UNIVERSIDAD DE BUENOS AIRES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DE BUENOS AIRES"

Transcripción

1 FACULTAD DE INGENIERÍA DEPARTAMENTO DE HIDRÁULICA CÁTEDRA DE HIDRÁULICA GENERAL (69.01) ECUACIONES DE CONTINUIDAD Ing. Luis E. Pérez Farrás Edición: Ing. Andrea Bonafine - Julio

2 ECUACIONES DE CONTINUIDAD INDICE 1- GENERALIDADES 2 2. ECUACIÓN DE CONTINUIDAD EN UN PUNTO 3 3- ECUACIÓN DE CONTINUIDAD EN EL TUBO DE CORRIENTE PARA CAUDAL DE MASA CONSTANTE EN EL TIEMPO PARA CAUDAL DE MASA VARIABLE EN EL TIEMPO Y EL RECORRIDO 8 Pag.1

3 11-- GENERALIIDADESS ECUACIONES DE CONTINUIDAD Estudiareos las ecuaciones de continuidad, las que se obtienen del Principio de la Conservación de la Masa aplicada al escurriiento de fluidos, a través de un voluen de control. En efecto, considerando un voluen arbitrario, fijo en el espacio e inerso en un edio continuo en oviiento que lo ocupa en cada punto y en todo instante (tal coo se esqueatiza en la Figura 1) es evidente que; el balance entre la asa entrante y saliente a través de la superficie del iso y en un instante dado, ás la variación de la asa en su interior y con la variable tiepo tendiendo a cero, da inexorableente una asa resultante nula, puesto que ésta no puede crearse ni desaparecer. Voluen de control S Eleento de Superficie Figura 1 Voluen de control Escurriiento del fluido (configuracion de l.d.c. instantaneas) El principio enunciado se resue sibólica y escuetaente coo: + ( ) 0 s e i En la expresión anterior siboliza la asa y los subíndices indican, "saliente, "entrante" e interior. Obviaente, el síbolo iplica la "variación" de la asa en el tiepo, y es la diferencia entre asa final y asa inicial en el tiepo eleental considerado. Al escribir la expresión, despejando el paréntesis que iplica el balance de asa a través de la superficie lateral, la interpretación del principio de la asa puede interpretarse en fora ás directa, puesto que el balance entre asa entrante y saliente por la superficie de control, es copensado por la variación de la asa en el interior del voluen de control. En síbolos: ( s e ) i Las ecuaciones a obtener dependen de la fora del Voluen de control adoptada. Si ésta es el cubo eleental de lados diferenciales, se obtiene la Ecuación Diferencial de Continuidad en un Punto, en cabio si el voluen de control elegido es el Tubo de corriente, la que se obtiene es la Ecuación Diferencial de Continuidad en el iso, de sua utilidad para la consideración de los Escurriientos Unidiensionales. Pag.2

4 22.. ECUACIIÓN DE CONTIINUIIDAD EN UN PUNTO Es la que se obtiene, al considerar coo voluen de control al eleento diferencial de lados dx, dy y dz. y z u dz dx dy u + u/ x dx Figura 2 Voluen de control: eleento diferencial x Consecuenteente para obtener la ecuación buscada, se considera el cubo de lados diferenciales dx, dy, dz, es decir el punto aterial (ver Figura 2) fijo en el espacio cartesiano Para las tres coordenadas z; y; x; desarrollareos el paréntesis que iplica el "balance total de asa en un instante dado". La asa entrante según el eje x resulta de ultiplicar el "caudal de asa" según x por dt, en efecto: dq ρ dq ρ udxdydt ex La asa saliente resulta: + x ( ) sx ex ex dx Es decir: ρu dx dy dt + x ( ρu dx dy dt )dx El balance o diferencia entre asa saliente y asa entrante resulta: sx ex x ( ρ ) udydzdtdx Extrapolando el iso procediiento a los ejes y, z, se tiene: sy sz ey y ez z ( ρ ) vdzdxdtdy ( ρ ) wdxdydtdz Pag.3

