Unidad II: probabilidades
|
|
|
- Elvira Barbero de la Cruz
- hace 9 años
- Vistas:
Transcripción
1 Unidad II: probabilidades
2
3 Los administradores (y también los futuros ingenieros del ITSS) sustentan sus decisiones en un análisis de incertidumbres como las siguientes: 1. Qué posibilidades hay de que disminuyan las ventas si aumentamos los precios? 2. Qué posibilidad hay de que un método nuevo de ensamblado aumente la productividad? 3. Cuáles son las posibilidades de que el producto se tenga listo a tiempo? 4. Qué oportunidad existe de que una nueva invención sea rentable? 5.- Posibilidad de faltar a los exámenes ( ohhh!)
4 La probabilidad es una medida numérica de la posibilidad de que ocurra un evento. Por tanto, las probabilidades son una medida del grado de incertidumbre asociado con cada uno de los eventos previamente enunciados. Si cuenta con las probabilidades, tiene la capacidad de determinar la posibilidad de ocurrencia que tiene cada evento.
5 Los valores de probabilidad se encuentran en una escala de 0 a 1. Los valores cercanos a 0 indican que las posibilidades de que ocurra un evento son muy pocas. Los cercanos a 1 indican que es casi seguro que ocurra un evento. Otras probabilidades entre cero y uno representan distintos grados de posibilidad de que ocurra un evento. Por ejemplo, si considera el evento que llueva mañana, se entiende que si el pronóstico del tiempo dice la probabilidad de que llueva es cercana a cero, implica que casi no hay posibilidades de que llueva. En cambio, si informan que la probabilidad de que llueva es 0.90, sabe que es muy posible que llueva. La probabilidad de 0.50 indica que es igual de posible que llueva como que no llueva. En la figura 4.1 se presenta la probabilidad como una medida numérica de la posibilidad de que ocurra un evento.
6 En el contexto de la probabilidad, un experimento es definido como un proceso que genera resultados definidos. Y en cada una de las repeticiones del experimento, habrá uno y sólo uno de los posibles resultados experimentales. A continuación se dan varios ejemplos de experimentos con sus correspondientes resultados:
7 Al especificar todos los resultado experimentales posibles, está definiendo el espacio muestral de un experimento. A un resultado experimental también se le llama punto muestral para identificarlo como un elemento del espacio muestral.
8
9 Considere el primer experimento presentado en la tabla anterior, lanzar una moneda. La cara de la moneda que caiga hacia arriba cara o cruz determina el resultado experimental (puntos muestrales). Si denota con S el espacio muestral, puede emplear la notación siguiente para describir el espacio muestral. S {Cara, cruz }
10 En el segundo experimento de la tabla tomar una pieza para revisarla puede describir el espacio muestral como sigue: S {Defectuosa, no defectuosa}
11 Al asignar probabilidades es necesario saber identificar y contar los resultados experimentales. A continuación tres reglas de conteo que son muy utilizadas. Experimentos de pasos múltiples La primera regla de conteo sirve para experimentos de pasos múltiples. Considere un experimento que consiste en lanzar dos monedas. Defina los resultados experimentales en términos de las caras y cruces que se observan en las dos monedas. Cuántos resultados experimentales tiene este experimento? El experimento de lanzar dos monedas es un experimento de dos pasos: el paso 1 es lanzar la primera moneda y el paso 2 es lanzar la segunda moneda. Si se emplea H para denotar cara y T para denotar cruz, (H, H) será el resultado experimental en el que se tiene cara en la primera moneda y cara en la segunda moneda.
12 Si continúa con esta notación, el espacio muestral (S) en este experimento del lanzamiento de monedas será el siguiente: S {(H, H ), (H, T ), (T, H ), (T, T )} Por tanto, hay cuatro resultados experimentales. En este caso es fácil enumerar todos los resultados experimentales. La regla de conteo para experimentos de pasos múltiples permite determinar el número de resultados experimentales sin tener que enumerarlos.
13 Si considera el experimento del lanzamiento de dos monedas como la sucesión de lanzar primero una moneda (n1 2) y después lanzar la otra (n2 2), siguiendo la regla de conteo (2)(2) 4, entonces hay cuatro resultados distintos. Como ya se mostró, estos resultados son S {(H, H), (H, T), (T, H), (T, T)}. El número de resultados experimentales de seis monedas es (2)(2)(2) (2)(2)(2) 64.
14 Un diagrama de árbol es una representación gráfica que permite visualizar un experimento de pasos múltiples. En la siguiente figura se detalla el diagrama:
15 En cada paso, los dos resultados posibles son cruz o cara. Observe que a cada uno de los resultados posibles en el paso 1 pertenecen dos ramas por los dos posibles resultados en el paso 2. Cada uno de los puntos en el extremo derecho del árbol representa un resultado experimental. Cada trayectoria a través del árbol, desde el nodo más a la izquierda hasta uno de los nodos en el extremo derecho del árbol, muestra una secuencia única de resultados.
