Capitulo VI. VI.2 Engranajes cilíndricos. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capitulo VI. VI.2 Engranajes cilíndricos. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica"

Transcripción

1 Capitulo VI VI. Engranajes cilíndricos

2 Capítulo VI Engranajes VI. Introducción n a los engranajes. VI. Engranajes cilíndricos. Engranajes con perfil de evolvente. Espesor del diente. Relación de contacto. Generación. n. Interferencia. Ruedas corregidas. VI.3 Otros tipos de engranajes. VI.4 Trenes de engranajes.

3 Capítulo VI: Tema Engranajes cilíndricos. Engranajes con perfil de evolvente.. Engranajes con perfil de evolvente.. Propiedades del perfil de evolvente.. Espesor del diente. 3. Relación de contacto. 4. Generación. n.. Útiles de forma.. Generación n con cremallera. 3. Generación n con piñó ñón. 5. Interferencia.. Interferencia de tallado con cremallera.. Interferencia de tallado con piñó ñón. 3. Interferencia de funcionamiento en ruedas talladas con cremallera. 4. Interferencia de funcionamiento en ruedas talladas con piñó ñón. 6. Ruedas corregidas. 3

4 Capítulo VI: Tema Engranajes cilíndricos. Engranajes con perfil de evolvente.. Engranajes con perfil de evolvente.. Propiedades del perfil de evolvente. 4

5 Engranajes con perfil de evolvente La evolvente es una curva tal que el lugar geométrico de sus centros de curvatura es una circunferencia. A dicha circunferencia se la denomina circunferencia base. Intuitivamente es la trayectoria que describe es punto extremo de un hilo al ser desenrollado de un disco que constituye la circunferencia base. hilo Circunferencia base 5

6 Engranajes con perfil de evolvente hilo Evolvente Circunferencia base 6

7 Engranajes con perfil de evolvente Propiedades:. La línea de engrane es una línea recta: lo que quiere decir que la fuerza entre dientes tiene siempre la misma dirección.. El perfil conjugado de una curva evolvente es otra evolvente. 3. Al modificar la distancia entre centros no se modifica la relación de transmisión. 4. Los engranajes con perfil de evolvente son relativamente fáciles de fabricar. Circunferencia primitiva d Evolvente ρ r r φ ρ O P O Circunferencia base Circunferencia primitiva Circunferencia base Evolvente Línea de engrane 7

8 Circunferencia primitiva Engranajes con perfil de evolvente ρ Circunferencia base Circunferencia primitiva Δd ρ Circunferencia base r O r O Evolvente Evolvente φ φ Evolvente Línea de engrane d d Evolvente Línea de engrane r r O O ρ Circunferencia base ρ Circunferencia base Circunferencia primitiva Circunferencia primitiva 8

9 9 Universidad de Cantabria Engranajes con perfil de evolvente Engranajes con perfil de evolvente Engranajes con perfil de evolvente Engranajes con perfil de evolvente ϕ ρ ϕ ρ cos r cos r = = ' 'cos r ' 'cos r ϕ ρ ϕ ρ = = µ ρ ρ = = r r ' r ' r = ρ ρ µ ω ω = = = r r ' r ' r

10 Engranajes con perfil de evolvente El perfil conjugado de una evolvente, cuando el diámetro primitivo de la otra rueda es infinito, es una línea recta. O O m C m C f + sen(80 ) = OfP PO ϕ m r + sen(80 ) = + O P ϕ + r f r Of P = rsenϕ Circunferencia primitiva Circunferencia base O f O P A φ ρ r 0

11 Propiedades analíticas del perfil de evolvente AT = ρtanψ T ξ Evolvente BA = ( ψ + θ) ρ = AT = ρtanψ ( ψ + θ) = tanψ B r θ =tanψ ψ θ E v ( ψ) =tanψ ψ ψ ρ A Función de evolvente O Circunferencia base

12 Capítulo VI: Tema Engranajes cilíndricos. Espesor del diente.

13 Espesor del diente T A e A e = A R A β A e T = R T β T = R T [ β + E ( ψ ) E ( ψ )] A v A v T R T β T β A ψ A ρ R A e T β A ea = R ea = RT + v A v T) RA A [ E ( ψ ) E ( ψ ] ψ T 3

14 Capítulo VI: Tema Engranajes cilíndricos 3. Relación de contacto. 4

15 Relación de contacto 5

16 Relación de contacto 6

17 Relación de contacto 7

18 Relación de contacto 8

19 Relación de contacto 9

20 Relación de contacto Longitud del arco de conducción n (q ( t ): es el arco que recorre el perfil del diente sobre la circunferencia primitiva entre el principio y el final del contacto con el perfil conjugado. Relación de contacto (ρ ( c ): es el cociente entre la longitud del arco de conducción y el paso circular. ρ c = q t p La relación de contacto se puede considerar como el número medio de dientes que se encuentran en cada instante en contacto. 0

