ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS Fórmulas para cálculos hidráulicos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS Fórmulas para cálculos hidráulicos"

Transcripción

1 ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS 3.1. Fórmulas para cálculos hidráulicos Para los cálculos hidráulicos de tuberías existe gran diversidad de fórmulas, en este boletín se aplicarán las fórmulas de Manning, Darcy-Weisbach y Chezy Fórmula de Manning Por lo general la fórmula de Manning se ha usado para canales, en tuberías la fórmula se usa para canal circular parcial y totalmente lleno. Uno de los inconvenientes de esta fórmula es que solo toma en cuenta un coeficiente de rugosidad obtenido empíricamente y no toma en cuenta la variación de viscosidad por temperatura. Las variaciones del coeficiente por velocidad, si las toma en cuenta aunque el valor se considera para efectos de cálculo constante, la fórmula es como sigue aplicada a tubos: En donde: v = Velocidad del flujo ( m/s ) A = Área del tubo ( m² ) n = Coeficiente de rugosidad ( adim ) Pm = Perímetro mojado ( m ) S = Pendiente del tubo ( m/m ) Rh = Radio hidráulico ( m ) Figura 3.1. Radio hidráulico, perímetro mojado, diámetro de tubo totalmente lleno y parcialmente lleno. Ya que el gasto es igual al producto del área por la velocidad, esto es: Sustituyendo en ( 3.1 ) Q = Gasto en ( m³ /s )

2 n = Coeficiente de rugosidad ( adim ) S = Pendiente del tubo ( m/m ) Rh = Radio hidráulico ( m ) Para tubo completamente lleno el área, el perímetro y el radio hidráulico quedan definidos de la siguiente manera: π = D = Diámetro interno de la tubería ( m ) La fórmula de Manning para tubo completamente lleno es la siguiente: (Fig. 3.1 a) Cuando es tubo parcialmente lleno (en la mayoría de los casos ), la fórmula es un poco más compleja. Para tubo lleno por arriba de la mitad ( d/d > 0.5 ) las fórmulas del área, perímetro mojado y radio hidráulico serían: a = Angulo formado desde la superficie del agua hasta el centro del tubo. ( figura 3.1 ) K = d/d ( Fig. 3.1 b) ) Ejemplo 3.1.: Un tubo lleno a 3/4 de su capacidad ( K= 3/4 = 0.75 ) valor comunmente utilizado para el diseño, resultaría: a = rad = 120 A = D² Pm = D Rh = D

3 Para tubos por abajo de la mitad del diámetro ( K 0.5 ) K = d/d para K 0.5 (Fig. 3.1 c) ) Ejemplo 3.2.: Un tubo lleno al 1% de su capacidad ( K= 0.01 ). b = rad = 22º 57' 24" A = D² Pm = D Rh = D Corrección de Thormann Con las fórmulas desarrolladas anteriormente se puede deducir que la máxima descarga ocurre cuando el tubo esta parcialmente lleno al 95 % de su capacidad. Muchos investigadores han llevado a cabo experimentos sobre el flujo en líneas de tuberías parcialmente llenas, Thormann llegó a la conclusión de que la máxima descarga no ocurre al 95 % sino a tubo lleno, esto se podría explicar por la fricción que existe entre la frontera del aire y del agua. Thormann desarrolló una ecuación para corregir los valores de gastos, esto sería demostrado para tirantes de más del 50 % de llenado. (18) La modificación es la siguiente: Pm' = Pm + w S (3.19) Pm' = Perímetro mojado corregido de acuerdo a Thormann (m) Pm = Perímetro mojado (m) w = Factor de corrección S = Ancho del nivel del agua (m) [ver figura 3.1 a), b)] El valor de w es calculado como sigue:

4 El cuadro 3.1 (12) muestra las relaciones del área, perímetro mojado y radio hidráulico en función del diámetro para los tubos parcialmente llenos y totalmente llenos incluyendo la corrección de Thormann. La figura 3.2. muestra la relación existente entre el grado de llenado, el gasto y la velocidad, usando la fórmula de Manning (ver también cuadro A3.3. en el anexo A3) Figura 3.2. Relación del grado de llenado (d/d), gasto (Qp/Qt) y velocidad (Vp/Vt), normal y con la corrección de Thormann