16 Caso: proyecto de expansión de la empresa Kentucky Power & Itss (KP&I). Kentucky Power & Itss ha empezado un proyecto que tiene como objetivo incrementar la capacidad de generación de una de sus plantas en el norte de Kentucky. El proyecto fue dividido en dos etapas o pasos sucesivos: etapa 1 (diseño) y etapa 2 (construcción). A pesar de que cada etapa se planeará y controlará con todo el cuidado posible, a los administrativos no les es posible pronosticar el tiempo exacto requerido en cada una de las etapas del proyecto. En un análisis de proyectos de construcción similares encuentran que la posible duración de la etapa de diseño es de 2, 3, o 4 meses y que la duración de la construcción es de 6, 7 u 8 meses. Además, debido a la necesidad urgente de más energía eléctrica, los administrativos han establecido como meta 10 meses para la terminación de todo el proyecto.
17 Se pide: Representar en un diagrama de árbol los resultados posibles (punto muestrales) del caso anterior qué alternativa representa menor tiempo (entre diseño y construcción)?
18
19 Investigar: Combinaciones permutaciones
20 Asignación de probabilidades Métodos Comúnmente utilizados método clásico método de la frecuencia relativa método subjetivo es apropiado cuando todos los resultados experimentales tienen la misma posibilidad. Si existen n resultados experimentales, la probabilidad asignada a cada resultado experimental es 1/n. cuando existen datos para estimar la proporción de veces que se presentarán los resultados si el experimento se repite muchas veces. cuando no es factible suponer que todos los resultados de un experimento sean igualmente posibles y, además, cuenta con pocos datos relevantes
21
22 Asignación de probabilidades Probabilidades para el proyecto KP&L De acuerdo con la experiencia, los administrativos concluyen que los resultados experimentales no son todos igualmente posibles. Por tanto, no emplean el método clásico de asignación de probabilidades. Entonces deciden hacer un estudio sobre la duración de los proyectos similares realizados por KP&L en los últimos tres años. En la tabla 4.2 se resume el resultado de este estudio considerando 40 proyectos similares.
23 Después de analizar los resultados de este estudio, los administrativos deciden emplear el método de frecuencia relativa para asignar las probabilidades. Los administrativos podrían haber aportado probabilidades subjetivas, pero se dieron cuenta de que el proyecto actual era muy similar a los 40 proyectos anteriores. Así, consideraron que el método de frecuencia relativa sería el mejor.
24 hallar las probabilidades de los nueve resultados experimentales por el método de frecuencias relativas
25 Solución:
26 INTERPRETING PROBABILITIES Ejercicios: 1Considere el experimento de lanzar una moneda tres veces. a. Elabore un diagrama de árbol de este experimento. b. Enumere los resultados del experimento. c. Cuál es la probabilidad que le corresponde a cada uno de los resultados?
27 2Suponga que un experimento tiene cinco resultados igualmente posibles: E1, E2, E3, E4 y E5. Asigne probabilidades a los resultados y muestre que satisfacen los requerimientos expresados por las ecuaciones (4.3) y (4.4). Qué método empleó?
28 3Un experimento que tiene tres resultados es repetido 50 veces y se ve que E1 aparece 20 veces, E2 13 veces y E3 17 veces. Asigne probabilidades a los resultados. Qué método empleó?
29 4La persona que toma las decisiones asigna las probabilidades siguientes a los cuatro resultados de un experimento: P(E1) 0.10, P(E2) 0.15, P(E3) 0.40 y P(E4) Son válidas estas asignaciones de probabilidades? Argumente. 5. capitulo4, Estadística para administración y economía autores: Anderson, Sweeney introducción a la prob
30 5. En una ciudad las solicitudes de cambio de uso de suelo pasan por un proceso de dos pasos: una revisión por la comisión de planeación y la decisión final tomada por el consejo de la ciudad. En el paso 1 la comisión de planeación revisa la solicitud de cambio de uso de suelo y hace una recomendación positiva o negativa respecto al cambio. En el paso 2 el consejo de la ciudad revisa la recomendación hecha por la comisión de planeación y vota para aprobar o desaprobar el cambio de suelo. Suponga que una empresa dedicada a la construcción de complejos departamentales presenta una solicitud de cambio de uso de suelo. Considere el proceso de la solicitud como un experimento. Cuántos puntos muestrales tiene este experimento? Enumérelos. Construya el diagrama de árbol del experimento.