21 Relación de contacto O Fase de aproximación: periodo comprendido entre que los dos dientes entran en contacto y alcanzan el punto primitivo (AP). Fase de retroceso: periodo comprendido entre el punto P y los dientes se separan (PB). D B γ r γ P γ t A ρ C φ γ r ρ γ t γ O

22 Relación de contacto q = q + q t a r O DA = (R γ = γ + γ t t a γ = γ + γ a r r R γ = γ = t R t qt AP = DA DP = DP = Rsenϕ e ρ / ) = U a [(R + a ) R cos ϕ ] / / [(R + a ) R cos ϕ ] R senϕ Ua = R e R D B γ r γ t γ A P γ r ρ C φ / [(R + a ) R cos ϕ ] Rsenϕ Ur = R R e ρ γ t U = U + U T a r γ O

23 Relación de contacto R e R γ r γ t ρ γ C A φ B P D γ r ρ R e γ t R γ 3

24 Relación de contacto El segmento AB de longitud U t debe ser igual al arco EF por la construcción de la evolvente (EF es el hilo enrollado y AB es el mismo hilo ya desenrollado). Entonces, el ángulo girado para pasar de la posición a la posición será el arco U t entre el radio de la circunferencia base. Posición (final del contacto) B Posición (inicio del contacto) A U r P U a C γ = t Ut ρ γ = t Ut ρ D E F q t = γ t R γt γtr ρ c = = π m π m R 4

25 Relación de contacto La relación de contacto indica el número medio de dientes en contacto. Se recomienda que sea superior a,, ya que si fuese inferior a significaría que en algún momento no existiría contacto entre dientes. Un relación de contacto alta conlleva un mejor reparto de esfuerzos entre los dientes y por tanto un mejor funcionamiento. 5

26 Capítulo VI: Tema Engranajes cilíndricos 4. Generación. n.. Útiles de forma.. Generación n con cremallera. 3. Generación n con piñó ñón. 6

27 Generación Aunque la fabricación de engranajes no es objeto de esta asignatura es necesario comprender ciertos aspectos de este proceso por sus repercusiones en el comportamiento cinemático y dinámico de engranajes. Existen diversas formas de fabricar los dientes de engranaje. Las principales son:. Fundición.. Extrusión. 3. Mecanizado:. Empleando útiles de forma.. Mediante generación. 7

28 Generación Los engranajes fabricados en fundición tienen un bajo coste y son fáciles de mecanizar. La fundición tiene buenas características de corte en frío y estabilidad dimensional. Sin embargo, pueden tener defectos internos que reduzcan su vida a fatiga. Además tienen baja resistencia mecánica y no pueden soportar grandes cargas o pares. El mecanizado del diente es el proceso que proporciona mayor calidad al diente de engranaje. Se realiza de dos formas: Con útiles de forma: el hueco de los dientes tiene la forma exacta del útil de tallado. Éste elimina el material de la rueda en bruto para dar forma a los dientes. Sin embargo, al no disponer de infinitos útiles de tallado en muchas ocasiones se talla de forma aproximada. Mediante generación: Se talla el diente de forma exacta mediante el movimiento relativo de la rueda a tallar con la herramienta de corte. Existen dos formas: Tallado mediante generación con cremallera. Tallado mediante generación con piñón. 8

29 Generación Zona sin tallar Rueda a tallar Bordes afilados O Dientes tallados Dirección de corte Cremallera de corte 9

30 Capítulo VI: Tema Engranajes cilíndricos 5. Interferencia.. Interferencia de tallado con cremallera.. Interferencia de tallado con piñó ñón. 3. Interferencia de funcionamiento en ruedas talladas con cremallera. 4. Interferencia de funcionamiento en ruedas talladas con piñó ñón. 30

31 Interferencia Definición: se denomina interferencia al contacto entre partes de perfiles que no son conjugados y a la interferencia de la propia materia. Existen dos tipos: Interferencia de tallado: conocida también como penetración, se produce cuando la cremallera o piñón de generación corta al cilindro del engranaje en zonas situadas por debajo de la circunferencia base. Interferencia de funcionamiento: se produce durante el funcionamiento en servicio de las ruedas de engranaje cuando los dientes entran en contacto en zonas no talladas como perfil de evolvente. Se produce un debilitamiento en la base del diente. 3

32 Interferencia de tallado Circunferencia primitiva Circunferencia base Interferencia F Perfil debilitado por interferencia Perfil estándar 3

33 Interferencia de tallado con cremallera a PM = DPsenϕ = c R sen ϕ R = mz a c mz sen ϕ P φ a c =m D φ M a c z sen ϕ ρ R O ϕ =0 º; z = 7, 33

34 Interferencia de tallado con piñó ñón O PA PC = Rsenϕ PA Rsenϕ ρ R φ C / [ R + a ) R cos ϕ ] Rsenϕ R senϕ ( t t t t P A φ at a t max D φ R t R t +a t ρ t O t 34