5 Cuadro 3.1 Cálculo del área, perímetro mojado y radio hidráulico, con la corrección de Thormann K = α ó β α ó β A/D² Pm/D Rh/D ω S/D Pm'/D Rh'/D d/d rad Grados º Ejemplo 3.3.: 1. Qué gasto conducirá y cual será la velocidad del agua en una tubería parcialmente llena al 67 % de su diámetro (d/d = 0.67), si el material de que está compuesta es PVC con un coeficiente de rugosidad de Manning (n) igual a 0.009, una pendiente de m/m (0.5 %, 5 mm) y un diámetro nominal de 200 mm (Duradrén Inglés Tipo 41)? 2. Para las mismas condiciones cuál serán el gasto y la velocidad, si la tubería fuera de concreto (n = 0.013), con diámetro nominal de 20 cm? Solución: 1. Para tubería de PVC I.- De la figura 3.2 entrando con el valor de d/d = 0.67 en el eje de las ordenadas se traza una línea recta hasta que intercepte las curvas Qp/Qt y Vp/Vt, se le en el eje de las abscisas los siguientes valores: a) Sin corrección de Thormann (normal): Qp/Qt = Vp/Vt = b) Con corrección de Thormann Qp/Qt = Vp/Vt = Haciendo el cálculo a tubería completamente llena (fórmula 3.8) se tiene lo siguiente:

6 Para PVC, el diámetro interno promedio de la tubería de 200 mm es: mm; A = πd² /4 = m², Rh = D/4 = m: Qt = / x ( )2/3 (0.005)1/2 = m3 /s = lps Vt = Qt / A = m3 /s / m² = m/s a) Qp = x lps = lps Vp = x m/s = 1.20 m/s b) Qp = lps Vp = x m/s = 1.19 m/s II.- Usando el cuadro 3.1 se tienen los siguientes valores para d/d = 0.67 A/D² = ; A = m² a) Rh/D = ; Rh = m b) Rh'/D = ; Rh' = m Calculando el gasto y la velocidad: a) Qp = / x ( )2/3 ( 0.005)1/2 = lps Vp = / = 1.19 m/s b) Qp = / x ( )2/3 ( )1/2 = lps Vp = / = 1.20 m/s 2. Para tubería de Concreto I.- Los valores obtenidos de la gráfica son iguales en el caso del concreto, haciendo el cálculo para tubería completamente llena con un diámetro interno de 200 mm: A = πd² /4 = m², Rh = D/4 = 0.05 m: Qt = / x ( 0.05)2/3 (0.005)1/2 = m3 /s = lps Vt = Qt / A = m3 /s / m² = m/s a) Qp = x lps = lps Vp = x m/s = 0.83 m/s b) Qp = lps Vp = x m/s = 0.82 m/s II.- Usando el cuadro 3.1 se tienen los siguientes valores para d/d = 0.67 A/D² = ; A = m²

7 a) Rh/D = ; Rh = m b) Rh'/D = ; Rh' = m Calculando el gasto y la velocidad: a) Qp = / x ( )2/3 ( 0.005)1/2 = lps Vp = / = 0.82 m/s b) Qp = / x ( )2/3 ( )1/2 = lps Vp = / = 0.83 m/s Fórmula de Darcy - Weisbach Una de las fórmulas más exactas para cálculos hidráulicos es la de Darcy-Weisbach sin embargo por su complejidad en el cálculo del coeficiente "f" ( ó l ) de fricción ha caído en desuso. Algunas dependencias del gobierno la han retomado actualmente por lo que se anexa: La fórmula original de tuberías a presión es: ( 3 ), (4 ), (5 ) DH = Pérdidas de energía ( m) f = Coeficiente de fricción ( adim ) L = Longitud del tubo ( m) v = Velocidad media ( m/s) g = Aceleración de la gravedad ( m/s² ) D = Diámetro interno del tubo ( m ) para el cálculo de f existen diferentes fórmulas por citar algunas de las siguientes: Poiseville Para flujo laminar desarrollo la siguiente relación: ( 5 ) Re = Número de Reynolds. Siendo:

8 υ = Viscosidad cinemática ( m²/s ) En la figura 3.3. se muestra la variación de viscosidad cinemática del agua por la temperatura ( fuente ( 5 ) ) Esta fórmula es válida para tubos lisos o rugosos y para Re 2300 en régimen laminar. Colebrook - White Figura 3.3. Viscosidad cinemática (u) del agua a presión atmosférica del nivel del mar e = Rugosidad absoluta del material ( m ) Re = Número de Reynolds. u = Viscosidad cinemática ( m²/s ) f = Coeficiente de fricción ( adim ) D = Diámetro interno del tubo ( m ) La cual es iterativa y es válida para tubos lisos y rugosos en la zona de transición o turbulenta y con Re > Para canales es apropiado cambiar el diámetro por el radio hidráulico (Rh), tanto para la f como para el Re. ( 1 ), ( 3 )

9 Despejando para la velocidad y multiplicando por el área mojada La fórmula de f y Re quedarían ( 3 ) La referencia (19) recomienda la siguiente fórmula desarrollada a partir de la fórmula original de Darcy - Weisbach S = Pendiente del gradiente hidráulico (m/m) v = Velocidad (m/s) g = Aceleración de la gravedad (m/s²) D = Diámetro interno del tubo (m) υ = Viscosidad cinemática del fluido (m²/s) Fórmula de Chezy La fórmula de Darcy - Weisbach es muy precisa y laboriosa, en la práctica la fórmula de Chezy (o la de Manning) es más aceptable para el cálculo de flujo en los alcantarillados (18), es como sigue (10), (18). Q = gasto en ( m³/s ) C = Coeficiente de Chezy ( m½ / s ) A = Perfil del tubo ( área mojada ) ( m² ) Rh = Radio hidráulico ( m )

10 S = Pendiente o gradiente ( m/m ) La velocidad puede ser calculada como: y el coeficiente de C de Chezy podría ser calculado con la siguiente fórmula simplificada: ( 4 ) ε' = Es la rugosidad del sistema ( m ) Los valores de rugosidad ( ε' ) que pueden ser usados en la fórmula se muestran en el cuadro 3.2.; estos valores integran la rugosidad de la tubería, la influencia de los pozos de visita y los sedimentos y la capa fangosa que se forma en el tubo. ( 4 ) Cuadro 3.2 Valores recomendados de rugosidad en los sistemas ( ε' ) con tubería de PVC. TIPO CONCRETO PVC mm mm Sistema combinado (1.0 ) Sistema separado Alcantarillado de aguas residuales ( 1.0 ) - Alcantarillado de agua pluvial 3.2 Efecto de la deflexión de la tubería en la capacidad de descarga. Al deflexionarse el tubo de PVC, el área de sección transversal del tubo se ve ligeramente reducida. El área elíptica de sección transversal después de la ovalación del tubo será un poco menor que el área de sección transversal antes de la deflexión.

11 Figura 3.4. Efecto de la deflexión en la conducción en tubos de PVC Para comparar el área seccional entre un tubo sin deflexión ( forma circular) y uno deflexionado (forma elíptica ) se tienen las siguientes relaciones: C = Perímetro del círculo D = Diámetro interno no deflexionado C2 = Perímetro del tubo deflexionado E (e) = Función elíptica del primer tipo de e. ( excentricidad numérica) Por otro lado se tienen las siguientes relaciones para calcular el área de la elipse.(17),(4) Ae = área de la elipse ( m² ) a = Radio largo de la elipse ( m ) b = Radio corto de la elipse ( m ) La fórmula 3.34 muestra la relación para obtener el área del circulo. El área del tubo deflectado se calculó asumiendo que los perímetros del tubo deflectado y sin deflexión son iguales ( C2 = C ) ( 6 ) el cuadro 3.3 muestra el efecto de la deflexión en el área y el gasto. Cuadro 3.3 Reducción de la sección transversal del tubo y el gasto

12 debido a la deflexión. DEFLEXION ( % ) % REDUCCIO N DE LA SECCION TRANSVER SAL DE FORMA CIRCULAR A ELIPTICA % REDUCCION DEL GASTO Fuente: Ref. ( 17 ) 3.3 La sedimentación en los tubos de alcantarillado. El agua que se conduce a través de los tubos de alcantarillado contiene muchos elementos sólidos tales como heces fecales, restos de vegetales, arena, etc.. Estos materiales pueden sedimentarse dentro de los tubos si las condiciones de flujo no generan una fuerza suficiente para arrastrar dichos materiales. Por mucho tiempo se ha considerado que la velocidad baja del flujo es la principal causa de que se provoquen asentamientos de materiales, sin embargo se ha encontrado que el esfuerzo cortante ( t ) es el factor fundamental. La fuerza de fricción del material sólido, asumiendo que la capa del agua es mayor a la capa que forma el material sólido, se obtiene (Fig. 3.5): tf = Fricción del material a lo largo del fondo ( N / m² ) f = Factor rd = Densidad del material ( kg / m3 ) g = Aceleración de la gravedad ( m/s² ) rw = Densidad del agua en el alcantarillado ( kg/m3 ) d = Espesor de la capa de material ( m )