31
32
33 Más ejercicios de probabilidad
34 a) Cuál es la probabilidad de que un maquinista seleccionado al azar del grupo sondeado dé un apoyo moderado al paquete? b) Cuál es la probabilidad de que un inspector seleccionado al azar del grupo sondeado esté indeciso respecto al paquete? c) Cuál es la probabilidad de que un trabajador (maquinista o inspector) seleccionado al azar del grupo sondeado dé un apoyo fuerte o moderado al paquete?
35
36
37
38 Experimento Operar un banco Llamar a cinco clientes Inspeccionar un envío de 50 chicharrones al ITSS Hacerse cargo de un restaurante durante un día Llenar una lata de refresco (máx onzas) Vender un automóvil Construir una biblioteca en 6 meses en el ITSS ( subirá la colegiatura! Variable aleatoria (x) Personas en la fila para el cajero en una determinada hr Numero de clientes que contestan Cantidad de chicharrones enviados Cantidad de comensales que llegan en un día Cantidad de onzas contenidas en una lata Consumidores por dia Porcentaje del proyecto terminado Valores posibles para la variable 0, 20 Tipo de variable (discreta o continua) discreta 0,1,2,3,4,5 Discreta 0 50 Discreta 0 infinito y más allá discreta 0 <= x <= 12.1 Continua 0 10 Discreta Va de 0 a 100% continua
39
40 Distribuciones de probabilidad
41 Distribuciones de probabilidad discreta La distribución de probabilidad de una variable aleatoria describe cómo se distribuyen las probabilidades entre los valores de la variable aleatoria. En el caso de una variable aleatoria discreta x, la distribución de probabilidad está definida por una función de probabilidad, denotada por f(x). La función de probabilidad da la probabilidad de cada valor de la variable aleatoria.
42 Ejemplo: Considere las ventas de automóviles en DiCarlo Motors en Tacotalpa, Tab. (propiedad del maestro Velasco) Durante los últimos 300 días de operación; los datos de ventas muestran que hubo: 54 días en los que no se vendió ningún automóvil (ha de haber estado cerrado), 117 días en los que se vendió 1 automóvil, 72 días en los que se vendieron 2 automóviles, 42 días en los que se vendieron 3 automóviles, 12 días en los que se vendieron 4 automóviles y 3 días en los que se vendieron 5 automóviles.
43 automoviles dias
44 Suponga que considera el experimento de seleccionar un día de operación en DiCarlo Motors y se define la variable aleatoria de interés como: x = número de automóviles vendidos día. en un
45
46
47
48 1. A continuación se presenta la distribución de probabilidad de una variable aleatoria x.
49 2. Los datos siguientes se obtuvieron contando el número de salas de operaciones de un hospital que fueron usadas en un periodo de 20 días. Tres de estos 20 días sólo se usó una sala de operaciones, cinco de estos 20 días se usaron dos, ocho de estos 20 días se usaron tres salas de operaciones y cuatro de estos 20 días se usaron las cuatro salas de operaciones del hospital. a. Use el método de las frecuencias relativas para elaborar una distribución de probabilidad para el número de salas de operaciones usadas en un día. b. Elabore una gráfica a partir de la distribución de probabilidad.
50 Aplicaciones En la tabla 5.4 se muestra la distribución de frecuencias porcentuales para la puntuaciones dadas a la satisfacción con el trabajo en el ITSS por una muestra de directivos en sistemas de información de nivel alto y de nivel medio. Las puntuaciones van de 1 (muy insatisfecho) a 5 (muy satisfecho). Cómo?
51
52 a. Elabore una distribución de probabilidad con las puntuaciones dadas a la satisfacción con el trabajo por los directivos de nivel alto. b. Elabore una distribución de probabilidad con las puntuaciones dadas a la satisfacción con el trabajo por los directivos de nivel medio. c. Cuál es la probabilidad de que un ejecutivo de nivel alto dé una puntuación de 4 o 5 a su satisfacción con el trabajo? d. Cuál es la probabilidad de que un ejecutivo de nivel medio esté muy satisfecho? e. Haga una comparación entre la satisfacción con el trabajo de los ejecutivos de nivel alto y la que tienen los ejecutivos de nivel medio.
53 Pueden salir
54 Distribución binomial Requisitos o propiedades
55 Cómo identificar si un problema es binomial. Un sistema de detección de alarma para aviones de cuatro unidades de radar idénticas que operan de manera independiente entre sí. Suponga que cada una tiene una probabilidad de 0.95 de detectar un avión intruso. Cuando un avión intruso entra en escena, la variable aleatoria de interés es X, el número de unidades de radar que no detecta el avión. Es este un experimento binomial?