5 Por lo que, el balance total en un instante dado, es decir la diferencia ( ) s x udydzdtdx e + y vdxdzdtdy + z s será: ( ρ ) ( ρ ) ( ρω ) Para evaluar la variación de la asa en el tiepo, se tiene que: e dxdydtdz i dxdydz ρ + [ dxdydz] dt dxdydz t ρ ρ por lo que: i t ( ρ ) dxdydz dt Suando ahora e igualando a 0, con el propósito de obtener la ecuación resultante del principio de la conservación de la asa aplicada al voluen eleental de lados dx, dy, dz, y eliinando adeás los diferenciales counes, se tiene: La que escrita en notación vectorial resulta: ρ ( ρ ) ( ρ ) ( ρω) x u + y v + z + t 0 div ( ρv) ρ + 0 t Si se considera ρcte. en el espacio y el tiepo, la anterior se reduce a: u v divv + + x y w z 0 Que es la ecuación de continuidad para la asa específica considerada coo constante, es decir que su cupliiento, iplica de por sí, una "Condición de Incopresibilidad". Nota: es de destacar que la condición anterior, suada a la iposición de Rotor Nulo (escurriiento irrotacional) da lugar al odelo ateático conocido coo Red de escurriiento la que posibilita conocer el vector velocidad en cada punto de un escurriiento unidiensional. El tea se retoará en el Capitulo correspondiente. Pag.4

6 33-- ECUACIIÓN DE CONTIINUIIDAD EN EL TUBO DE CORRIIENTE Es la que se obtiene, cuando el voluen de control es el Tubo de Corriente (ver Figura 3) es decir cuando el escurriiento es Unidiensional, caso que cubre el vasto capo de aplicación de las Conducciones a Presión y a Superficie Libre (Canales) PARA CAUDAL DE MASA CONSTANTE EN EL TIEMPO A continuación se realizará la deducción, en fora siilar a la anterior, y destacando que por ser el tubo de corriente ipereable (por definición no puede aditir velocidades norales) el balance de asas entrante y saliente solo tendrá lugar entre las secciones de inicio y final, caracterizadas, por los subíndices 1 y 2 respectivaente. A éste tipo de escurriiento, cuando la variación de la asa es nula en el tiepo y variable en el recorrido, se lo denoina seiperanente l.d.c. Tubo de corriente Ω Qe de Qs Figura 3 Tubo de corriente Con estas consideraciones se obtendrá la Ecuación de Continuidad, en la fora de ayor uso en las aplicaciones que constituyen los objetivos fundaentales de nuestra asignatura. El desarrollo consiste en elaborar la expresión que sintetiza la interpretación del Principio de Conservación de la Masa, aplicado ahora al voluen de control Tubo de corriente y teniendo en cuenta la variación del iso en el tiepo, coo consecuencia de la variación de asa en el recorrido. ( ) + 0 s e i El proceso es análogo al anterior, pero siplificado dado que ahora el espacio está expresado en una sola coordenada l, puesto que coo es lo habitual y obligado en conducciones unidiensionales, el sistea de referencia adoptado es la terna intrínseca. La velocidad U es la definida coo Velocidad edia en la sección, según se analizó oportunaente en Cineática. Considerado el eleento diferencial dl del tubo de corriente, se tiene que la asa entrante resulta de ultiplicar el Caudal de asa entrante por el tiepo diferencial dt, en efecto: Pag.5

7 e ρ Q dt ρ UΩ dt La asa saliente, resulta de suar a la anterior, su variación en el espacio dl, es decir: s ρ UΩ dt + l ( ρ UΩ dt)dl Por lo que el balance entre Masa Saliente y Masa Entrante, resulta: s e l ( ρ UΩ dt)dl Para copletar la ecuación, se debe considerar ahora la variación en el tiepo, de la asa contenida dentro del voluen de control. La asa inicial es: La asa final, luego de un instante dt, es: i ρ Ω dl f ρ Ω dl + t ( ρ Ω dl)dt La diferencia entre asa final y asa inicial resulta, en consecuencia i t ( ρ Ω dl)dt Para obtener la expresión final, sólo resta concretar la sua entre el balance da asa entrante y saliente y la variación de asa en el interior del voluen de control (tubo de corriente en éste caso) lo que resulta: l ( ρ UΩ dt) dl + t ( ρ Ω dl) dt 0 Dividiendo por los diferenciales counes, finalente se obtiene: l t ( ρ U Ω) + ( ρ Ω) 0 La anterior constituye la Ecuación diferencial de continuidad, para Escurriientos Unidiensionales (en tubo de corriente) en la que el Caudal de Masa Entrante no varía con el tiepo. Pag.6