13 p = Porosidad del material Haciendo: Tendríamos: Los valores de f se han determinado experimentalmente y varían de 0.04 a 0.8. Figura 3.5. Transporte de material sólido a través de los alcantarillados Para prevenir sedimentación la fuerza del agua que circula tendrá que actuar con fuerzas mayores a la de fricción. (18) El peso del agua residual por unidad de longitud será: (Fig. 3.6) G = Peso del agua residual por unidad de longitud (N/m) rw = Densidad del agua residual (kg/m2) g = Aceleración de la gravedad (m/s2) A = Area mojada (m2)

14 Fig Alcantarillados parcialmente llenos Debido a la pendiente del tubo (S) la componente de la masa sería: θ = Tan-1 (S) S = Pendiente de la tubería (m/m) Así el esfuerzo cortante quedaría como: Y cuando se tienen pendientes pequeñas: A/Pm = Rh = Radio Hidráulico (m) Pm = Perímetro mojado (m) Para flujo permanente uniforme la fórmula de Chezy (fórmula 3.32) despejada para pendiente queda: C = Coeficiente de Chezy (m 1/2/s) (fórmula 3.33) v = Velocidad del flujo (m/s) Rh = Radio Hidráulico (m) Sh = Pendiente Hidráulica (línea de energía) (adim) Sustituyendo (3.45) en (3.44) Esto muestra que el esfuerzo cortante (t) es una función del cuadrado del cociente v/c.

15 La figura 3.7. puede ser usada para calcular la pendiente requerida para evitar sedimentación en la tubería, basandose en el diámetro, el % de llenado y el esfuerzo cortante mostrados en el cuadro 3.4. dependiendo del tipo de sistema de alcantarillado y el material de la tubería. Se agregan dos ejemplos del uso del nomograma. Cuadro 3.4. Fricción requerida por los alcantarillados según el tipo de material para ser usada en la figura 3.7. (Fuente: Ref.(18) ) TIPO DE SISTEMA FRICCIÓN REQ. (N/m²) PVC CONCRETO COMBINADO (3) 3-6 SEPARADO AGUAS PLUVIALES (2) 2-4 AGUAS RESIDUALES (1) 1-3 (1), (2) y (3) Indicados en la figura 3.7. Ejemplos 3.4.: 1a. Para PVC de 300 mm de diámetro al 10 % de llenado, con esfuerzo cortante de 1 N/m² se requiere una pendiente de m/m ( 0.5 % ó 1:200). 1b. Para concreto con las mismas condiciones de llenado y un esfuerzo cortante de 2 N/m², la pendiente requerida es de 0.01 m/m (1% ó 1:100). 2a. Para concreto de 300 mm de diámetro con una pendiente de m/m (0.5 % ó 1:200) y un esfuerzo cortante de 2 N/m², requiere de un llenado al 23 % 2b. En PVC bajo las mismas condiciones con un esfuerzo cortante de 1 N/m², requiere de un llenado del 10 %

16 Figura 3.7. Pendiente requerida en relación al diámetro y al grado de llenado en el tubo, para evitar sedimentación (Fuente: Ref (18)).

Flujo en canales abiertos

Flujo en canales abiertos cnicas y algoritmos empleados en estudios hidrológicos e hidráulicos Montevideo - Agosto 010 PROGRAMA DE FORMACIÓN IBEROAMERICANO EN MATERIA DE AGUAS Flujo en canales abiertos Luis Teixeira Profesor Titular,

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala.