56
57 Redactar el éxito o fracaso en cada uno de los siguientes experimentos: La probabilidad de que un paciente en el hospital de Tacotalpa no se recupere de una operación particular es de 0.1 Éxito= fracaso= Un artillero antitanque (de los que se usan en la guerra pues) tiene una posibilidad de 70% de dar en el blanco cada vez que dispara desde una distancia de 200 m La probabilidad de que un vendedor de seguros (que estudió en el ITSS) efectúe la venta en su primer visita a un cliente nuevo es de.25
58 Suponga que de un lote de 5000 fusibles eléctricos contiene 5% de unidades defectuosas. Si se prueba una muestra de 5 fusibles encuentre la probabilidad de hallar al menos uno defectuoso.
59 Utilizar las tablas de distribución binomial
60
61 resolver: Con base en la experiencia anterior,, el 15% de las facturas del ITSS están incorrectas (y eso que hay ISO 9000). Si selecciona una muestra aleatoria de tres facturas actuales, cuál es la probabilidad de que. a) Exactamente 2 facturas estén incorrectas? b) No más de 2 facturas estén incorrectas c) Cuando menos 2 facturas estén incorrectas
62 Éxito= facturas incorrectas Fracaso= facturas correctas P= 0.15 q= (1-p) ; por lo tanto, es = 0.85 n= 3 X= 2 = P( x=2/n=3, p=0.15) =a) P( x <,= 2/ n= 3, p= 0.15) =b) P(>.= 2 / n=3, p=0.15)= c)
63 Usarán Poisson El número promedio de llamadas por minuto recibidas en un taller de servicio de televisión es de 1.2. Cuál es la probabilidad de que en un minuto dado: a. Se reciban menos de dos llamadas? b. Se reciban más de tres llamadas? c. Menos de 2 llamadas o más de 3 llamadas?
64 5.74%
65 El director del ITSS desea formar un comité ejecutivo de 5 entre los 40 catedráticos de tiempo completo. Si la elección va a ser aleatoria y en la facultad hay 8 catedráticos de tiempo completo para contabilidad (el maestro Velasco no es PTC). cuál es la probabilidad de que el comité incluirá: a) Ninguno de ellos b) Cuando menos uno de ellos c) No más de uno de ellos
66 Distribución de probabilidad de Poisson: La distribución de probabilidad de Poisson suele emplearse para modelar las llegadas aleatorias a una línea de espera (fila).
67
68
69 Problema de las llamadas Solución:
70 1. El número promedio de reclamaciones por hora presentadas a una compañía de seguros por pérdidas sufridas durante las mudanzas es de 3.1. Cuál es la probabilidad de que en cualquier hora dada: a) Se presenten menos de tres reclamaciones? b) Se presenten exactamente 3 reclamaciones? c) Se presenten 3 o más reclamaciones?
71 reactivo examen unidades 2 y 3 2. Una de cada 100 lámparas incandescentes fabricadas por una compañía se funde antes del final de su periodo de una semana si se dejan encendidas todo el tiempo. Se instala una lámpara en cada uno de los 50 pisos de un edificio muy grande. cuál es la probabilidad aproximada de que: A. se funda una lámpara al final de la semana? B. más de 3 lámparas se fundan al final de la semana? C. menos de 3 lámparas se fundan al final de la semana?
Unidad III: probabilidades. Estadística I
Unidad III: probabilidades Estadística I Experimento Operar un banco Llamar a cinco clientes Inspeccionar un envío de 50 chicharrones al ITSS Hacerse cargo de un restaurante durante un día Llenar una
Unidad II: probabilidades
Unidad II: probabilidades Los administradores (y también los futuros ingenieros del ITSS) sustentan sus decisiones en un análisis de incertidumbres como las siguientes: 1. Qué posibilidades hay de que
Estadística I. Unidad II: Introducción a la probabilidad
Estadística I Unidad II: Introducción a la probabilidad Conceptos claves Experimento Evento Espacio muestral Evento simple Eventos mutuamente excluyentes Los administradores (y también los futuros ingenieros
DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2)
Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2) Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 EJEMPLO Calcular σ y σ 2 para una variable aleatoria discreta
Relación 1. Sucesos y probabilidad. Probabilidad condicionada.
Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren
UNIVERSIDAD POPULAR DEL CESAR DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA TALLER DE DISTRIBUCIONES DE PROBABILIDADES.
UNIVERSIDAD POPULAR DEL CESAR DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA TALLER DE DISTRIBUCIONES DE PROBABILIDADES. DISTRIBUCION DE PROBABILIDADES. 1. Se extraen sin reposición cuatro fichas de una urna
DISTRIBUCIONES DE PROBABILIDAD BINOMIAL
Probabilidad DISTRIBUCIONES DE PROBABILIDAD BINOMIAL Copyright 21, 27, 24 Pearson Education, Inc. All Rights Reserved. 4.1-1 Ejemplo de repaso Use la siguiente distribución de probabilidad para contestar
DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples.