8 Su aplicación es trascendente en la probleática de escurriientos iperanentes (transitorios) tanto en conducciones a presión coo a superficie libre. Nota: En particular, en el desarrollo de nuestra asignatura, será convenienteente aplicada y elaborada, para desarrollar la Segunda Ecuación de Saint Venant, la que en conjunto con la priera (que tabién será oportunaente deducida) posibilitan el encare del estudio y cálculo de los Escurriientos Iperanentes a Presión (un caso particular del iso, de gran iportancia en la Hidráulica de las Conducciones a Presión, es el denoinado y teido Golpe de Ariete ). La Ecuación diferencial de Continuidad, para ρ cte en el espacio y el tiepo, se reduce a l t ( U Ω) + ( Ω) 0 Para el régien peranente y desde que el prier paréntesis es el caudal que atraviesa la sección, la anterior se reduce a: Q l l ( U Ω) 0 En consecuencia: Q U Ω cte La anterior es la expresión de la Ecuación de Continuidad para Escurriiento peranente, Unidiensional (en tubo de corriente) de un fluido Incopresible. Constituye una ecuación de vital iportancia en el Diseño y Cálculo de Conducciones a presión, a Superficie libre (canales) y en general para la Hidráulica unidiensional del régien peranente. Nota: Incluso, fora parte fundaental de la etodología de cálculo aplicable a escurriientos bidiensionales, precisaente en el tea Red de Escurriiento. En efecto, entre cada par de líneas de corriente de la red, se establece un escurriiento en tubo de corriente bidiensional en el que es válida la ecuación de referencia. El tea se estudiará específicaente en el capítulo relativo a Red de Escurriiento pero se adelanta que la Ecuación de Continuidad posibilita su uso. Pag.7

9 3.2- PARA CAUDAL DE MASA VARIABLE EN EL TIEMPO Y EL RECORRIDO En este caso, conocido tabién coo de Iperanencia Total, la ecuación cuenta con un suando ás, y tal coo puede obtenerse del texto de la ateria Fundaentos, la deducción para ese caso lleva a la ecuación ás general l 1 U t t ( ρ U Ω) + ( ρ U Ω) + ( ρ Ω) 0 Es de destacar que, de considerar que el caudal no varía con el tiepo y sólo lo hace con el espacio, el segundo suando resulta nulo, obteniéndose la ecuación anterior que, obviaente, es un caso particular de esta últia. Se reite al aluno a su lectura y seguiiento de la deducción, sin que sea necesario eorizar la isa (a pesar que no es dificultosa). La deducción será exigida para las dos foras precedentes de la ecuación de Continuidad, las que se obtienen de fora totalente análoga, las que son de aplicación inediata, no solo en la ateria, sino que tabién, en uchísios teas de la Especialidad Hidráulica. Pag.8

Determinación de la porosidad

Determinación de la porosidad Deterinación de la porosidad Apellidos, nobre Atarés Huerta, Lorena ([email protected]) Departaento Centro Departaento de Tecnología de Alientos ETSIAMN (Universidad Politécnica de alencia) 1 Resuen de

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido.

