Proceso de análisis de regresión múltiple
|
|
|
- Manuel Acuña Iglesias
- hace 9 años
- Vistas:
Transcripción
1 Proceso de análisis de regresión múltiple Recolección de datos Chequeo de la calidad de los datos Diagnóstico de relaciones o interacciones fuertes entre las variables Xs Aplicación de medidas remediales Si Se requieren medidas remediales? No Selección y ajuste del modelo Uso de otra técnica No Validación del modelo Si Interpretación y uso del modelo
2 Supuestos del modelo de regresión lineal múltiple El análisis de regresión multivariante está basado en los siguientes supuestos (Neter et al., 1996): Las variables independientes o explicativas deben ser linealmente independientes. Es decir, no debe ser posible que una variable ibl independiente di sea explicada por una combinación lineal de las otras. Los términos de error deben distribuirse normalmente, con media cero, varianza constante y ser independientes entre sí.
3 Análisis de residuales o errores No satisfactorio No satisfactorio No satisfactorio
4 Análisis de residuales Se realiza para validar los supuestos del MRL que puede presentar los siguientes problemas: Los errores no tienen varianza constante. Los errores no son independientes. Los errores no están distribuidos ib id normalmente. Una o varias variables de regresión X s no han sido consideradas en el MRL.
5 Recomendaciones Varianza no constante: transformar o elegir otros modelos como las redes neuronales. Errores correlacionados: transformar las variables independientes o excluir algunas de ellas. Errores no normales: si hay serias diferencias con la distribución normal, entonces utilizar modelos no paramétricos como las redes neuronales o otros.
6 Modelos no lineales que pueden ser transformados en lineales Una alternativa para aumentar el R 2 consiste en usar modelos no lineales que pueden ser convertidos en lineales, a través de transformaciones tanto de la variable independiente como dependiente. Nombre del modelo Ecuación del Modelo Transformación Modelo Linealizado Exponencial Y=αe βx Z=Ln Y X=X Z=Ln α +βx Logarítmico Y= α +βlog X Y=Y W=Log X Y= α +βw Doblemente Logarítmico Y=αX β Z=Log Y W=Log X Z= Log α +βw Hiperbólico Y= α +β/x Y=Y W=1/X Y= α +βw Inverso Y=1/(α +βx) Z=1/Y X=X Z=α +βx Para predecir el valor de Y usando el modelo linearizado hay que aplicar la inversa de la transformación correspondiente. 6 Claudia Jiménez R 6
7 Ejemplo de linearización Dada la función exponencial : y = βe mx aplicando logaritmos neperianos se tiene que: ln(y) = ln(βe mx ) ln(y) = ln(β) + mx(ln(e)) ln(y) = ln(β) + mx De esta forma, si la variable x es dibujada en escala lineal y el valor y en escala logarítmica, se obtiene una línea recta con pendiente m e intercepto ln(β). 7 Claudia Jiménez R
8 Los siguientes datos representan como ha cambiado la población en Puerto Rico desde 1930 hasta Ejemplo Solución: Año Población Población=αe βaño Ln(Población) = año R 2 = 98.9% Se desea establecer un modelo para predecirp la poblaciónp de Puerto Rico en el año Ln( Población ) = * 2000 = = 15.2 Población = e 15.2 = 3,992,787 8 Claudia Jiménez R
9 Regresión con variables explicativas cualitativas Una variable categórica (nominal) con k estados o categorías puede ser convertida a números mediante k-1 variables binarias o dicotómicas. Utilizar una variable indicadora por cada clase de la variable cualitativa conlleva a dificultades computacionales y a redundancias innecesarias. Las variables indicadoras también son conocidas como variables dummy ovariablesflags. Las variables indicadoras sólo toman el valor 0 o el 1. 9 Claudia Jiménez R
10 , Ejemplo de un análisis de regresión con variables explicativas cualitativas Se desea construir un modelo de regresión lineal para estimar la relación existente entre las millas por galón, el rendimiento de ciertos automóviles, con respecto al peso y lugar de origen del mismo que puede ser América, Europa o Japón. Como el lugar de origen es una variable de tipo cualitativa y que en este caso tiene tres clases, la representaremos mediante dos (k-1) variables indicadoras, por lo que el modelo de regresión quedaría de la siguiente manera Yi = β 0 + β 1 X i 1 + β 2 X i 2 + β 3 X i 3 X i1 es el peso del vehículo y X i 2 y X i3 son las variables indicadoras: d 1 América X 1 Japón i2 X 3 0 Otro i 0 Otro X X = 0 i 2 i 3 3 i Europa 10 Claudia Jiménez R
11 , Ejemplo (continuación) 1 América X 1 Japón i2 X X X = 0 Europa Otro i3 0 0 Otro i2 i3 Yˆ Yˆ = Japón i β 0 + β 1X i 1 + β 2(0) + β 3(1 ) i = ( β + β ) + β X i1 De manera similar: Yˆ Yˆ i = ( β 0 + β 2 ) + β 1X i 1 = β + β Europa i 0 1X i 1 América 11 Claudia Jiménez R
12 Coeficien i Coeficiente i de Desviación ió R 2 0,6933 te de Regresión Regresión Estimado Estándar Estimada β 45,8037 0,8959 β 0 1 β 2 β 3-0,0073 0,0003-0,6104 0,6351 0,7446 0,
13 Conversión: Booleanos a Numéricos Atributos binarios o con dos categorías: Ejemplo Género = Masculino, Femenino (F, M) Convertir a valores 0, 1 Género= M código numérico= 0 Género = F código numérico = 1 13 Claudia Jiménez R