es una representación gráfica que permite visualizar un experimento de pasos múltiples. Considere un experimento que consiste en lanzar dos monedas. Defina los resultados experimentales en términos de
Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua
Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar
PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)
PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua
Soluciones Examen de Estadística
Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo
PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 1: INTRODUCCIÓN A LA PROBABILIDAD
UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 1: INTRODUCCIÓN A LA PROBABILIDAD Datos numéricos o mero azar? 1 Datos numéricos o mero azar? Datos numéricos o mero azar? Gerentes o administradores
LOGO Fundamentos Básicos de Estadística I
LOGO Fundamentos Básicos de Estadística I Prof. Mariugenia Rincón [email protected] Definiciones Estadistica. Objetivo e Importancia Clasificación: Descriptiva e Inferencial Población y Muestra Unidad
Distribución de Probabilidades con Nombre Propio Problemas Propuestos
Distribución de Probabilidades con Nombre Propio Problemas Propuestos DISTRIBUCIÓN BINOMIAL (BERNOULLI) 2.167 Hallar la probabilidad de que al lanzar una moneda honrada 6 veces aparezcan (a) 0, (b) 1,
DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL
DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los
2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria
2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un
Probabilidades y la curva normal
Probabilidades y la curva normal Las distribuciones reales y las distribuciones teóricas Por Tevni Grajales Guerra Tal cual estudiamos en nuestro tercer tema. Cuando registramos los valores de una variable
LA DISTRIBUCIÓN NORMAL
LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece
DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)
DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores
Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación con EXCEL.
PRÁCTICAS DE ESTADÍSTICA 1º CURSO DE GRADO EN CC. AMBIENTALES Guión de la práctica 4: Curso 2009/2010 7/04/2010. Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación
Técnicas de planeación y control. Sesión 10: El valor esperado y su papel para evaluar diferentes resultados de métodos para presupuestos
Técnicas de planeación y control Sesión 10: El valor esperado y su papel para evaluar diferentes resultados de métodos para presupuestos Contextualización Esta semana cerramos la unidad dedicada a la planeación,
METODOS DE CONTEO Y PROBABILIDAD
METODOS DE CONTEO Y PROBABILIDAD PROBABILIDAD Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo. Aleatorio: dadas unas condiciones
1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Probabilidad y Estadística. Carrera: Ingeniería en Materiales. Clave de la asignatura: MAM 0524
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería en Materiales MAM 0524 3 2 8 2.- HISTORIA
Clase 6: Algunas Distribuciones de Probabilidad Discreta
Clase 6: Algunas Distribuciones de Probabilidad Discreta Distribución Uniforme discreta La más simple de todas las distribuciones de probabilidad discreta es una donde la v.a. toma cada uno de sus valores
Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez
Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como
Cuál es la frecuencia de acceso de una memoria de acceso aleatorio con un tiempo de acceso de 80 nseg. y un tiempo de ciclo de 100 nseg.?.
Cuál es la frecuencia de acceso de una memoria de acceso aleatorio con un tiempo de acceso de nseg. y un tiempo de ciclo de nseg.?. f A Hz t 9 C seg Petición de lectura t A Información disponible t C Información
el número de resultados experimentales sin listarlos. Las reglas de conteo son: Experimento de varias etapas, Combinaciones y Permutaciones.
Este material muestra las reglas de conteo que son útiles para identificar y contar los resultados experimentales para posteriormente asignarles probabilidades. La regla de conteo para experimentos de
MODELADO Y SIMULACIÓN. Febrero de 2014 - Primera semana
Febrero de 2014 - Primera semana PREGUNTA 1 (3 puntos) Se pretende estudiar mediante simulación el funcionamiento de una fábrica dedicada a la manufactura de piezas decorativas. La manufactura de las piezas
Técnicas de planeación y control
Técnicas de planeación y control 1 Sesión No. 10 Nombre: El valor esperado y su papel para evaluar diferentes resultados de métodos para presupuestos Contextualización Esta semana cerramos la unidad dedicada
INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016
INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN
Nombre: Distribuciones de probabilidad discreta. Primera parte. En qué consiste la variable aleatoria?
Estadística 1 Sesión No. 8 Nombre: Distribuciones de probabilidad discreta. Primera parte. Contextualización En qué consiste la variable aleatoria? En la presente sesión seguiremos con el estudio de la
C. Distribución Binomial
Objetivos de aprendizaje 1. Definir los resultados binomiales 2. Calcular la probabilidad de obtener X éxitos en N pruebas 3. Calcular probabilidades binomiales acumulativas 4. Encontrar la media y la
Distribución Normal Curva Normal distribución gaussiana
Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en
Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM
Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de
PROBABILIDAD. Espacio muestral: es el conjunto de todos los resultados posibles. Para un dado es SS = (1,2,3,4,5,6)
rincipios de probabilidad ROILIDD DEFINIIONES robabilidad: es la posibilidad numérica de ocurra un evento. Se mide con valores comprendidos entre 0 y, entre mayor sea la probabilidad, más se acercará a
CAPÍTULO 4. Introducción a la probabilidad
CAPÍTULO 4 Introducción a la probabilidad CONTENIDO LA ESTADÍSTICA EN LA PRÁCTICA: LA EMPRESA ROHM AND HASS 4.1 EXPERIMENTOS, REGLAS DE CONTEO Y ASIGNACIÓN DE PROBABILIDADES Reglas de conteo, combinaciones
Introducción a la Probabilidad
La probabilidad es una medida numérica de la posibilidad de que ocurra un evento. Por tanto, las probabilidades son una medida del grado de incertidumbre asociado con cada uno de los eventos previamente
ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.
ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística
INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO
TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar
Sus socios en ISO 9000. Manual de Calidad
Sus socios en ISO 9000 Manual de Calidad ESTRUCTURA DE DOCUMENTACION GERENCIA NIVEL 1: Manual de Calidad - Políticas (Política de la compañía, autorización y alcance del sistema ) NIVEL 2: Procedimientos
PARTE II: MUESTREO... 10 6.- CONCEPTOS BÁSICOS... 10 7.- MÉTODOS DE MUESTREO... 10 8.- NÚMERO DE MUESTRAS... 10 9.- DISTRIBUCIONES MUESTRALES...
Contenidos: PARTE I: DISTRIBUCIONES DE PROBABILIDAD... 2 1.- VARIABLES ALEATORIAS... 2 2.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.- LA DISTRIBUCIÓN BINOMIAL... 5 4.- LA DISTRIBUCIÓN NORMAL... 7 5.- USO
ESTADÍSTICA INFERENCIAL
Sesión No. 1 Nombre: Probabilidad Contextualización ESTADÍSTICA INFERENCIAL 1 La teoría de la probabilidad se desarrolló en 1654 a partir de la correspondencia entre Antoine Chevalier de Méré y Blaise
Anexo C. Introducción a las series de potencias. Series de potencias
Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno
PROBABILIDAD CONDICIONAL E INDEPENDENCIA
PROBABILIDAD CONDICIONAL E INDEPENDENCIA Definición Si A y B son dos eventos, se define la probabilidad de A dado B como la probabilidad de que ocurra el evento A cuando el evento B ya ocurrió o se tiene
Diagramas de flujo. Actividad de aprendizaje 9. Realiza la siguiente lectura:
Actividad de aprendizaje 9 Realiza la siguiente lectura: Diagramas de flujo El diagrama de flujo es la representación gráfica de cada paso del algoritmo, utilizando símbolos, en el que se representan todas
LIMITE. Si f(x)= x 2 -x 6 = (x 3) (x + 2) = x + 3 x + 2 x + 2
LIMITE Qué se entiende por límite? De ordinario hablamos del precio límite de la velocidad límite del límite de nuestra propia resistencia los límites de la tecnología moderna o de estirar un muelle hasta
SUBCONJUNTOS y CONJUNTO POTENCIA. COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013
1 SUBCONJUNTOS y CONJUNTO POTENCIA COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013 2 Material de Estudio Libro de Koshy: páginas 71-72, 78-84. Vídeos
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
Análisis y Diseño de Sistemas Departamento de Sistemas - Facultad de Ingeniería
Objetivos: DESARROLLO DE SOFTWARE - ESTUDIO DE FACTIBILIDAD 1. Determinar la factibilidad técnica, económica, operativa y jurídica (y de ser necesarias otras) del proyecto. 2. Lograr el conocimiento general
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos
PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
CALIFICACIÓN: Consejería de Educación, Ciencia y Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Junio 2011 Resolución de 9 de marzo de 2011 (DOCM de 5 de abril)
Distribución Binomial
Profesor Alberto Alvaradejo Ojeda 1 de octubre de 15 1. Distribución Binomial La distribución binomial es unas de las distribuciones de probabilidad discreta más importantes. Recordemos que en una distribución
Estadística Empresarial. Cuaderno de Ejercicios. Temas 2. Análisis estadístico de una variable: medidas de posición y medidas de dispersión
Estadística Empresarial Cuaderno de Ejercicios Temas 2 Análisis estadístico de una variable: medidas de posición y medidas de dispersión EJERCICIO 1. La siguiente tabla recoge el número de Paradores Nacionales,
TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }
TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar
GUÍAS. Módulo de Razonamiento cuantitativo SABER PRO 2013-1
Módulo de Razonamiento cuantitativo Este módulo evalúa competencias relacionadas con las habilidades en la comprensión de conceptos básicos de las matemáticas para analizar, modelar y resolver problemas
RESPUESTAS: OPCIÓN B. www.profes.net es un servicio gratuito de Ediciones SM
RESPUESTAS: OPCIÓN B 1. Explique cuál es la función del organigrama en una organización (1 punto). La función del organigrama es representar gráficamente la estructura organizativa de la empresa. En esta
Distribuciones de Probabilidad, Binomial& Otros (Cap. 5) Math. 298 Prof. Gaspar Torres Rivera
Distribuciones de robabilidad, inomial& Otros (Cap. 5) Math. 9 rof. aspar Torres Rivera Distribución de robabilidad Def. Es la distribución de las probabilidades asociadas con cada uno de los valores de
EJERCICIOS RESUELTOS TEMA 7
EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de
Arbol de Decisiones-Investigación de Operaciones II
Árbol de Decisiones De forma más concreta, refiriéndonos al ámbito empresarial, podemos decir que los árboles de decisión son diagramas de decisiones secuenciales nos muestran sus posibles resultados.