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido. EY DE STOES Una esfera de radio r y densidad ρ parte del reposo en el seno de un fluido de densidad ρ f < ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias

Más detalles

PET- TERMODINAMICA Ing. Oscar Vargas Antezana PROGRAMA ANALITICO ING. OSCAR VARGAS ANTEZANA

PET- TERMODINAMICA Ing. Oscar Vargas Antezana PROGRAMA ANALITICO ING. OSCAR VARGAS ANTEZANA ET- TERMODINAMICA Ing. Oscar Vargas Antezana 1. IDENTIFICACION ROGRAMA ANALITICO CARRERA: INGENIERIA ETROLERA NOMBRE DE LA MATERIA: TERMODINAMICA SEMESTRE: CUARTO CARGA HORARIA: 96 HORAS NUMERO DE CREDITOS:

Más detalles

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales PRBLEMS DE DINÁMIC DE L PRTÍCUL. Ecuación básica de la dináica en referencias inerciales y no inerciales. Leyes de conservación del ipulso, del oento cinético y del trabajo 3. Fuerzas centrales 4. Gravitación

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

LEY DE NEWTON DE LA VISCOSIDAD

LEY DE NEWTON DE LA VISCOSIDAD LEY DE NEWTON DE LA VISCOSIDAD Supongamos un fluido contenido entre dos grandes láminas planas y paralelas de área A separadas entre sí por una pequeña distancia Y. Fig. 1 Fluido contenido entre los láminas

Más detalles

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras, Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0

Más detalles

; En el caso de fuerzas conservativas, de donde:

; En el caso de fuerzas conservativas, de donde: MECÁNICA DE FLUIDOS. PROBLEMAS RESUELTOS 1. Ecuación diferencial de la estática de fluidos en el caso particular de fuerzas conservativas. Analizar la relación entre las superficies equipotenciales y las

Más detalles

UNIVERSIDAD DE BUENOS AIRES

UNIVERSIDAD DE BUENOS AIRES ACUAD DE INGENIERÍA DEPARAENO DE HIDRÁUICA CÁEDRA DE HIDRÁUICA GENERA (69.01) "SISEAS DE UNIDADES Y ECUACIONES DE DIENSIÓN" "Aplicación a las Propiedades ísicas de Utilización en la Hidráulica" Ing. uis

Más detalles

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102 TEÁTIS ÁRE: ÁSI LVE DE L SIGNTUR: L OJETIVO(S) GENERL(ES) DE L SIGNTUR: l térino del curso el aluno analizará los principios de las ateáticas; aplicará los isos coo herraientas para operar en los coportaientos

Más detalles

Factor de forma para conducción bidimensional

Factor de forma para conducción bidimensional Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular

Más detalles

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones propuestas, sólo hay que desarrollar una opción copleta. Cada problea correcto vale por tres puntos. Cada cuestión correcta vale por un punto. Probleas OPCIÓN A.- Un cuerpo A de asa

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.008 Sea Oxyz un sistema de referencia ligado a un sólido S

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (256) SEMANA 3 CLASE 8 MIÉRCOLES 25/4/12 1. Creciiento poblacional. La idea básica es deterinar el taaño futuro de una población suponiendo que su tasa de creciiento es conocida

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] OBJETIVOS! Aplicar la ecuación de conservación al análisis de la energía involucrada en un sistema.! Recordar las componentes de la energía (cinética, potencial

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GUIAS ÚNICAS DE LABORAORIO DE ÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANIAGO DE CALI UNIVERSIDAD SANIAGO DE CALI DEPARAMENO DE LABORAORIOS MÁQUINAS SIMPLES - POLEAS 1. INRODUCCIÓN. Una áquina siple

Más detalles

TEMA 2: El movimiento. Tema 2: El movimiento 1

TEMA 2: El movimiento. Tema 2: El movimiento 1 TEMA 2: El oviiento Tea 2: El oviiento 1 ESQUEMA DE LA UNIDAD 1.- Introducción. 2.- Características del oviiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazaiento. 2.4.- Velocidad. 2.5.- Aceleración.