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala. G.1 Glosario Agregación ( up-scaling ): proceso de pasaje de descripciones de procesos (modelos) o variables de una escala menor a otra mayor (Blöshl et al., 1997). Agregación geométrica: modificación

Más detalles

HIDRAULICA Y CIVIL S.A.S

HIDRAULICA Y CIVIL S.A.S I. MEMORIAS DE CÁLCULO Para el diseño de las instalaciones hidráulicas y sanitarias se adoptó el Reglamento Técnico del sector de Agua Potable y Saneamiento Básico Ambiental RAS, y la Norma Técnica Icontec

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9555 M85 MECÁNICA DE FLUIDOS NIVEL 03 EXPERIENCIA E-6 PÉRDIDA DE CARGA EN SINGULARIDADES HORARIO:

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN Clasificación de Sistemas de Ventilación de Túneles Sistema de Ventilación n Longitudinal

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Tubería interior. Tubería interior

Tubería interior. Tubería interior TUBERÍA PREAISLADA ALB CON POLIETILENO (PE) 1. Descripción Tubería Preaislada ALB flexible, para transporte de calor y frío en redes de distribución, tanto locales como de distrito, formada por una o dos

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

Física. Choque de un meteorito sobre la tierra

Física. Choque de un meteorito sobre la tierra Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν APARATO DE VENTURI Objetivo Estudiar cualitativamente y cuantitativamente para verificar la ecuación de continuidad, el principio de Bernoulli y el efecto Venturi. Introducción En el aparato de Venturi,

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Tema 7. Expresiones del actor de ricción 1. Introducción. Factor de ricción en régimen laminar 3. Subcapa laminar. Comportamiento hidrodinámico de tuberías 4. Experiencias de Nikuradse 5. Valor del coeiciente

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO)

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) GENERALIDADES. CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) El bombeo hidráulico tipo jet es un sistema artificial de producción especial, a diferencia del tipo pistón, no ocupa partes móviles y

Más detalles

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica 8.- BALANCE INTEGRAL DE AGUAS SUBTERRÁNEAS Un balance de aguas subterráneas consiste en registrar las entradas, salidas y cambio en el volumen de almacenamiento, que acontecen en un volumen específico

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

DETERMINACIÓN DEL HIDROGRAMA DE ESCURRIMIENTO DIRECTO POR EL MÉTODO DE CLARK

DETERMINACIÓN DEL HIDROGRAMA DE ESCURRIMIENTO DIRECTO POR EL MÉTODO DE CLARK GUIA DE TRABAJO PRACTICO Nº 9 DETERMINACIÓN DEL HIDROGRAMA DE ESCURRIMIENTO DIRECTO POR EL MÉTODO DE CLARK Dadas las características hidrodinámicas presentadas en la cartografía de la cuenca media y baja

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

Superficie del interior del tubo para el cálculo de su volumen:

Superficie del interior del tubo para el cálculo de su volumen: Respuesta examen: Nota el área de un círculo se calcula: π x r 2 Perímetro del círculo se calcula con: π x diámetro Volumen del cilindro se calcula área del círculo de base por su altura Anillo superior

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2010 Índice general 3. Venturi

Más detalles

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N 1 CARGA AL VIENTO. La carga al viento o resistencia al viento nos indica el efecto que tiene el viento sobre la antena. El fabricante la expresa para una velocidad del viento de 120 km/h (130 km/h en la

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física General (Fluidos) COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 0/10/013 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada.

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Anexo1. Ejemplo práctico, pg 1 Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Para clarificar conceptos y ver la verdadera utilidad del asunto, haremos el siguiente ejemplo práctico

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.1.- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

HIDRAULICA EJERCICIOS PRUEBA

HIDRAULICA EJERCICIOS PRUEBA UNIVERSIDAD DIEGO PORTALES ESCUELA DE INGENIERIA OBRAS CIVILES HIDRAULICA EJERCICIOS PRUEBA 1. Para un canal trapezoidal de ancho basal b = 6 m y taludes (2/1) (H/V), pendiente 0,3%, coeficiente de rugosidad

Más detalles

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS 5. PÉRIAS E CARGA EN CONUCTOS CERRAOS O TUBERIAS 5. Perfiles de Velocidad: Laminar y Turbulento 5. Radio Hidráulico para Secciones no Circulares 5.3 Pérdidas Primarias y Secundarias 5.4 Ecuación de arcy

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa?