35 Interferencia de funcionamiento con ruedas talladas con cremallera O AP CP Ua Rsenϕ ρ R R +a φ C / [ R a ) R cos ϕ ] R senϕ Rsenϕ ( + P B U senϕ a a c D φ A φ a c ac [ R + a ) R cos ϕ ] Rsenϕ a senϕ / c ( ρ R R +a O 35

36 Interferencia de funcionamiento en ruedas talladas con piñó ñón O R t +a c ρ O t [(R + a ) R cos ϕ ] Rsenϕ Rsenϕ / R R +a φ R c D Ua U at P B φ / [(R + a) Rcos ϕ ] Rsen [(R + a ) R cos ϕ ] / Rsenϕ t t t t ϕ C A A φ R +a R ρ O 36

37 Capítulo VI: Tema Engranajes cilíndricos 6. Ruedas corregidas. 37

38 Ruedas corregidas Los engranajes vistos hasta ahora son los engranajes normales, se denominan engranajes tallados a cero o engranajes cero, es decir, tallados de manera que el espesor del diente es igual a la anchura de hueco en la circunferencia primitiva de la herramienta. Estos engranajes presentan dos limitaciones importantes: Existe un número mínimo de dientes admisible para evitar la interferencia de tallado. La distancia entre centros (entre ejes) no puede ser cualquiera. P φ D φ M xm R ρ O z sen ϕ m d = R + R = (z + z) a c 38

39 Ruedas corregidas Estas limitaciones son importantes porque en ocasiones es necesario reducir el número de dientes y la distancia entre centros viene impuesta por otras condiciones de diseño. La solución es tallar engranajes corregidos. Consiste en tallar con la cremallera desplazada una cantidad xm, siendo m el módulo y x el factor de corrección. Se observa que la nueva circunferencia primitiva tallada con la cremallera de tallado es una línea en la que la anchura del hueco distinta al espesor del diente. ρ R D x φ P M O xm m mx = m ( x) = z sen φ Rsen ϕ mz ϕ sen ϕ = z z lim a c 39

40 Ruedas corregidas e ' = e + xm tanϕ φ xm e e La corrección es positiva cuando el desplazamiento de la cremallera la aleja del eje del engranaje. El espesor del diente del engranaje corregido, en la circunferencia primitiva, aumenta con correcciones positivas (coincidiendo con el espesor del hueco de la cremallera). 40

41 Ruedas corregidas Consideramos dos ruedas, de radios primitivos R y R, talladas con la misma cremallera, con correcciones x y x positivas. Con estas correcciones, las ruedas no engranaran a una distancia de centros d=r +R sino algo mayor. (Los perfiles de evolvente engranan a cualquier distancia de centros). Es decir, se tienen unos radios primitivos de funcionamiento mayores que los anteriores: R v y R v, con una distancia entre centros d v =R v +R v. Las circunferencias primitivas de funcionamiento para engranajes corregidos son distintas que las de tallado y el ángulo de presión también es distinto, ya que depende de la distancia entre centros. Luego tendremos también que el ángulo φ pasará a ser φ v. Las circunferencias base son las únicas que permanecen inalterables, ya que no han sido modificadas durante el tallado corregido. ρ ϕ = = Rcos Rvcos ρ = = Rcosϕ Rvcos ϕ ϕ v v ( R + ϕ = + ϕ R)cos (Rv Rv) cos dcosϕ = d v cosϕ v v 4

42 Ruedas corregidas e ' = e + xmtanϕ e ' = e + xmtanϕ e e' = Rv + v v v) R [ E ( ψ ) E ( ] v ψ e' ev = Rv + Ev( ψ ) Ev( ψv) R π m R = Rv m m π m v = v Rv = R [ ] R R v R R v e v + e v = p v Rv R = π mv = π m = π m R R Rv [ e ' + R [ E ( ) E ( ψ ) ] + e ' + R [ E ( ψ ) E ( ψ ) ] v v [ ] R ψ v v v v v = π m R R [ e + xmtanϕ + R [ E ( ψ ) E ( ψ ) ] [ e + x mtanϕ + R [ E ( ψ ) E ( ψ ) ] v Rv Rv + v v v = π m R R m ( e + e) + xmtanϕ + xmtanϕ + (z + z) v v v = v v + v [ E ( ψ ) E ( ψ ) ] m π [ Ev( ψ ) Ev( ψv) ] m )[ E ( ψ ) E ( ψ ) ] m p + xmtanϕ + x mtanϕ + m(z + z ) = π π m + xmtanϕ + x mtanϕ + m(z + z = v v v π [ E ( ψ ) E ( ) ] 0 (x + x)tanϕ + (z + z) v v ψv = E v ( ψ ) = E v v (x ( ψ) + (z + x + z ) tanϕ ) 4

43 Ruedas corregidas Ruedas cero Ruedas corregidas R v R ρ φ ρ φ v d d v R ρ R v ρ 43

5. ENGRANAJES CILÍNDRICOS RECTOS

5. ENGRANAJES CILÍNDRICOS RECTOS 5. ENGRANAJES CILÍNDRICOS RECTOS 5.1. Introducción El objetivo de los engranajes es transmitir rotaciones entre ejes con una relación de velocidades angulares constante. Este objetivo se puede lograr también

Más detalles

Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.

Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Engranajes 1. Tipos de engranaje 2. Nomenclatura 3. Acción conjugada 4. Propiedades de la involuta 5. Fundamentos 6. Relación

Más detalles

APORTE AL DISEÑO DE ENGRANAJES NO CIRCULARES CILÍNDRICOS RECTOS

APORTE AL DISEÑO DE ENGRANAJES NO CIRCULARES CILÍNDRICOS RECTOS UNIVERSIDAD POLITÉCNICA DE CATALUÑA Escuela Técnica Superior de Ingeniería Industrial de Barcelona Departamento de Ingeniería Mecánica Tesis Doctoral APORTE AL DISEÑO DE ENGRANAJES NO CIRCULARES CILÍNDRICOS

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Examen de MECANISMOS Junio 97 Nombre...

Examen de MECANISMOS Junio 97 Nombre... Examen de MECANISMOS Junio 97 Nombre... Se pretende conectar dos ejes paralelos que distan 505 mm mediante dos engranajes, de manera que la relación de velocidades sea 0.0625. El número máximo de dientes

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo 8. LA CIRCUNFERENCIA Y EL CÍRCULO 8.1. La Circunferencia. Una circunferencia es una línea curva, cerrada y plana, cuyos puntos están a la misma distancia de otro interior al que llamamos centro, es decir:

Más detalles

10.14 ENGRANAJES PARA EJES ALABEADOS:

10.14 ENGRANAJES PARA EJES ALABEADOS: 0.4 ENGRANAJES PARA EJES ALABEADOS: Nos referimos a ruedas dentadas que transmiten movimiento entre ejes que ni se cortan ni son paralelos, (se denominan ejes alabeados), la posición de estos ejes es invariable,

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Actividad 12: Lectura Capítulo 7

Actividad 12: Lectura Capítulo 7 Actividad 12: Lectura Capítulo 7 Fecha de inicio Fecha de Cierre 17/OCT/13 00:00 09/NOV/13 23:55 La recta De las figuras geométricas la más sencilla es la recta, ya que los parámetros que la caracterizan

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

TEMA 1 Rodamientos. 2. Duración y carga radial. Capacidad de carga 3. Fiabilidad TEMA 2

TEMA 1 Rodamientos. 2. Duración y carga radial. Capacidad de carga 3. Fiabilidad TEMA 2 ASIGNATURA: AMPLIACIÓN DE DISEÑO Y ENSAYO DE MÁQUINAS Código: 141215009 Titulación: INGENIERO INDUSTRIAL Curso: 5º Profesor(es) responsable(s): - CARLOS GARCÍA MASIÁ - Departamento: INGENIERÍA MECÁNICA

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... Examen de TECNOLOGIA DE MAQUINAS Septiembre 97 Nombre... El eje de la figura recibe la potencia procedente del motor a través del engranaje cilíndrico recto que lleva montado, y se acopla a la carga por

Más detalles

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA 4. DISEÑO TÉCNICO. 4.1 Diseño mecánico. 4.1.1 Definición y representación de Ejes y Árboles.

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

Examen de MECANISMOS Junio 94 Nombre...

Examen de MECANISMOS Junio 94 Nombre... Examen de MECANISMOS Junio 94 Nombre... Sean dos ruedas talladas a cero con una cremallera de módulo m=4 mm, ángulo de presión 20 o, addendum igual al módulo y dedendum igual también al módulo. Los números

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

Bicicleta con pedales de movimiento rectilíneo

Bicicleta con pedales de movimiento rectilíneo Bicicleta con pedales de movimiento rectilíneo I. Zabalza, J. Ros, J.J. Gil, J.M. Pintor, y J.M. Jiménez Departamento de Ingeniería Mecánica, Energética y de Materiales Universidad Pública de Navarra,

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.008 Sea Oxyz un sistema de referencia ligado a un sólido S

Más detalles

Cinemática de la partícula

Cinemática de la partícula Cinemática de la partícula Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será, de nuevo, Geogebra.

Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será, de nuevo, Geogebra. Más ecuaciones con regla y compás. La ecuación de segundo grado x +ax-a = 0 Hemos visto cómo resolver algunas ecuaciones con regla y compás, aunque nuestra herramienta recomendada por su eficiencia será,

Más detalles

Cinemática en 2D: Movimiento Circular.

Cinemática en 2D: Movimiento Circular. Cinemática en 2D: Movimiento Circular. Movimiento circular uniforme Otro caso particular de movimiento en dos dimensiones es el de una partícula que se mueve describiendo una trayectoria circular, con

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

EJERCICIOS RECUPERACIÓN TECNOLOGÍA INDUSTRIAL I- 2ª PARTE MECANISMOS

EJERCICIOS RECUPERACIÓN TECNOLOGÍA INDUSTRIAL I- 2ª PARTE MECANISMOS EJERCICIOS RECUPERACIÓN TECNOLOGÍA INDUSTRIAL I- 2ª PARTE MECANISMOS MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DEL MOVIMIENTO 1.Una polea de 50 mm de diámetro acoplada al árbol motor gira a 1500 rpm.

