es a.17 C 59/k C a i a76k C i1 a i 7 76k C i1 a i < 17 59k C i1 a i : Entonces el conjunto original no podría ser un conjunto mínimo, lo cual contradice la suposición inicial. Tenemos entonces que las siguientes afirmaciones son ciertas para cada conjunto mínimo S: (a) Ningún elemento de S es múltiplo de 17. (b) Ningún elemento de S es múltiplo de 59. (c) Ningún elemento de S es múltiplo de Entonces el conjunto S debe ser de la forma: f17x 1 ; 17x ; : : : ; 17x p ; 59y 1 ; 59y ; : : : ; 59y q ; z 1 ; z ; : : : ; z r g (r podría ser 0), donde ninguno de los números x 1 ; x ; : : : ; x p ; y 1 ; y ; : : : ; y q ; z 1 ; z ; : : : ; z r es múltiplo de 17, ni de 59. Se tiene además que p y q (para que el producto sea divisible entre 17 y 59 ). Por otro lado, como los x i s son distintos, se tiene que x 1 C x 1 C y de la misma manera y 1 C y 1 C. Finalmente se tiene: X.S/ 17.x1 C x C C x p / C 59.y 1 C y C C y q / C z 1 C z C C z r i1 17.x 1 C x / C 59.y 1 C y / 17 3 C : Basta entonces con dar un ejemplo de un conjunto tal que el producto de sus elementos es múltiplo de 006 y tal que la suma de sus elementos es 8: f17; 17; 59; 59g: Problema 5 El país Olimpia está formado por n islas. La isla más poblada es Panacentro y todas las islas tienen diferente número de habitantes. Se desea construir puentes entre islas que puedan transitarse en ambas direcciones de manera que cada pareja no esté unida por más de un puente. Es necesario que se cumplan las siguientes condiciones: Siempre es posible llegar desde Panacentro hasta cualquiera otra isla usando los puentes. Si se hace un recorrido desde Panacentro hasta cualquier otra isla utilizando cada puente no más de una vez, el número de habitantes de las islas visitadas es cada vez menor. etermine el número de maneras de construir los puentes. Nótese que la red de puentes de Olimpia no puede contener ciclos. Para demostrar esto, supóngase que las islas X y Y pertenecen a un ciclo (ciclo simple, sin repetición de puentes) y que el número de habitantes de X es mayor al número de habitantes de Y. Para cada isla Z en el ciclo, diferente de X y Y, se debe cumplir que el número de habitantes de Z es menor que el de X y mayor que el de Y. 3

9 Además, existe un recorrido que va de Z a Y pasando por X que no repite los puentes (tómense las dos componentes del ciclo al cortar en Z y en Y y de estas tómese la que contiene X) por lo que este recorrido va de una isla a otra con menor cantidad de habitantes pasando por una tercera isla que tiene más habitantes que las dos primeras, contradiciendo la conformación de los puentes. Sean I 1 ; I ; : : : ; I n las islas de Olimpia y p 1 ; p ; : : : ; p n sus respectivas poblaciones, de forma que p i > p j si y solamente si i > j. En esta forma, la primera isla en el orden, I 1, debe ser justamente Panacentro. Ahora, I debe estar directamente unida a I 1, ya que de I 1 es posible llegar a I y en ese camino no deberían encontrarse islas de menor cantidad de habitantes. Para I 3, es posible unirla con un puente directamente a I 1 o directamente a I, pero no a las dos, ya que se formaría un ciclo. Se tienen entonces posibilidades. Para I 4, se le puede unir directamente con I 1, I o I 3, para obtener 3 posibilidades. Siguiendo el proceso, hasta llegar a I n para la que existen n 1 posibilidades (unir directamente con cualquiera de las islas anteriores) se tiene que el total de opciones para conformar los puentes de Olimpia está dado por 1 3.n 1/.n 1/Š: Problema 6 Sea ABC un cuadrilátero convexo. Sea I el punto de intersección de las diagonales AC y B. Sean E, H, F y G puntos sobre los segmentos AB, BC, C y A respectivamente, tales que EF y GH se cortan en I. Sea M el punto de intersección de EG y AC y sea N el punto de intersección de HF y AC. emuestre que AM IM IN CN IA IC Ver la figura. Note que podemos determinar doce pares de triángulos, ya sea con lados en común o con ángulos comunes o bien con dos ángulos congruentes, uno por cada triángulo del par. B E H A M I N C G F 4