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa? Slide 1 / 20 1 Dos sustancias, A tiene una densidad de 2000 kg/m 3 y la B tiene una densidad de 3000 kg/m 3 son seleccionadas para realizar un experimento. Si el experimento necesita de igual masa de cada

Más detalles

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE )

Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE ) Asociación española de fabricantes de tubos y accesorios plásticos InfoTUB N.13-005 diciembre 2013 Aislamiento térmico de redes de tuberías plásticas. Cálculo del espesor (según RITE) 1. Introducción Según

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

INSTALACIÓN DE TUBERÍAS Y ACCESORIOS STELTUB ELEMENTOS DE FIJACIÓN PARA LA COLOCACIÓN DE TUBERÍAS SIN ENTERRAR GENERAL

INSTALACIÓN DE TUBERÍAS Y ACCESORIOS STELTUB ELEMENTOS DE FIJACIÓN PARA LA COLOCACIÓN DE TUBERÍAS SIN ENTERRAR GENERAL INFORMACIÓN TÉCNICA INSTALACIÓN DE TUBERÍAS Y ACCESORIOS STELTUB ELEMENTOS DE FIJACIÓN PARA LA COLOCACIÓN DE TUBERÍAS SIN ENTERRAR GENERAL Debido a la baja rigidez y a las grandes expansiones (causadas

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

Tema 14. Conducciones abiertas. Canales.

Tema 14. Conducciones abiertas. Canales. Tema 14. Conducciones abiertas. Canales. 1. Introducción.. Ecuación general en régimen permanente.. Fórmulas prácticas para la determinación de pérdida de carga. 4. Velocidades admisibles. Distribución

Más detalles

PROYECTO MECANICO MEMORIA DE CALCULO

PROYECTO MECANICO MEMORIA DE CALCULO PROYECTO MECANICO MEMORIA DE CALCULO ESTACION DE BOMBEO DE AGUAS RESIDUALES y PLUVIALES No.- 08 Junta de Aguas y Drenaje H. Matamoros, Tamaulipas Pagina 5-1 CÁLCULO DEL SISTEMA DE BOMBEO EB-08 DATOS GENERALES

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Correlación viscosidad - temperatura

Correlación viscosidad - temperatura Viscsidad [cp] Manual para el diseñ de una red hidráulica de climatización ANEXO I CORRELACIÓN VARIACIÓN VISCOSIDAD - TEMPERATURA Crrelación de Van Wingen para la viscsidad (1950): [ ( ) ( ) ] 274 Crrelación

Más detalles

CALCULOS HIDRÁULICOS ÍNDICE

CALCULOS HIDRÁULICOS ÍNDICE CALCULOS HIDRÁULICOS ÍNDICE 1. SANEAMIENTO PROYECTADO... 2 2. CÁLCULO DE CAUDALES... 2 2.1 CÁLCULO DEL CAUDAL MEDIO DE AGUAS RESIDUALES... 3 2.2 CÁLCULO DEL CAUDAL DE AGUAS PLUVIALES... 3 2.3 TABLA DE

Más detalles

3. CÁLCULO HIDRÁULICO

3. CÁLCULO HIDRÁULICO 3. CÁLCULO HIDRÁULICO Fig. 3.60- Instalación pag. 3.23 CÁLCULO HIDRÁULICO SELECCIÓN DE DIÁMETRO Y CLASE DE LOS TUBOS DE PRESIÓN La selección del diámetro y clase de presión depende de los siguientes factores:

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

INFORME TÉCNICO Nº 10

INFORME TÉCNICO Nº 10 INFORME TÉCNICO Nº 10 Presiones Hidráulicas La norma UNE-EN 805 y otras informaciones, dan una serie de definiciones relativas a la presión que indicamos a continuación: Designación de presiones según

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO Desarrollar una de las dos opciones propuestas. Cada problema puntúa 3 (1,5 cada apartado) y cada cuestión teórica o práctica 1. OPCIÓN 1 Un cilindro macizo y homogéneo de 3 kg de masa y 0,1 m de radio

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

Tuberías Corrugadas HDPE CDP-DELTA / CSP-DELTA

Tuberías Corrugadas HDPE CDP-DELTA / CSP-DELTA T u b e r í a s Tuberías Corrugadas HDPE CDP-DELTA / CSP-DELTA CDPDELTA es una tubería fabricada de resina de Polietileno de Alta Densidad (HDPE) que combina un exterior corrugado anular para mayor resistencia

Más detalles

LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE

LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE I. LOGROS Determinar experimentalmente el valor de la aceleración de la gravedad. Analizar el movimiento de un cuerpo mediante el Software Logger Pro. Identificar