Más detalles

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) :

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) : Movimiento circular uniforme (MCU) : Es el movimiento de un cuerpo cuya trayectoria es una circunferencia y describe arcos iguales en tiempos iguales. Al mismo tiempo que recorremos un espacio sobre la

Más detalles

Diseño de una transmisión mecánica continuamente variable Pág. 45. ANEXO D: Cálculos

Diseño de una transmisión mecánica continuamente variable Pág. 45. ANEXO D: Cálculos Diseño de una transmisión mecánica continuamente variable Pág. 45 ANEXO D: Cálculos Pág. 46 Diseño de una transmisión mecánica continuamente variable Diseño de una transmisión mecánica continuamente variable

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta.

Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta. Examen de TEORIA DE MAQUINAS Diciembre 02 Nombre... La figura muestra un tren de engranajes epicicloidal. Rellenar los huecos de la tabla adjunta. Brazo Caso z 2 z 3 z 4 z 5 z 6 2 6 Brazo 1 30 25 45 50

Más detalles

CAPÍTULO 1. I TRODUCCIÓ A LOS ACCIO AMIE TOS DE MÁQUI AS

CAPÍTULO 1. I TRODUCCIÓ A LOS ACCIO AMIE TOS DE MÁQUI AS OBJETIVOS ESPECÍFICOS 1 U IVERSIDAD TEC OLÓGICA DE PEREIRA FACULTAD DE I GE IERÍA MECÁ ICA OBJETIVOS ESPECÍFICOS - DISEÑO II Profesor: Libardo Vanegas Useche 5 de agosto de 2009 CAPÍTULO 1. I TRODUCCIÓ

Más detalles

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA 3.2. ACABADOS SUPERFICIALES 3.2.2 Recubrimientos Javier Pérez Álvarez José Luis Pérez Benedito

Más detalles

Ampliación de un taller de fabricación de prototipos para fabricar ruedas dentadas en series cortas

Ampliación de un taller de fabricación de prototipos para fabricar ruedas dentadas en series cortas Septiembre 2009 (pla 94) Enginyer Industrial Jordi Brull Calbet Projecte de Fi de Carrera Enginyer Industrial Ampliación de un taller de fabricación de prototipos para fabricar ruedas dentadas en series

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.).

SIMBOLOGÍA. A área usada para el cálculo de A e, en cm 2. (2.1.). A ef área efectiva del tubo, en cm 2. (4.2.). SIMBOLOGÍA El número que figura entre paréntesis al final de la definición de un símbolo se refiere al número de artículo de este Reglamento donde el símbolo es definido o utilizado por primera vez. A

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

CIDEAD. TECNOLOGÍA INDUSTRIAL I. MECANISMOS. PROBLEMAS 1.

CIDEAD. TECNOLOGÍA INDUSTRIAL I. MECANISMOS. PROBLEMAS 1. 1. Hallar la fuerza que es necesario aplicar para vencer una resistencia de 1000 Kg., utilizando: a. Una polea móvil. b. Un polipasto potencial de tres poleas móviles. c. Un polipasto exponencial de tres

Más detalles

1) La relación de transmisión en una articulación o junta cardan siempre es: a) 2 b) 1 c) Depende del número de revoluciones d) 0,5

1) La relación de transmisión en una articulación o junta cardan siempre es: a) 2 b) 1 c) Depende del número de revoluciones d) 0,5 Tecnología Industrial I Rodear la respuesta correcta: Sistemas mecánicos Ejercicios Repaso Curso 2009/10 1) La relación de transmisión en una articulación o junta cardan siempre es: a) 2 b) 1 c) Depende

Más detalles

ENGRANAJES CÓNICOS 1. INTRODUCCIÓN

ENGRANAJES CÓNICOS 1. INTRODUCCIÓN ENGRANAJE CÓNICO 1. INTRODUCCIÓN e utilizan cuando queremos transmitir movimiento entre dos ejes que se cortan. Lo que en engranajes cilíndrico rectos eran cilindros primitivos, ahora se convierten en

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

UNIDAD X - GEOMETRIA. Ejercitación

UNIDAD X - GEOMETRIA. Ejercitación UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.