10 Estableciendo relaciones entre áreas y lados obtenemos: AM IM IN CN ŒAEG ŒIEG ŒIFH ŒCHF ŒIFH ŒIEG ŒCB ŒCHF ŒAB ŒCB ŒAEG ŒAB IF IH C CB IE IG CF CH IA AE AG IC AB A ŒFAC ŒEAC ŒHAC ŒGAC ŒAC ŒFAC ŒBAC ŒHAC IA IC ŒEAC ŒBAC ŒGAC ŒAC IA IC 5

Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4

Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 25. El número 2 x es la mayor potencia entera de 2 entre las que tienen nueve dígitos en base 10, y sus nueve dígitos son distintos. Usando que

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

1. Polígonos. 1.1 Definición

1. Polígonos. 1.1 Definición 1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos

Más detalles

Geometría. Olimpiada de Matemáticas en Tamaulipas. Cuando dos lineas rectas se cortan forman cuatro ángulos entre ellas:

Geometría. Olimpiada de Matemáticas en Tamaulipas. Cuando dos lineas rectas se cortan forman cuatro ángulos entre ellas: Geometría Ángulos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Cuando dos lineas rectas se cortan forman cuatro ángulos entre ellas: Estos cuatro ángulos tienen además la característica de ser

Más detalles

12.1. Clasificación de los cuadriláteros según su paralelismo.

12.1. Clasificación de los cuadriláteros según su paralelismo. 12. CUADRILÁTEROS 12.1. Clasificación de los cuadriláteros según su paralelismo. Según la cantidad de pares de lados que sean paralelos, los cuadriláteros se clasifican en tres tipos : Paralelogramos:

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho gcorbach@uc.cl Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto está bien

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia BACHILLERATO CO+ 0.- Pedro anduvo una determinada distancia a velocidad constante. Si hubiera ido 0,5 km/h más rápido, habría recorrido la misma distancia en 5 4 del tiempo original, pero si hubiera ido

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

GEOMETRÍA Y TRIGONOMETRÍA

GEOMETRÍA Y TRIGONOMETRÍA GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

Divisibilidad y congruencias

Divisibilidad y congruencias Divisibilidad y congruencias Ana Rechtman Bulajich y Carlos Jacob Rubio Barrios Revista Tzaloa, año 1, número 2 Empecemos por explicar el significado de la palabra divisibilidad. En este texto vamos a

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. II Nivel I Eliminatoria OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría II Nivel I Eliminatoria bril, 015 ontenido 1 II Nivel (8 y 9 ) - Geometría 1.1 Presentación.........................................

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este

Más detalles

RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental

RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es

Más detalles

Matemáticas II - Geometría

Matemáticas II - Geometría PAU Matemáticas II - Geometría 2008.SEPTIEMBRE.1.- Dados los dos planos π 1 : x + y + z = 3 y π 2 : x + y αz = 0, se pide que calculeis razonadamente: a) El valor de α para el cual los planos π 1 y π 2

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

PROPORCIONES Y SEMEJANZA

PROPORCIONES Y SEMEJANZA PROPORCIONES Y SEMEJANZA Veamos el siguiente ejemplo: Cuando tomamos una fotografía con nuestra cámara, si pedimos al laboratorio fotográfico que nos imprima dos copias de tamaño 5 X 7 pulgadas, las figuras

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

Propiedades y clasificación de triángulos

Propiedades y clasificación de triángulos MT-22 Clase Propiedades y clasificación de triángulos Síntesis de la clase Ángulos Polígonos convexos Clasificación de ángulos Relaciones angulares Regulares Irregulares 0º < Agudo < 90 Recto = 90 90º

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

PUNTOS Y VECTORES EN EL PLANO

PUNTOS Y VECTORES EN EL PLANO PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia:

Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia: GEOMETRÍA Ángulos En la circunferencia: ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la circunferencia y son todos iguales. AOE ˆ es el ángulo central correspondiente y su medida es dos veces la medida

Más detalles

Dibujo Técnico Polígonos regulares

Dibujo Técnico Polígonos regulares 19. POLÍGONOS REGULARES 19.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.

LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO. LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2 CONGRUENCIA DE TRIÁNGULOS Dos triángulos son congruentes si los tres lados de uno son respectivamente congruentes con los tres

Más detalles

36 Alfonso Sánchez UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL

36 Alfonso Sánchez UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL 36 Alfonso Sánchez UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL GEOMETRÍA 10 Prof. Alfonso Sánchez ENCUENTRO 4 PERPENDICULARIDAD. PARALELISMO POSICIÓN RELATIVA

Más detalles

Conjugados Armónicos

Conjugados Armónicos Conjugados Armónicos Sofía Taylor Febrero 2011 1 Puntos Conjugados Armónicos Sean A y B dos puntos en el plano. Sea C un punto en el segmento AB y D uno sobre la prolongación de AB tal que: donde k es

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos

UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen

Más detalles

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35. Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. III Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. III Nivel I Eliminatoria OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría III Nivel I Eliminatoria Marzo 2016 Índice 1. Presentación. 2 2. Temario 3 3. Teorema de Pitágoras 4 4. Triángulos Especiales 7

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

El triángulo órtico en el Court

El triángulo órtico en el Court El triángulo órtico en el ourt Francisco Javier García apitán 4 de febrero de 2009 Resumen acemos una lectura atenta de la sección The orthic triangle del libro ollege Geometry, n Introduction to the Modern

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Dadas las coordenadas del punto A(, ). Hallar la ecuación de la recta (r) paralela al eje por dicho punto. Hallar la ecuación de la recta (p) paralela al eje por dicho punto. )

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

Guía de Reforzamiento N o 2

Guía de Reforzamiento N o 2 Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma

Más detalles

B7 Cuadriláteros. Geometría plana

B7 Cuadriláteros. Geometría plana Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.

Más detalles

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.

Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej. Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

Lección 17: Polígonos básicos

Lección 17: Polígonos básicos Lección 17: Polígonos básicos Un polígono es una figura cerrada formada por segmentos de recta que no se cruzan entre sí. Los segmentos se llaman lados del polígono. Los polígonos pueden ser convexos,

Más detalles

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.

Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos

Más detalles

ALGUNAS PROPIEDADES DEL TRIÁNGULO

ALGUNAS PROPIEDADES DEL TRIÁNGULO CAPÍTULO III 13 ALGUNAS PROPIEDADES DEL TRIÁNGULO Conocimientos previos: - Suponemos conocido lo siguiente: a) El lugar geométrico de los puntos del plano que equidistan de dos puntos dados A y B, es una

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

Matemáticas I: Hoja 1

Matemáticas I: Hoja 1 Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para

Más detalles

Tema 10. Geometría plana

Tema 10. Geometría plana Tema 10. Geometría plana Contenido 1. Relaciones angulares... 2 1.1. Ángulos en una circunferencia... 2 1.2. Ángulos opuestos por el vértice... 3 1.3. Ángulos formados por lados paralelos y perpendiculares...

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

Las ecuaciones de estas rectas pueden venir dadas de las formas siguientes:

Las ecuaciones de estas rectas pueden venir dadas de las formas siguientes: Geometría Analítica 8-9 RECTAS EN EL ESPACIO En la figura se muestran varias rectas en el espacio, cuas posiciones son las siguientes: a) r r3 se cortan en un punto P cuas coordenadas se obtienen resolviendo

Más detalles

Fundación Uno. Ejercicio Reto. ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS:

Fundación Uno. Ejercicio Reto. ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS: ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS: 1. Triángulos.Rectas notables. Propiedades. 2. Cuadriláteros. Propiedades. 3. Polígonos. Propiedades. 4. Circunferencia.

Más detalles

UNIDAD 8 Geometría analítica. Problemas afines y métricos

UNIDAD 8 Geometría analítica. Problemas afines y métricos UNIDAD Geometría analítica. Problemas afines y métricos Pág. 1 de 5 1 Se consideran los puntos A (, ) y B (4, 6). a) Calcula las coordenadas de un punto P que divida al segmento AB en dos partes 1 tales

Más detalles

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio. GEOMETRIA ANALITICA Capítulo 9 La Circunferencia 9.1. Definición Se llama circunferencia al lugar geométrico de los puntos de un plano que equidistan de un punto fijo del mismo plano. Dicho punto fijo

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 241 EJERCICIOS Clasificación. Propiedades 1 Observa el siguiente diagrama: cuadriláteros 4 rectángulos trapecios rombos 2 1 3 5 paralelogramos 6 Qué figura geométrica corresponde al recinto?