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

Facultad de Física, P. Universidad Católica de Chile

Facultad de Física, P. Universidad Católica de Chile Facultad de Física, P. Universidad Católica de Chile FIS-5-0: Física Clásica FIZ-0-0: Mecánica Clásica Ejercicios Resueltos de Dináica 30 de Aosto de 008 Problea : Considere el sistea de la fiura, que

Más detalles

ESTRUCTURA TARIFARIA GAS NATURAL

ESTRUCTURA TARIFARIA GAS NATURAL ESTRUCTURA TARIFARIA GAS NATURAL El Artículo 74 de la Ley 42 de 994 establece las funciones y facultades generales de las Coisiones de Regulación. Dentro de estas funciones se encuentra la definición de

Más detalles

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos.

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos. 1 Concepto de fuerza Una fuerza es una agnitud vectorial que representa la interacción entre dos cuerpos. La interacción entre dos cuerpos se puede producir a distancia o por contacto. or tanto las fuerzas

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN JUNIO 00 INSTUCCIONES GENEALES Y VALOACIÓN La prueba consta de dos partes. La priera parte consiste en un conjunto de cinco cuestiones de tipo teórico, conceptual o teórico-práctico, de las cuales el aluno

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales El sistema de ecuaciones lineales como modelo matemático de problemas Los sistemas de ecuaciones lineales permiten el planteamiento de problemas y soluciones que toman en

Más detalles

Problemas Resueltos. Con estas dos ecuaciones, se deduce que

Problemas Resueltos. Con estas dos ecuaciones, se deduce que Probleas Resueltos 6.1 Deterinar la posición de equilibrio y la frecuencia angular del sistea de resorte, asa y polea ostrados. El resorte tiene una constante, y la polea puede considerarse coo desprovista

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional Dirección de Capacitación No Docente Dirección General de Cultura y Educación Provincia de Buenos Aires FÍSICA Segundo

Más detalles

Para describir el desplazamiento de una molécula de aire respecto a su posición de equilibrio usamos:

Para describir el desplazamiento de una molécula de aire respecto a su posición de equilibrio usamos: Ondas sonoras arónicas Para describir el desplazaiento de una olécula de aire respecto a su posición de equilibrio usaos: s x, t = s cos kx ωt ( ) ( ) Aquí s representa el desplazaiento áxio a la derecha

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

156 Ecuaciones diferenciales

156 Ecuaciones diferenciales 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento

Más detalles

PARTE 2. FLUIDOS. Bolilla 6: Mecanica de Fluidos

PARTE 2. FLUIDOS. Bolilla 6: Mecanica de Fluidos PRTE. FLUIDOS PRTE. FLUIDOS Los fluidos están caracterizados por su capacidad de fluir y por su adaptación a la fora del recipiente que los contiene. De este odo los gases y los líquidos pueden considerarse

Más detalles

Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de problemas.

Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de problemas. Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de probleas. 2. Problea experiento sobre edición e incertidubre Objetivo: Medir la constante de elasticidad de un resorte por dos étodos:

Más detalles

TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1

TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1 TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1 PLANTEAMIENTO DEL MODELO CINÉTICO Objetivos de las reacciones heterogéneas fluido-fluido:! Obtener productos valiosos mediante reacciones gas-líquido!

Más detalles

= b, donde b es la dt constante de amortiguamiento del sistema.

= b, donde b es la dt constante de amortiguamiento del sistema. Moviiento oscilatorio: Un sistea asa-resorte está copuesto por una asa, sujeta al extreo libre de un resorte horizontal. Es conveniente introducir un sistea coordenado, de tal fora que se coloca el origen

Más detalles

PROBLEMAS RESUELTOS FISICA Y MEDICIONES. CAPITULO 1 FISICA I CUARTA, QUINTA, SEXTA y SEPTIMA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS FISICA Y MEDICIONES. CAPITULO 1 FISICA I CUARTA, QUINTA, SEXTA y SEPTIMA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS FISICA Y MEDICIONES CAPITULO 1 FISICA I CUARTA, QUINTA, SEXTA y SEPTIMA EDICION SERWAY Rayond A. Serway Sección 1.1 Patrones de lonitud, asa y tiepo Sección 1. La ateria y construcción

Más detalles

CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL

CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL FUNDAMENTOS PROCEDIMIENTOS CRITERIOS DE PROYECTO PROFESOR: M.M.O. MARTÍN RODRIGO PIRAGINI ESPECIALIDAD: CONSTRUCCIONES CIVILES 1 Pasos para el diseño

Más detalles

La cinemática es la descripción matemática del movimiento y en ella no se estudian las causas que lo producen (las fuerzas).