Concepto de Probabilidad
Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN [email protected] [email protected] PROBABILIDAD En cualquier
Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.
Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico
Distribuciones muestrales. Distribución muestral de Medias
Distribuciones muestrales. Distribución muestral de Medias Algunas secciones han sido modificadas de: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua TEORIA DEL MUESTREO
UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3
UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CURSO : IN47A GESTIÓN DE OPERACIONES PROFESOR : A. SAURÉ A. WEINTRAUB AUXILIARES : J. PASSI J. RODRÍGUEZ
SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS
SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable
Análisis de Capabilidad (Porcentaje Defectuoso)
Análisis de Capabilidad (Porcentaje Defectuoso) STATGRAPHICS Rev. 9/4/2006 Este procedimiento esta diseñado para estimar el porcentaje de artículos defectuosos en una población basándose en muestra de
en 200 días aplicando el T.C.L o convergencia de la Poisson
EJERCICIOS T13- APLICACIONES DE LA PROBABILIDAD: CONVERGENCIA Y TEOREMAS LÍMITE 1. En una fábrica la probabilidad de que se produzcan n piezas defectuosas sigue una distribución de Poisson de media 3 diarias.
1.- Dada la siguiente distribución de frecuencias. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica o estándar
1.- Dada la siguiente distribución de frecuencias. Calcular: a) Mediana b) Moda c) Media d) Varianza y desviación típica o estándar VARIABLE FRECUENCIA 37 2 38 1 39 3 40 4 41 6 42 2 43 3 2.- Con los datos
Hoja 5: Sucesiones y aritmética mercantil
Hoja 5: Sucesiones y aritmética mercantil 1 Hoja 5: Sucesiones y aritmética mercantil 1 May 2000 En una sucesión aritmética, el primer término es 5 y el cuarto término es 40. Halle el segundo término.
II. SECCIONES PRINCIPALES 1-2-3... Figura1: Partes principales de un Informe Técnico
Formato del Informe El informe técnico debe ser un documento profesional. Para clarificar el texto deben usarse Figuras, tablas y dibujos. Las tres partes principales de un informe técnico se muestran
Estadística Avanzada y Análisis de Datos
1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son
Ejemplo de la señal aleatoria
VARIABLE ALEATORIA Ejemplo de la señal aleatoria En el contexto de las telecomunicaciones, cualquier señal debe considerarse aleatoria, ya que por muchas razones, no existen garantías de que la señal enviada
Probabilidad Condicional Eventos Independientes
1 robabilidad Condicional Eventos Independientes robabilidad Condicional La probabilidad de un evento se calcula con base en la información disponible. Sin embargo, después puede contarse con nueva información
GUÍAS. Módulo de Razonamiento cuantitativo SABER PRO 2014-1
GUÍAS Módulo de Razonamiento cuantitativo SABER PRO 2014-1 GUÍAS Módulo Razonamiento cuantitativo Este módulo evalúa competencias relacionadas con las habilidades matemáticas que todo ciudadano debe tener,
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ La estadística descriptiva Le concierne el resumen de datos recogidos de eventos pasados. Por ejemplo los precios de
CAPÍTULO 7. Evaluación del proyecto mediante simulación Montecarlo y el paquete Crystal Ball.