14 Regresión por pasos Puede ser: Hacia adelante, iniciando con una sola variable X, e ir agregando otras. Hacia atrás, empezando con un modelo con todas las variables e ir eliminando otras 14 Claudia Jiménez R
15 Conversión: Booleanos a Numéricos La notas cualitativas, por ejemplo, pueden convertirse a números, conservando el orden natural: Aprobado Bueno 3.8 Regular 3.3 En peligro 3.0 Numerización ió 1 a 1 Técnico 4 Bachiller 3 Primaria 2 Sin estudios 1 15 Claudia Jiménez R
16 LA REGRESIÓN LOGISTICA
17 Utilidad de la regresión logística Clase 1 REGRESION LOGISTICA Clase 2 Clasificación y análisis del riesgo 17 Claudia Jiménez R
18 Características del análisis logit o regresión logística Variable de respuesta binaria: Identifica el grado de pertenencia del objeto a cada uno de los grupos analizados: Se identifica con un 1 al objeto que pertenece al grupo cuya probabilidad de pertenencia estimará el modelo. Se identifica con un 0 al objeto que no pertenece al grupo objeto de análisis. Variables explicativas: Son las variables que sirven para discriminar entre los grupos y que determinan la pertenencia de un elemento a un grupo u otro. Pueden ser: - Variables cuantitativas. -Variables cualitativas. Resultado del análisis: El resultado es un valor numérico que indica la probabilidaddepertenenciadeunelementoalgrupoqueseleasignóelvalor1, es decir, el grupo gupoobjetoo de análisis. 18 Claudia Jiménez R
19 Ejemplo Dosis de un veneno versus El número de ratones que muere ilidad predicha Probab 1.0 Dosis.8 (mlgr) Muere 8 No (0) Si (1) Total Dosis de veneno Total Claudia Jiménez R
20 Problemas típicos: de tipo binomial La variable dependiente sólo toma dos valores, es dicotómica, y sus valores son habitualmente nominales como: Enfermo - no enfermo. Muere No muere. Compra No compra. Falla No falla. 20 Claudia Jiménez R
21 Modelo matemático p = 1 + e 1 ( β 0 + β1x i + β1x i β5x m ) Donde: X : variable independiente p =P(Y): Probabilidad de que ocurra el suceso de interés. q = Q(Y): Probabilidad de que no ocurra el suceso. e representa la base de los logaritmos neperianos. (su valor es = 2, ) β o, β 1,...ββ i :coeficientesderegresión del modelo. 21 Claudia Jiménez R
22 Estimación de los coeficientes Los estimadores de los coeficientes se calculan mediante el método de la función de máxima verosimilitud donde: Se emplean métodos numéricos, éi hasta quela diferenciai conel valor de la función sea menor que un valor predeterminado, habitualmente 0,01. El número de iteraciones es fijo, y también ajustable por el investigador. Si la función no converge en el número de iteraciones predeterminado, se dice que no tiene solución. 22 Claudia Jiménez R
23 Regresión logística Y = Variable dependiente 1 (ocurrencia de evento)...muere, enfermo, compra, falla 0 (grupo control)...no muere,sano,no compra, falla.. Variable independiente X = { Variables discriminantes, como la dosis del tóxico Problemas de interés p = P[ Y = 1/ X = xi ] q = P Y p + q = 1 [ = 0 / X = x ] 23 Claudia Jiménez R i
24 Los coeficientes de la regresión logística Si los coeficientes de las variables son positivos, eso significa que aumentan la probabilidad del evento que estamos estudiando. Si éste fuera una enfermedad, el factor o la variable considerada cuyo coeficiente es positivo aumentaría la probabilidad de padecer la enfermedad y, por lo tanto, dicho factor sería un factor de riesgo. Si el coeficiente es negativo, el factor cuyo coeficiente es negativo disminuye la probabilidad del evento que estamos estudiando; en caso de que dicho suceso fuera una enfermedad, estaríamos ante un factor de protección. 24 Claudia Jiménez R
25 SIGNIFICADO DE LOS COEFICIENTES p p p 1 = ( β + β X + β 1+ e 0 1 i 2 X j 1 = ( β0 + β1* Edad + β2* Dejar. de. fumar) 1+ e = 1+ e ) 1 ( * Edad 2.348* Dejar. de. fumar) Signo positivo, por tanto la edad es un factor de riesgo Signo negativo, por tanto el dejar de fumar es un factor de protección 25 Claudia Jiménez R
26 Ejemplo en Matlab peso = [ ]; bajo_rend = [ ]; total_autos = [ ]; 26 Claudia Jiménez R
27 Ajuste en Matlab b= glmfit(peso,[bajo_rend],'binomial ); x = 2100:100:4500; y = glmval(b,x,'logit'); plot(peso, bajo_rend/total_autos, 'x', x, y, 'r-') 27 Claudia Jiménez R
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.
Tercera práctica de REGRESIÓN.
Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión
1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA
MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse
3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS
1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias
Análisis de regresión lineal simple
Análisis de regresión lineal simple El propósito de un análisis de regresión es la predicción Su objetivo es desarrollar un modelo estadístico que se pueda usar para predecir los valores de una variable
VARIABLES ESTADÍSTICAS BIDIMENSIONALES
VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores
T4. Modelos con variables cualitativas
T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad
Capítulo 8. Análisis Discriminante
Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables
Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como:
1 Regresión Lineal Simple Cuando la relación funcional entre las variables dependiente (Y) e independiente (X) es una línea recta, se tiene una regresión lineal simple, dada por la ecuación donde: Y =
Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1
Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1 Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta
EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)
EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón [email protected] FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
Técnicas de Investigación Social
Licenciatura en Sociología Curso 2006/07 Técnicas de Investigación Social Medir la realidad social (4) La regresión (relación entre variables) El término REGRESIÓN fue introducido por GALTON en su libro
Regresión Lineal. Dra. Noemí L. Ruiz Limardo 2008 Derechos Reservados, Rev 2010
Regresión Lineal Dra. Noemí L. Ruiz Limardo 008 Derechos Reservados, Rev 010 Objetivos de la Lección Conocer el significado de la regresión lineal Determinar la línea de regresión cuando ha correlación
Análisis Probit. StatFolio de Ejemplo: probit.sgp
STATGRAPHICS Rev. 4/25/27 Análisis Probit Resumen El procedimiento Análisis Probit está diseñado para ajustar un modelo de regresión en el cual la variable dependiente Y caracteriza un evento con sólo
15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:
15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo
Regresión con variables independientes cualitativas
Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.
Análisis de Regresión Lineal Múltiple
Análisis de Regresión Lineal Múltiple El Análisis de Regresión es una técnica estadística para la detección y el modelado de relaciones entre dos o más variables. Incluye un conjunto de técnicas univariantes
REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)
1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN
INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016
ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos
INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos
INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón
Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado
Método de cuadrados mínimos
REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,
4.1 Análisis bivariado de asociaciones
4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
DESEMPEÑO ACADEMICO DE ESTUDIANTES DE INGENIERIA: ANALISIS DE FACTORES INCIDENTES
DESEMPEÑO ACADEMICO DE ESTUDIANTES DE INGENIERIA: ANALISIS DE FACTORES INCIDENTES GT 04 Modelagem Matemática María del Carmen Ibarra Facultad de Ingeniería Universidad Nacional de Misiones- UNaM [email protected]
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El
ENUNCIADOS DE PROBLEMAS
UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales
MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales 3.1. En algunas reservas naturales se controla el número Y de ejemplares de cierta especie al
Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión
Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo
CORRELACIÓN Y REGRESIÓN. Raúl David Katz
CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable
INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión
INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------
Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016
Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Básica COMISIÓN 1 1 Cuatrimestre 2016 s. La palabra Estadística procede del vocablo Estado, pues era función principal de los Gobiernos
Unidad IV: Distribuciones muestrales
Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
9. REGRESIÓN LINEAL. Dr. Edgar Acuña http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ
9. REGRESIÓN LINEAL Dr. Edgar Acuña http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ Ejemplo Ejemplo 3.23. El dueño de una empresa que vende carros desea determinar
log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en:
Función logarítmica Función logarítmica y su representación Si a > 0 y a 0, la función exponencial f x = a x bien se incrementa o disminuye y por eso mediante la prueba de la línea horizontal es uno a
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo
Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Favor de abrir el navegador Mozilla Firefox y escriba la siguiente dirección http://math.uprag.edu/area.mtw
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
Determinación del tamaño de muestra (para una sola muestra)
STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Derivada de la función compuesta. Regla de la cadena
Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes
MATEMÁTICA DE CUARTO 207
CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.