Más detalles

TECNOLOGÍAS Versión impresa MÁQUINAS: TRANSMISIÓN Y TRANS- FORMACIÓN DEL MOVIMIENTO

TECNOLOGÍAS Versión impresa MÁQUINAS: TRANSMISIÓN Y TRANS- FORMACIÓN DEL MOVIMIENTO TECNOLOGÍAS Versión impresa MÁQUINAS: TRANSMISIÓN Y TRANS- FORMACIÓN DEL MOVIMIENTO Introducción Una máquina es un aparato capaz de transformar energía en trabajo útil. Desde la escoba hasta la lavadora,

Más detalles

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas

Más detalles

Z 1 = 8 Z 2 = 16 W 1 Z 1 = W 2 Z 2

Z 1 = 8 Z 2 = 16 W 1 Z 1 = W 2 Z 2 7- SISTEMAS DE ENGRANAJES Para que dos ruedas dentadas engranen entre sí, el tamaño de los dientes de cada una deben ser iguales. Z 1 = 8 Z 2 = 16 El número de dientes de un engranaje se representa por

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S

C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S C A T E D R A C Á L C U L O DE E L E M E N T O S D E M Á Q U I N A S Leonardo da Vinci (1452-1519) Hombre polifacético; pintor, arquitecto, estudioso de la anatomía y además un destacado ingeniero, autor

Más detalles

Ejes concurrentes: LAS SUPERFICIES PRIMITIVAS SON DOS CONOS

Ejes concurrentes: LAS SUPERFICIES PRIMITIVAS SON DOS CONOS Ejes concurrentes: LAS SUPERFICIES PRIMITIVAS SON DOS CONOS El movimiento relativo es una rotación alrededor de un eje que pasa por el punto de concurrencia de los ejes ES LA RESULTANTE DE LA SUMA DE VECTORES

Más detalles

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan.

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. CINEMATICA La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. SISTEMA DE REFERENCIA Lo primero que hacemos para saber que un cuerpo

Más detalles

engranaje ruedas dentadas corona piñón

engranaje ruedas dentadas corona piñón Se denomina engranaje o ruedas dentadas al mecanismo utilizado para transmitir potencia mecánica entre las distintas partes de una máquina. Los engranajes están formados por dos ruedas dentadas, de las

Más detalles

CINEMÁTICA. Cinemática del punto

CINEMÁTICA. Cinemática del punto CINEMÁTICA La Cinemática es la parte de la Mecánica que estudia el movimiento de los cuerpos, prescindiendo de las causas que lo producen El objetivo de la cinemática es averiguar en cualquier instante

Más detalles

EJERCICIOS TECNOLOGÍA INDUSTRIAL I EJERCICIO 1

EJERCICIOS TECNOLOGÍA INDUSTRIAL I EJERCICIO 1 EJERCICIOS TECNOLOGÍA INDUSTRIAL I EJERCICIO 1 EJERCICIO 2 En el siguiente circuito calcular: 1. La intensidad de corriente total 2. La intensidad que circula por cada rama 3. La energía disipada por la

Más detalles

10. Proceso de corte. Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado

10. Proceso de corte. Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado 10. Proceso de corte Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado Conformado por arranque de viruta Conformado por arranque de viruta: la herramienta presiona

Más detalles

Resistencia de Materiales. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0. Capítulo 7.

Resistencia de Materiales. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0. Capítulo 7. Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 7. TORSIÓN 7.1 TORSIÓN PURA DE UN CILINDRO CIRCULAR Consideramos aquí únicamente, el caso de una barra

Más detalles

INFORME: SELECCIÓN DE ENGRRANAJES

INFORME: SELECCIÓN DE ENGRRANAJES INFORME: SELECCIÓN DE ENGRRANAJES AUTOR: Francisco Andrés Candelas Herías Gonzalo Lorenzo Lledó Carlos Alberto Jara Bravo Grupo de Automática, Robótica y Visión Artificial Departamento de Física, Ingeniería

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

3.1 Representación gráfica de curvas bidimensionales.

3.1 Representación gráfica de curvas bidimensionales. Tema 3 Curvas y superficies Versión: 6 de febrero de 29 3. Representación gráfica de curvas bidimensionales. La representación gráfica de una curva en un ordenador es una linea poligonal construida uniendo

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Ángulos y segmentos proporcionales en la circunferencia

Ángulos y segmentos proporcionales en la circunferencia Ángulos y segmentos proporcionales en la circunferencia Circunferencia Una circunferencia, es el conjunto de todos los puntos del plano, tales que su distancia a un punto fijo llamado centro es la misma

Más detalles

2. Construcción de polígonos regulares conociendo el radio

2. Construcción de polígonos regulares conociendo el radio Polígonos regulares 1. Características Polígono regular es el que tiene sus lados iguales y sus ángulos iguales. Un polígono regular puede ser inscrito y circunscrito a una circunferencia cuyo centro es

Más detalles

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento Circular. Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

TEMA 4: MECANISMOS. 2º E.S.O. I.E.S. "San Isidro" Talavera --Dpto. de Tecnología--

TEMA 4: MECANISMOS. 2º E.S.O. I.E.S. San Isidro Talavera --Dpto. de Tecnología-- TEMA 4: MECANISMOS. 2º E.S.O. 1 ÍNDICE: 0.- INTRODUCCIÓN. 1.- TIPOS DE MOVIMIENTO. 2.- CONCEPTOS BÁSICOS SOBRE EL ESTUDIO DE LAS MÁQUINAS. 3.- CLASIFICACIÓN DE LOS MECANISMOS. 4.- MECANISMOS DE TRANSMISIÓN

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

La velocidad a la que una máquina realiza un trabajo (trabajo dividido por tiempo). Ver también Trabajo.