CAPÍTULO 7 Evaluación del proyecto mediante simulación Montecarlo y el paquete Crystal Ball. 7.1 Los resultados de la simulación, para VPN y TIR se muestran en las figuras 7.1 a 7.6 (se recuerda que la
INTERVALO DE CONFIANZA PARA LA PROPORCIÓN
INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño
Límites e indeterminaciones
Límites e indeterminaciones La idea de límite de una función no es en sí complicada, pero hubo que esperar hasta el siglo XVII a que los matemáticos Newton 1 y Leibniz 2 le dieran forma y la convirtiesen
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 8 vo grado
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Algebra I 8 vo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Algebra I 8 vo grado periodo 11 al 22 de agosto
CONCEPTOS BÁSICOS DE ESTADÍSTICA
CONCEPTOS BÁSICOS DE ESTADÍSTICA Jorge M. Galbiati Riesco La Estadística está constituida por un conjunto de métodos de análisis de datos que pueden agruparse en tres categorías: La Estadística Descriptiva,
EL PRESUPUESTO MAESTRO COMO GUÍA Y HORIZONTE DE CRECIMIENTO DE UNA EMPRESA. M. A. Martha Haifa Tamer Salcido y Mtro. Antonio Guerra Jaime
Culcyt//Finanzas EL PRESUPUESTO MAESTRO COMO GUÍA Y HORIZONTE DE CRECIMIENTO DE UNA EMPRESA M. A. Martha Haifa Tamer Salcido y Mtro. Antonio Guerra Jaime Instituto de Ingeniería y Tecnología. Universidad
Hoja 9: Variable aleatoria. Distribuciones binomial y normal
Hoja 9: Variable aleatoria 1 Hoja 9: Variable aleatoria. Distribuciones binomial y normal 1 Se lanzan dos dados. Sea X la variable aleatoria diferencia entre las puntuaciones. Halla la función de probabilidad
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 5 Simulación SIMULACIÓN: Técnicas para imitar el funcionamiento procesos reales mediante programas de ordenador. de sistemas o SIMULACIÓN: Es la representación
Lección 10: Representación gráfica de algunas expresiones algebraicas
LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió
Tema 3. Medidas de tendencia central Ejercicios resueltos 1
Tema 3. Medidas de tendencia central Ejercicios resueltos 1 Ejercicio resuelto 3.1 La demanda de cierto artículo en 48 días fue 1, 4, 1, 0, 2, 1, 1, 3, 2, 1, 1, 0, 3, 2, 4, 3, 4, 1, 2, 1, 1, 2, 2, 2, 1,
4. Método Simplex de Programación Lineal
Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción
Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado
Cuaderno de ejercicios Excel Básico
Cuaderno de ejercicios Excel Básico Introducción Resuelva los siguientes ejercicios siguiendo las indicaciones de su instructor y guardando todos los ejercicios en la misma hoja de cálculo pero en hojas
PROBABILIDAD CONDICONAL Y TEOREMA DE BAYES
Prof.: MSc. Julio Rito Vargas A. PROBABILIDAD CONDICONAL Y TEOREMA DE BAYES Definición de Probabilidad Condicional: Para dos eventos cualesquiera A y B en un espacio muestra Ω, tales que P(B) > 0 con P(B)>
PROBABILIDAD. 1. Ejercicios Resueltos. Juan José Noguera Matusiak. 11 de mayo de 2009
PROBABILIDAD Juan José Noguera Matusiak 11 de mayo de 2009 1. Ejercicios Resueltos 1. Se lanzan dos dados regulares simultáneamente. Determinar la probabilidad de obtener en un solo lanzamiento: a) Dos
El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo.
El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado cuenta con 3 departamentos: Abarrotes, Embutidos y. Solamente el Departamento
Electricidad y Medidas Eléctricas I 2014. Departamento de Física Fac. de Cs. Fco. Mát. y Nat. - UNSL. Práctico de Laboratorio N 6
Práctico de Laboratorio N 6 Localización de fallas, circuito abierto, cortocircuito. Objetivos: 1. Detectar experimentalmente una falla del tipo de circuito abierto o de cortocircuito. 2. Identificar las
Regla de la Potencia para la Integración
Regla de la Potencia para la Integración Ejercicios Resuelva cada Integral Problemas de Aplicación 1. El costo marginal ( en dólares) de una compañía que fabrica zapatos esta dado por, en donde x es el
3. VARIABLES ALEATORIAS
. VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad
VALOR PRESENTE Y COSTO DE OPORTUNIDAD DEL CAPITAL ( Brealey & Myers)
CAPÍTULO 2 VALOR PRESENTE Y COSTO DE OPORTUNIDAD DEL CAPITAL ( Brealey & Myers) Como se comentó en el capítulo anterior, las empresas invierten en activos ya sean tangibles o intangibles. Pero es muy importante
Distribuciones de probabilidad discreta
CAPÍTULO 5 Distribuciones de probabilidad discreta CONTENIDO LA ESTADÍSTICA EN LA PRÁCTICA: CITIBANK 5.1 VARIABLES ALEATORIAS Variables aleatorias discretas Variables aleatorias continuas 5.2 DISTRIBUCIONES
Práctica 1: Introducción a SPSS 1
Estadística Aplicada Curso 2010/2011 Diplomatura en Nutrición Humana y Dietética Práctica 1: Introducción a SPSS 1 Este programa estadístico está organizado en dos bloques: el editor de datos y el visor
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