La cinemática es la descripción matemática del movimiento y en ella no se estudian las causas que lo producen (las fuerzas). UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES CURSO: ENSEÑANZA DE LA FÍSICA MECÁNICA- MÓDULO # : MUV Diego

Más detalles

Tema 6. Oscilaciones de sistemas con varios grados de libertad

Tema 6. Oscilaciones de sistemas con varios grados de libertad Tea 6. Oscilaciones de sisteas con varios grados de libertad Priera parte: Sistea de dos asas un uelle. Ecuaciones del oviiento Nuestro sistea está forado por dos asas, en general diferentes,, unidas por

Más detalles

Examen 1º Bachillerato QUIMICA Nombre:

Examen 1º Bachillerato QUIMICA Nombre: Exaen 1º Bachillerato QUIICA Nobre: Teoría ( puntos) Respuesta correcta: + 0,75; Respuesta incorrecta: - 0,15; Respuesta no contestada: 0 1. El peso olecular del ácido sulfúrico, HSO4, es: a. 98 g b. 98

Más detalles

Principios de hidrodinámica

Principios de hidrodinámica Introducción Principios de hidrodinámica Adaptación: Prof. Hugo Chamorro HIDRODINÁMICA Mecánica y Fluidos Hidrodinámica Estudia los fluidos en movimientos, es decir, el flujo de los fluidos. Este estudio

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

PRINCIPIOS HIDROSTÁTICOS

PRINCIPIOS HIDROSTÁTICOS 1 GUIA FISICA GRADO ONCE: MECANICA DE FLUIDOS AUTOR Lic. Física, ERICSON SMITH CASTILLO PRINCIPIOS HIDROSTÁTICOS En cada una de las partes que se ha dividido el estudio de los fluidos teneos la participación

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Opción A. 2. Cuál de las siguientes gráficas representa mejor la variación de energía cinética de un oscilador armónico en función del tiempo?

Opción A. 2. Cuál de las siguientes gráficas representa mejor la variación de energía cinética de un oscilador armónico en función del tiempo? Física º Bach. Tea: Recuperación de la ª Evaluación 4/04/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nobre: Opción A Probleas [3 PUNTOS / UNO] 1. Se disponen cuatro cargas en los vértices de un cuadrado centrado

Más detalles

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO UNIVERSIDAD CATÓLICA DE VALPARAÍSO INSTITUTO DE FÍSICA OBJETIVO DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO En este experiento se deterinará el coeficiente de viscosidad del aceite de otor. INTRODUCCIÓN

Más detalles

Ejemplo: Cilindro con magnetización permanente. Se tiene un cilindro de longitud infinita y radio R, coaxial con el eje z,

Ejemplo: Cilindro con magnetización permanente. Se tiene un cilindro de longitud infinita y radio R, coaxial con el eje z, EC3 TEOÍA ELECTOAGNÉTICA Ejeplo: Cilindro con agnetización peranente Se tiene un cilindro de longitud infinita y radio, coaxial con el eje z, con una densidad de agnetización x. Deterinar el capo agnético

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 4.1 OBJETIVOS Aplicar los principios de la física sobre la: conservación de masa, cantidad de movimiento y de la energía. Representar los conceptos del

Más detalles

A.3. Convergencia uniforme

A.3. Convergencia uniforme Lecciones de Análisis Coplejo. G. Vera 280 A.3. Convergencia unifore Sea X un conjunto no vacío, E, ρ) un espacio étrico y E X el conjunto de todas las funciones f : X E. Si K X y f, g E X se define ρ

Más detalles

2. Conservación de la masa

2. Conservación de la masa 2. Conservación de la masa La ecuación de conservación de la masa representa una previsión de la adición y sustracción de masa de una región concreta de un fluido. Pensemos en un volumen fijo e indeformable