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

Guia PSU Matemática IV Medio PERÍMETROS, ÁREAS Y VOLÚMENES

Guia PSU Matemática IV Medio PERÍMETROS, ÁREAS Y VOLÚMENES PERÍMETROS, ÁREAS Y VOLÚMENES Antes de entrar al análisis de fórmulas referente al perímetro, área y volumen de figuras geométricas, repasemos estos temas y efectuemos ejercicios pertinentes Llamamos área

Más detalles

17. POLÍGONOS REGULARES

17. POLÍGONOS REGULARES 17. POLÍGONOS REGULARES 17.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

Preparación olímpica III: geometría

Preparación olímpica III: geometría Preparación olímpica III: geometría Teoría Adrián Rodrigo Escudero 20 de noviembre de 2015 Los problemas de geometría, como el resto de problemas de olimpiada, están pensados para que no sean necesarios

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Si B borra 9, A borra 2, 4, 6 y 8 y gana.

Si B borra 9, A borra 2, 4, 6 y 8 y gana. Día 1 VI OMCC Soluciones Problema 1 En una pizarra se escriben los números 1, 2, 3, 4, 5, 6, 7, 8 y 9. Dos jugadores A y B juegan por turnos. Cada jugador en su turno escoge uno de los números que quedan

Más detalles

I.P.A.O. Granada EXAMEN ANDALUCÍA 2000. JARR

I.P.A.O. Granada EXAMEN ANDALUCÍA 2000. JARR PROCEDIMIENTO SELECTIVO PARA EL INGRESO AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA. CONVOCATORIA 2000. MATEMÁTICAS EJERCICIO 1: Construir un triángulo conociendo los lados "b" y "c" y la bisectriz

Más detalles

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los

Más detalles

A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C

A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C 8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid 9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número

Más detalles

PROBLEMAS METRICOS. r 3

PROBLEMAS METRICOS. r 3 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

La Circunferencia y el círculo

La Circunferencia y el círculo La ircunferencia y el círculo La ircunferencia es una curva cerrada cuyos puntos están en un mismo plano y a igual distancia de otro punto interior fijo que se llama centro de la circunferencia. l círculo

Más detalles

EJERCICIOS SOBRE CIRCUNFERENCIA

EJERCICIOS SOBRE CIRCUNFERENCIA EJERCICIOS SOBRE CIRCUNFERENCIA 1. En una C(O; r) se trazan un diámetro AB y un radio OC perpendicular a AB ; se prolonga AB a cada lado y en el exterior de la circunferencia en longitudes iguales AE=BD;

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 9º

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 9º COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia 25 Mes 03 Año 2015 META DE COMPRENSIÓN: La estudiante desarrolla comprensión acerca de las definiciones y propiedades geométricas en los diferentes tipos

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

CHAPTER 7. Desigualdades en triángulos. 41. Ángulos exteriores.

CHAPTER 7. Desigualdades en triángulos. 41. Ángulos exteriores. HPTR 7 esigualdades en triángulos. 41. Ángulos exteriores. l ángulo suplementario a un ángulo de un triángulo (o polígono) se llama unángulo exterior de este triángulo (o polígono). Por ejemplo (Figura

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

20. Rectas y puntos notables

20. Rectas y puntos notables Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar

Más detalles

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la

Más detalles

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 20 5. EJERCICIOS DE REFUERZO Página 36 1 1. ESQUEMA - RESUMEN Página 1.1. POLÍGONOS 2 1.2. TRIÁNGULOS

Más detalles

PROBLEMAS RESUELTOS GEOMETRÍA

PROBLEMAS RESUELTOS GEOMETRÍA PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

POLÍGONOS. α3 α 4 α 5. α 7 α 6. 1. Definición. Sean: A 1, A 2,...A n, n distintos puntos del plano. Trazamos los segmentos: A 1A 2,

POLÍGONOS. α3 α 4 α 5. α 7 α 6. 1. Definición. Sean: A 1, A 2,...A n, n distintos puntos del plano. Trazamos los segmentos: A 1A 2, A 7 A 6 A 8 α 7 α 8 α A 5 α 6 A α α α α 5 A A A Un agricultor contrata a una compañía constructora para que realice el cálculo del área de un terreno que se encuentra en una explanada y que desea adquirir.

Más detalles