La velocidad a la que una máquina realiza un trabajo (trabajo dividido por tiempo). Ver también Trabajo. A Aceleración Es la rapidez con la que aumenta la velocidad. Si un vehículo está acelerando, se mueve más rápido. Alimentación Articulaciones La velocidad a la que una máquina realiza un trabajo (trabajo

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = -2 10-2 k T cuando su velocidad v = 2 10 7 i m/s. Datos:

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

Geometría vectorial. [Versión preliminar] Prof. Isabel Arratia Z. Cálculo III - Geometría vectorial 1

Geometría vectorial. [Versión preliminar] Prof. Isabel Arratia Z. Cálculo III - Geometría vectorial 1 Geometría ectorial [Versión preliminar] Prof. Isabel Arratia Z. Cálculo III - Geometría ectorial El espacio R Sistema de coordenadas rectangulares tridimensionales Las coordenadas rectangulares en el plano

Más detalles

Calcular la altura del cono de superficie lateral mínima circunscrito a una esfera de radio 4cm.

Calcular la altura del cono de superficie lateral mínima circunscrito a una esfera de radio 4cm. OPTIMIZACION DE FUNCIONES Calcular la altura del cono de superficie lateral mínima circunscrito a una esfera de radio 4cm. S = пrg Si los triángulos DCO y DAB que son semejantes, pues OC AB y poseen un

Más detalles

Desarrollo de Poliedros Regulares: Generalidades. Ejercicios Resueltos. Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5

Desarrollo de Poliedros Regulares: Generalidades. Ejercicios Resueltos. Ejercicio 1 Ejercicio 2 Ejercicio 3 Ejercicio 4 Ejercicio 5 DESARROLLO DE POLIEDROS REGULARES UNIDAD IV: DESARROLLO DE SÓLIDOS En esta unidad se dibujarán las superficies de poliedros y cuerpos redondos modelos. Los temas de esta unidad son: sobre un plano para

Más detalles

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

MOVIMIENTOS EN UNA Y DOS DIMENSIONES MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.

Más detalles

TEMA 8: Torneado (I) - Proceso

TEMA 8: Torneado (I) - Proceso MÓDULO III: MECANIZADO POR ARRANQUE DE VIRUTA TEMA 8: Torneado (I) - Proceso TECNOLOGÍA MECÁNICA DPTO. DE INGENIERÍA MECÁNICA Universidad del País Vasco Euskal Herriko Unibertsitatea Tema 8: Torneado (I)

Más detalles

DISEÑO MECÁNICO II. Instituto Tecnológico de Tuxtla Gutiérrez

DISEÑO MECÁNICO II. Instituto Tecnológico de Tuxtla Gutiérrez ENGRANAJES RECTOS ÍNDICE 4.1 INTRODUCCIÓN.... 3 4. ENGRANAJES RECTOS... 3 4.1.1 Acción conjugada... 3 4.1.2 Línea de acción... 4 4.1.3 Relación de contacto:... 6 4.1.4 Interferencia.... 7 4.2 ANÁLISIS

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

E N G R A N A J E S INTRODUCCION

E N G R A N A J E S INTRODUCCION E N G R A N A J E S INTRODUCCION Un engranaje es un mecanismo de transmisión, es decir, se utiliza para transmitir el movimiento de rotación entre dos árboles. Está formado por dos ruedas dentadas que

Más detalles

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio

Más detalles

ACTIVIDADES DE MECANISMOS

ACTIVIDADES DE MECANISMOS ACTIVIDADES DE MECANISMOS 1. Calcular la velocidad de giro de una polea de 40mm de diámetro si el arrastrada por otra de 120mm de diámetro, que gira a 300 rpm. Calcula también la relación de transmisión

Más detalles

Las ecuaciones de estas rectas pueden venir dadas de las formas siguientes:

Las ecuaciones de estas rectas pueden venir dadas de las formas siguientes: Geometría Analítica 8-9 RECTAS EN EL ESPACIO En la figura se muestran varias rectas en el espacio, cuas posiciones son las siguientes: a) r r3 se cortan en un punto P cuas coordenadas se obtienen resolviendo

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

ECUACIONES PARAMÉTRICAS

ECUACIONES PARAMÉTRICAS ECUACIONES PARAMÉTRICAS CONTENIDO. De la elise. De la circunferencia 3. De la arábola 4. De la hiérbola 5. Ejercicios 6. Trazado de una curva dadas sus ecuaciones aramétricas Hemos visto, que si un lugar

Más detalles

DISEÑO DE TRASMISIÓN POR CADENA EDWIN ANDRES CORREA QUINTANA

DISEÑO DE TRASMISIÓN POR CADENA EDWIN ANDRES CORREA QUINTANA DISEÑO DE TRASMISIÓN POR CADENA EDWIN ANDRES CORREA QUINTANA UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA MEDELLÍN 2010 1 CONTENIDO INTRODUCCIÓN... 5 OBJETIVO GENERAL...

