Minería de Datos. Redundancia en Reglas de Asociación. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Minería de Datos. Redundancia en Reglas de Asociación. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria"

Transcripción

1 Minería de Datos Redundancia en Reglas de Asociación Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Otoño de 2012

2 Reglas de Asociación Estándar Fijamos unos umbrales mínimos de soporte y confianza. Calculamos conjuntos frecuentes : subconjuntos cuyo soporte supera el umbral. En cada conjunto frecuente, probamos todas las maneras de poner un item como consecuente de la regla y el resto como antecedente, y filtramos las que no alcancen el umbral de confianza. (Perdemos las reglas con varios consecuentes.) Alternativa: para todo conjunto frecuente X y cada Y X, calculamos c(x \Y Y ) y retornamos sólo las reglas que alcanzan el umbral de confianza.

3 Abundancia de Reglas de Asociación El gran problema de este enfoque Preprocesas los datos, lanzas tu asociador, afinas los parámetros... Y cuando, finalmente, aciertas con valores que te proporcionan reglas un poco interesantes...

4 Abundancia de Reglas de Asociación El gran problema de este enfoque Preprocesas los datos, lanzas tu asociador, afinas los parámetros... Y cuando, finalmente, aciertas con valores que te proporcionan reglas un poco interesantes......salen decenas de miles de reglas. Y muchas te sobran.

5 Abundancia de Reglas de Asociación El gran problema de este enfoque Preprocesas los datos, lanzas tu asociador, afinas los parámetros... Y cuando, finalmente, aciertas con valores que te proporcionan reglas un poco interesantes......salen decenas de miles de reglas. Y muchas te sobran. United-States, White Husband United-States, White Married-civ-spouse United-States, White (En general, todas las que los datos no desmienten.)

6 Abundancia de Reglas de Asociación El gran problema de este enfoque Preprocesas los datos, lanzas tu asociador, afinas los parámetros... Y cuando, finalmente, aciertas con valores que te proporcionan reglas un poco interesantes......salen decenas de miles de reglas. Y muchas te sobran. United-States, White Husband United-States, White Married-civ-spouse United-States, White (En general, todas las que los datos no desmienten.) Necesitamos: Nociones precisas de redundancia entre reglas de asociación, métodos para encontrar bases no redundantes mínimas, y maneras de descartar las reglas poco novedosas.

7 Hacía la eliminación de redundancia en las reglas Clausuras y conjuntos cerrados Conjuntos cerrados Son los que no puedes ampliar sin perder soporte. En el momento de extender un conjunto con un item, comprobamos si el soporte decrece; si no lo hace, el conjunto no es cerrado. Más formal, un conjunto X I es cerrado si X = X, donde X es la clausura de X y se calcula con una de las dos fórmulas: X = {a I s(x {a}) = s(x )} = {t D X t}

8 Cómo definimos una regla redundante? Definimos: F τ = {X I s(x ) τ} (conjuntos frecuentes) FC τ = {X F τ Z X, s(z) < s(x )} (cerrados frecuentes) FG τ = {X F τ Y X, s(y ) > s(x )} (generadores minimales frecuentes)

9 Cómo definimos una regla redundante? Definimos: F τ = {X I s(x ) τ} (conjuntos frecuentes) FC τ = {X F τ Z X, s(z) < s(x )} (cerrados frecuentes) FG τ = {X F τ Y X, s(y ) > s(x )} (generadores minimales frecuentes) Decimos que X 2 Y 2 es redundante con respecto a X 1 Y 1 C(X 1 Y 1 ) = {X 2 Y 2 X1 X 2 and X 2 Y 2 X 1 Y 1 }

10 Reglas Representativas, I Reglas de asociación AR τ,γ = {X Y s(x Y ) τ, c(x Y ) γ} Reglas Representativas RR τ,γ = {r AR τ,γ r AR τ,γ \{r} tal que r C(r )}.

11 Reglas Representativas, I Reglas de asociación AR τ,γ = {X Y s(x Y ) τ, c(x Y ) γ} Reglas Representativas RR τ,γ = {r AR τ,γ r AR τ,γ \{r} tal que r C(r )}. Condiciónes necesarias ( pero no suficientes!) Si X Y RR τ,γ entonces XY FC τ y X FG τ.

12 Reglas Representativas, II Denotemos RI τ,γ = {Z FC τ X Z tal que X Z\X RRτ,γ }

13 Reglas Representativas, II Denotemos RI τ,γ = {Z FC τ X Z tal que X Z\X RRτ,γ } Teorema RI τ,γ = {Z FC τ γ mxgsτ,γ (Z) > mxs τ (Z)}, donde mxs τ (X ) = max({s(z) Z FC τ, Z X } {0}), mns τ (X ) = min({s(y ) Y FG τ, Y X } { }, mxgs τ (X ) = max({s(y ) Y FG τ, Y X, γ s(y ) s(x )} {0}).