Más detalles

ECUACIONES FUNDAMENTALES DE UN FLUJO. José Agüera Soriano 2011 1

ECUACIONES FUNDAMENTALES DE UN FLUJO. José Agüera Soriano 2011 1 ECUACIONES FUNDAMENTALES DE UN FLUJO José Agüera Soriano 0 José Agüera Soriano 0 ECUACIONES FUNDAMENTALES DE UN FLUJO ECUACIÓN DE CONTINUIDAD ECUACIÓN DE LA ENERGÍA ECUACIÓN CANTIDAD DE MOIMIENTO APLICACIONES

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

SEGUNDO EXAMEN PARCIAL DE FÍSICA I MODELO 1

SEGUNDO EXAMEN PARCIAL DE FÍSICA I MODELO 1 SEGUNDO EXAMEN PARCIAL DE FÍSICA I MODELO 1 1.- Una ujer de 60 kg se encuentra de pie en la parte trasera de una balsa de 6 de longitud y 10 kg que flota en reposo en aguas tranquilas y sin rozaiento.

Más detalles

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica 8. Flexión Asimétrica (Biaxial) de Vigas 8.1 Introducción En esta sección, el análisis de la flexión en elementos-vigas, estudiado en las secciones precedentes, es ampliado a casos más generales. Primero,

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S

PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S Interés Copuesto: Concepto y factores Fórulas Fundaentales Operación cuando hay Intervalos Irregulares Tasa Noinal Anual y Tasa Efectiva 2.1

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

En todo momento se supone que el cambio de posición del interruptor es brusco; es decir, se produce en un intervalo nulo de tiempo.

En todo momento se supone que el cambio de posición del interruptor es brusco; es decir, se produce en un intervalo nulo de tiempo. 31 32 Se denomina expresión temporal o expresión instantánea a una expresión matemática en la que el tiempo es la variable independiente. Es decir, si se desea conocer el valor de la corriente (o el de

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

APUNTES DE LA ASIGNATURA:

APUNTES DE LA ASIGNATURA: APUNTES DE LA ASIGNATURA: ASIGNATURA OBLIGATORIA DE 3º DE INGENIERÍA INDUSTRIAL TEMA 9 TRENES DE ENGRANAJES JESÚS Mª PINTOR BOROBIA DR. INGENIERO INDUSTRIAL DPTO. DE INGENIERÍA MECÁNICA, ENERGÉTICA Y DE

Más detalles

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos

Más detalles

Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA Y ELECTROMAGNETISMO

Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA Y ELECTROMAGNETISMO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA

Más detalles

SOUCIONES TEST 3 SOUCIONES TEST 3. D. Si los dos vectores foran un paralelograo sus diagonales representan la sua y resta vectorial de los lados. Si las diagonales son iguales entonces el paralelograo

Más detalles

UNIDAD V LA PARÁBOLA

UNIDAD V LA PARÁBOLA UNIDAD LA PARÁBOLA OBJETIO PARTICULAR Al concluir la unidad, el alumno identificará y aplicará las propiedades relacionadas con el lugar geométrico llamado parábola, determinando los distintos parámetros,

Más detalles

Dependencia de la resistencia eléctrica con la temperatura

Dependencia de la resistencia eléctrica con la temperatura Dependencia de la resistencia eléctrica con la teperatura Objetivo En este experiento se busca estudiar cóo la teperatura afecta la conducción de la electricidad en diversos edios ateriales (conductor

Más detalles

CURSO INTRODUCTORIO DE LA FACULTAD DE INGENIERÍA U.C. SUBPRUEBA DE CONOCIMIENTOS DE FÍSICA

CURSO INTRODUCTORIO DE LA FACULTAD DE INGENIERÍA U.C. SUBPRUEBA DE CONOCIMIENTOS DE FÍSICA 11) Un cuerpo se ueve en un plano y su posición puede describirse desde dos sisteas de referencia S 1 y S 2. El desplazaiento realizado desde P 2 a P 3 es, en : y() y () 7 3 6 ĵ 2 5 1 4-1 0 1 2 3 4 5 6

Más detalles

Tema: Movimiento rectilíneo uniformemente variado.