Más detalles

Elementos de transmisión: Engranajes

Elementos de transmisión: Engranajes Elementos de transmisión: Engranajes Principio de funcionamiento Tipos de engranajes Dimensiones características Formulas básicas Relaciones de transmisión Aplicaciones Rendimientos Trenes de engranajes

Más detalles

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor

Más detalles

Conceptos Básicos. Las líneas rectas podemos encontrarlas en el doblez de una hoja de papel, en un hilo estirado, en la arista de una puerta, etc.

Conceptos Básicos. Las líneas rectas podemos encontrarlas en el doblez de una hoja de papel, en un hilo estirado, en la arista de una puerta, etc. 3. Geometría Desde el jardinero que traza un jardín, el navegante que fija y traza la ruta del próximo viaje, el arquitecto que hace los planos para la construcción de un grandioso edificio, el ingeniero

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Involutometría y Nomenclatura de Engranes Rectos.

Involutometría y Nomenclatura de Engranes Rectos. Involutometría y Nomenclatura de Engranes Rectos. José María Rico Martínez Departamento de Ingeniería Mecánica. División de Ingenierías. Campus Irapuato-Salamanca Carretera Salamanca - Valle de Santiago

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

3º ESO TECNOLOGIAS MECANISMOS

3º ESO TECNOLOGIAS MECANISMOS 3º ESO TECNOLOGIAS MECANISMOS TEORIA DE MECANISMOS SIMPLES CON PALANCAS... 1 EJERCICIOS DE PALANCAS...3 TEORIA DE MECANISMOS DE TRANSMISIÓN LINEAL...6 TEORIA DE MECANISMOS DE TRANSMISIÓN CIRCULAR...6 TEORIA

Más detalles

Dpto. Física y Mecánica. Sistemas de coordenadas y sistemas de referencia

Dpto. Física y Mecánica. Sistemas de coordenadas y sistemas de referencia Dpto. Física y Mecánica Sistemas de coordenadas y sistemas de referencia La descripción del movimiento de un cuerpo requiere la introducción de un sistema de coordenadas espaciales que identifiquen unívocamente

Más detalles

Lugares geométricos básicos.

Lugares geométricos básicos. Unidad 1.- Conceptos Requeridos 2 Lugares geométricos básicos. 1 NOCIONES SOBRE CONGRUENCIA DE TRIÁNGULOS, PARALELISMO Y PERPENDICULARIDAD El tema central de este archivo adjunto está vinculado con los

Más detalles

INTRODUCCIÓN. Depósito Legal: NA3220/2010 ISSN: REVISTA ARISTA DIGITAL

INTRODUCCIÓN. Depósito Legal: NA3220/2010 ISSN: REVISTA ARISTA DIGITAL 1-COMPROBACIÓN DEL ESPESOR E INTERV AL O ENTRE DIENTES EN ENGRAN AJ ES CILÍNDRICOS RECTOS 01/09/2011 Número 12 AUTOR: Javier Domínguez Equiza CENTRO TRABAJO: IES Cinco Villas INTRODUCCIÓN El objetivo de

Más detalles

Relación de Transmisión (Mecanismos de Transmisión Circular)

Relación de Transmisión (Mecanismos de Transmisión Circular) Relación de Transmisión ( de Transmisión Circular) En todos los sistemas de transmisión por poleas, ruedas de fricción, engranajes o ruedas dentadas+cadena, se consigue un aumento o disminución de la velocidad

Más detalles

TEORÍA DE MECANISMOS NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES

TEORÍA DE MECANISMOS NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES Hoja: 1/12 GP NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES INTRODUCCIÓN El desarrollo de esta práctica consistirá en la simulación del procedimiento de talla de una rueda dentada mediante la generación

Más detalles

Tema 1: ESFUERZOS Y DEFORMACIONES

Tema 1: ESFUERZOS Y DEFORMACIONES Escuela Universitaria de Ingeniería Técnica grícola de Ciudad Real Tema 1: ESFUERZOS Y DEFORMCIONES Tipos de cargas. Tensiones: Clases. Tensiones reales, admisibles y coeficientes de seguridad. Elasticidad:

Más detalles

Es decir, pude presentarse las siguientes situaciones:

Es decir, pude presentarse las siguientes situaciones: Unidad temática N 12: TALLADO DE ENGRANAJES El fresado de engranajes utilizando el aparato divisor de una fresa, presenta, en cierta medida, los siguientes inconvenientes: 1. Que después de mecanizar el

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

tecnun ÍNDICE Engranajes rectos

tecnun ÍNDICE Engranajes rectos ENGRANAJES RECTOS ÍNDICE ÍNDICE... 144 9. ENGRANAJES RECTOS... 145 9.1 INTRODUCCIÓN.... 145 9.1.1 Acción conjugada.... 145 9.1.2 Línea de acción... 146 9.1.3 Relación de contacto:... 148 9.1.4 Interferencia....

Más detalles