Tema 2 Datos multivariantes
Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,
DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM
UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-
Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.
MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e
POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN
POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple
Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
ANÁLISIS DISCRIMINANTE
DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis
DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta
DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
Tema 3. Relación entre dos variables cuantitativas
Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas
Regresión con Variables Ficticias
apítulo XII Regresión con Variables Ficticias onceptos y Definiciones La regresión con variables ficticias (variables dummy) surge por la necesidad que tiene el investigador de involucrar variables cualitativas
Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple
Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción
Regresión y Correlación
Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
PRECALCULO INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA. Precálculo. Nombre de la asignatura: MAT-001
INSTITUTO TECNOLÒGICO DE LAS AMÈRICAS CARRERA DE TECNÓLOGO EN MECATRONICA PRECALCULO Nombre de la asignatura: Nomenclatura del Curso: Precálculo MAT-001 Prerrequisitos: Nomenclatura del prerrequisito Ninguno
Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.
TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Transformaciones de variables
Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale
CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN. En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán
CAPÍTULO 4 RECOPILACIÓN DE DATOS Y CÁLCULO DEL VPN En el presente capítulo se presenta lo que es la recopilación de los datos que se tomarán para realizar un análisis, la obtención del rendimiento esperado
Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL
INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos
CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS
CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A
Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor
Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
5. Regresión Lineal Múltiple
1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente
Construcción de Gráficas en forma manual y con programados
Universidad de Puerto Rico en Aguadilla División de Educación Continua y Estudios Profesionales Proyecto CeCiMaT Segunda Generación Tercer Año Título II-B, Mathematics and Science Partnerships Construcción
Modelos Exponenciales y Logarítmicos
Contenido Modelos Exponenciales y Logarítmicos Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Contenido : Contenido Discutiremos: cinco tipos de modelos matemáticos basados en funciones exponenciales
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.
Grupo 23 Semestre Segundo examen parcial
Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige
3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.
3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,
TEMA 3: Contrastes de Hipótesis en el MRL
TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12
CAPÍTULO 4 TÉCNICA PERT
54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con
Métodos Estadísticos Multivariados
Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
Tema 2. Descripción Conjunta de Varias Variables
Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis
TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO.
TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO. Los contenidos seleccionados tienen la intención de aportar una formación matemática suficiente para abordar problemas del mundo social y del entorno, así
Estimación del Probit Ordinal y del Logit Multinomial
Estimación del Probit Ordinal y del Logit Multinomial Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Introducción 1 Introducción 2 3 Introducción El
MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel
GUIA DE TEORIA NO. 1 LO QUE DEBO SABER Regla de Cramer Un sistema de ecuaciones lineales se dice de Cramer cuando cumple las siguientes condiciones: Es un sistema cuadrado, con igual número de ecuaciones
Por ejemplo, si se desea discriminar entre créditos que se devuelven o que presentan
Regresión Logística Introducción El problema de clasificación en dos grupos puede abordarse introduciendo una variable ficticia binaria para representar la pertenencia de una observación a uno de los dos
ADMINISTRACION DE OPERACIONES
Sesión4: Métodos cuantitativos ADMINISTRACION DE OPERACIONES Objetivo específico 1: El alumno conocerá y aplicara adecuadamente los métodos de pronóstico de la demanda para planear la actividad futura
APUNTES DE QUIMIOMETRIA REGRESIO LINEAL
REGRESIO LINEAL APUNTES DE QUIMIOMETRIA Datos anómalos y levas en las rectas de calibrado. Regresión robusta Mínima mediana de cuadrados Recta de calibrado mediante mínimos cuadrados. Hipótesis básicas
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