Más detalles

TUBERIAS CORRUGADAS HDPE CDP-DELTA / CSP-DELTA

TUBERIAS CORRUGADAS HDPE CDP-DELTA / CSP-DELTA TUBERIAS CORRUGADAS HDPE CDP-DELTA / CSP-DELTA TUBERÍAS CORRUGADAS DE HDPE Son tuberías fabricadas de resina de Polietileno de Alta Densidad (HDPE) que combina un exterior corrugado anular para mayor resistencia

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt INGENIERIA CIVIL EN MECANICA 15030 LABORATORIO GENERAL II NIVEL 11 GUIA DE LABORATORIO EXPERIENCIA C224 CURVAS CARACTERÍSTICA DE UNA TURBINA PELTON LABORATORIO DE TURBINA PELTON 1. OBJETIVO GENERAL Observar

Más detalles

T-2) LA FUERZA DE LORENTZ (10 puntos)

T-2) LA FUERZA DE LORENTZ (10 puntos) T-2) LA FUERZA DE LORENTZ (10 puntos) Un móvil se desliza por un plano inclinado sobre el que pende el conductor cilíndrico AC a una distancia h de la línea de máxima pendiente, tal como indica la figura.

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

PÉRDIDAS DE CARGA. E.T.S. Ingenieros Industriales. Curso PRÁCTICAS DE MECÁNICA DE FLUIDOS ÍNDICE. Área de Mecánica de Fluidos

PÉRDIDAS DE CARGA. E.T.S. Ingenieros Industriales. Curso PRÁCTICAS DE MECÁNICA DE FLUIDOS ÍNDICE. Área de Mecánica de Fluidos Prácticas de Mecánica de Fluidos Pérdidas de Carga 1/10 UNIVERSIDAD DE OVIEDO E.T.S. Ingenieros Industriales 3 er curso Curso 004-005 PRÁCTICAS DE MECÁNICA DE FLUIDOS PÉRDIDAS DE CARGA ÍNDICE 1. Introducción

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO 1 Aplicaciones de la integral 3.6 uerza y presión de un fluido Cuando en un fluido contenido por un recipiente se encuentra un cuerpo sumergido, este experimenta una fuerza, perpendicular a cualquiera

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS

TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS TUBERIAS Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS INDICE 1.- MATERIALES... 3 2.- PERDIDAS DE CARGA... 4 2.1.- FACTORES QUE INFLUYEN EN LAS PERDIDAS DE CARGA... 4 2.2.- REGIMENES

Más detalles

TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO. Ms. Sc. Ing. Jorge Briones G.

TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO. Ms. Sc. Ing. Jorge Briones G. TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO Ms. Sc. Ing. Jorge Briones G. jebriones@hotmail.com EJEMPLO DE EROSION INTERNA EN PRESAS DE MATERIALES DE PRESTAMO PRESAS DE MATERIALES DE PRESTAMO Presa

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO

CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO 3.1 INTRODUCCION: El acero es una aleación basada en hierro, que contiene carbono y pequeñas cantidades de otros elementos químicos metálicos. Generalmente

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

TECNOLOGÍA DE FLUIDOS Y CALOR

TECNOLOGÍA DE FLUIDOS Y CALOR Departamento de Física Aplicada I Escuela Universitaria Politécnica TECNOLOGÍA DE FLUIDOS Y CALOR TABLAS DE MECÁNICA DE FLUIDOS A. Propiedades del agua... 1 B. Propiedades de líquidos comunes... 2 C. Propiedades

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF -01 1. INTRODUCCIÓN LABORATORIO DE NOMBRE DE LA

Más detalles

MÁQUINA DE ATWOOD: MOVIMIENTO RECTILÍNEO DE MASAS UNIDAS POR UNA CUERDA EN EL SENO DE AIRE Y DE AGUA

MÁQUINA DE ATWOOD: MOVIMIENTO RECTILÍNEO DE MASAS UNIDAS POR UNA CUERDA EN EL SENO DE AIRE Y DE AGUA MÁQUINA DE ATWOOD: MOVIMIENTO RECTILÍNEO DE MASAS UNIDAS POR UNA CUERDA EN EL SENO DE AIRE Y DE AGUA (Práctica nº 9: Atrapado en un ascensor) FERNANDO HUESO GONZÁLEZ Pareja 7 - Grupo B-L º DE FÍSICA -

Más detalles