Tema: Movimiento rectilíneo uniformemente variado. LABORATORIO DE FÍSICA Tema: Movimiento rectilíneo uniformemente variado. 1. Objetivo: Establecer las leyes y ecuaciones para una partícula que tiene una trayectoria rectilínea con M.R.U.V. 2. Introducción

Más detalles

ECUACIÓN DE BUCKLEY-LEVERETT

ECUACIÓN DE BUCKLEY-LEVERETT ECUACIÓN DE BUCKLEY-LEVERETT EFICIENCIA AL DEPLAZAMIENTO DEFINICIÓN e define la eficiencia al desplazaiento de petróleo por un agente desplazante, agua o gas, por voluen de petroleo desplazado E D voluen

Más detalles

División 3. Trenes de engranajes. Descripción Cinemática

División 3. Trenes de engranajes. Descripción Cinemática CAPITULO 9 TRENES DE ENGRANAJES, REDUCTORES PLANETARIOS Y DIFERENCIALES División 3 Trenes de engranajes. Descripción Cineática . Descripción General Introducción Un tren de engranajes es un ecaniso forado

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R Física General I Paralelos 05 y. Profesor RodrigoVergara R 030) Conservacion de la Energía ) Fuerzas Conservativas y Energía Potencial Dependiendo de la anera en que cabia el trabajo que ejerce sobre un

Más detalles

FÍSICA APLICADA A FARMACIA. EXAMEN FINAL EXTRAORDINARIO. JUNIO 2014

FÍSICA APLICADA A FARMACIA. EXAMEN FINAL EXTRAORDINARIO. JUNIO 2014 FÍSICA APLICADA A FARMACIA. EXAMEN FINAL EXTRAORDINARIO. JUNIO 20. (2.25 puntos). Se descarga un condensador a través de una resistencia óhica de valor R = (.000.02) 0 6. Con el fin de estudiar cuantitativaente

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

TEMA 12. RECTAS Y PLANOS. INCIDENCIA.

TEMA 12. RECTAS Y PLANOS. INCIDENCIA. TEMA 12. RECTAS Y PLANOS. INCIDENCIA. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora consideraremos el sistema de referencia

Más detalles

Tema IV: PRINCIPIOS BÁSICOS DEL FLUJO DE FLUIDOS

Tema IV: PRINCIPIOS BÁSICOS DEL FLUJO DE FLUIDOS Tea IV: PRINCIPIOS BÁSICOS DEL FLUJO DE FLUIDOS Esta obra está bajo una licencia Reconociiento No coercial Copartir bajo la isa licencia 3.0 Internacional de Creative Coons. Para ver una copia de esta

Más detalles

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta Una Fora Distinta para Hallar la Distancia de un Punto a una Recta Lic. Enrique Vílchez Quesada Universidad Nacional Escuela de Mateática Abstract La siguiente propuesta nace de la iniciativa de copartir

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 55. En el caso de la circunferencia, su ecuación en forma general es

INSTITUTO VALLADOLID PREPARATORIA Página 55. En el caso de la circunferencia, su ecuación en forma general es INSTITUTO VALLADOLID PREPARATORIA Página 55 4 LA CIRCUNFERENCIA 4.1 INTRODUCCIÓN Aunque no requiere ser presentada por conocida que es, la circunferencia es el lugar geoétrico de todos los puntos que equidistan

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 MA-1003 Cálculo III (UCR) Derivadas implícitas

Más detalles

Teoría de máquinas e instalaciones de fluidos Juan Antonio García Rodríguez y Esteban Calvo Bernad

Teoría de máquinas e instalaciones de fluidos Juan Antonio García Rodríguez y Esteban Calvo Bernad Teoría de máquinas e instalaciones de fluidos Juan Antonio García Rodríguez y Esteban Calvo Bernad Prensas de la Universidad de Zaragoza Textos Docentes, 222 2013, 210 p., 17 x 23 cm. 978-84-15770-26-8

Más detalles