14 Reglas Representativas, II Denotemos RI τ,γ = {Z FC τ X Z tal que X Z\X RRτ,γ } Teorema RI τ,γ = {Z FC τ γ mxgsτ,γ (Z) > mxs τ (Z)}, donde mxs τ (X ) = max({s(z) Z FC τ, Z X } {0}), mns τ (X ) = min({s(y ) Y FG τ, Y X } { }, mxgs τ (X ) = max({s(y ) Y FG τ, Y X, γ s(y ) s(x )} {0}). Teorema RR τ,γ = {X Z\X Z RI τ,γ, X Z, mxs τ (Z) < γ s(x ) s(z) > γ mns τ (X )}

15 Ejemplo Consideremos el siguiente conjunto de datos D = {abcdef, abcde, ab, ac, bc, ad} y sunpongamos que el umbral de soporte es τ = 0. a b c d e f 1/0 1 a b c d e 2/1 2 f 6/1 1 a b c 3/2 2 e 6/2 2 a d 3/2 3 a b 4/2 3 a c 4/2 3 b c 4/2 3 b d 3/2 2 c d 3/2 2 d 6/3 3 a 6/3 5 b 6/3 4 c 6/3 4 /5 6

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Núcleos por trayectorias monocromáticas. digráficas m-coloreada

Núcleos por trayectorias monocromáticas. digráficas m-coloreada en digráficas m-coloreada Hortensia Galeana Sánchez Ma. Rocío Rojas Monroy Guadalupe Gaytán Gómez Marzo 20, 2013 Definiciones Básicas Definición Una digráfica D consiste de un conjunto finito no vacío

Más detalles

José F. Fernando y José Manuel Gamboa

José F. Fernando y José Manuel Gamboa ECUACIONES ALGEBRAICAS, CURSO 2016-2017 José F. Fernando y José Manuel Gamboa Polinomios en varias variables 1. Calcular la suma de los cubos de las raíces en C del polinomio f(t) := t 3 2t 2 + 3t 4? 2.

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Bootstrapping de Compiladores y Diagramas en T Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2012 Qué es un compilador?

Más detalles

Bases de Grobner Natalia García 27 de febrero de 2009

Bases de Grobner Natalia García 27 de febrero de 2009 DEPARTAMENTO DE MATEMÁTICA FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CONCEPCIÓN Bases de Grobner Natalia García 27 de febrero de 2009 1. Introducción En este trabajo construiremos un algoritmo

Más detalles

Ejercicios de Algebra III. Curso 00-01

Ejercicios de Algebra III. Curso 00-01 Ejercicios de Algebra III. Curso 00-01 Ejercicio 1. Sea x un elemento nilpotente de un anillo A. Probar que 1 + x es una unidad de A. Deducir que la suma de un elemento nilpotente y de una unidad es una

Más detalles

Ejemplo 66 Sea A = {los alumnos de este curso}, entonces podemos definir la siguiente relación el el conjunto A, dada por:

Ejemplo 66 Sea A = {los alumnos de este curso}, entonces podemos definir la siguiente relación el el conjunto A, dada por: Capítulo 3 Relaciones Definición 8 Sea A un conjunto no vacío. Se dice que R es una relación en A si y sólo si R A A. Ejemplo 65 Sea A = {a,b,c}, luego definimos los conjuntos: R 1 = {(a,a),(a,b),(b,c)},r

Más detalles

Funciones Continuas Definiciones y Propiedades

Funciones Continuas Definiciones y Propiedades Capítulo 2 Funciones Continuas 2.1. Definiciones Propiedades Sean (X,T X ) e (Y,T Y ) dos espacios topológicos una función f : X Y. Se dice que f es continua, si sólo si, para todo V T Y, se tiene f 1

Más detalles

Clase 1: Funciones de Varias Variables

Clase 1: Funciones de Varias Variables Clase 1: Funciones de Varias Variables C. J. Vanegas 29 de abril de 2008 1. La geometría de funciones con valores reales Considere la siguiente función f: donde x = (x 1,..., x n ). f : A R n R m x A f(x)

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

Tema 6: Funciones de varias variables

Tema 6: Funciones de varias variables Tema 6: Funciones de varias variables de febrero de 6 Preliminares: derivadas parciales. Sea F una función de dos variables, como por ejemplo la función definida por F(x; y) = x y 3 Podemos derivarla con

Más detalles

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria Minería de Datos Árboles de Decisión Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Otoño de 2012 Twenty questions Intuición sobre los árboles de decisión Juego

Más detalles

GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS

GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS 1. Sean los conjuntos A = {x

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

Extensiones finitas.

Extensiones finitas. 2. EXTENSIONES ALGEBRAICAS. Hemos dividido este tema en dos secciones: Extensiones finitas, y Clausura algebraica. En la primera relacionamos extensión finita y extensión algebraica: probamos que toda

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

Superficies Forma explícita

Superficies Forma explícita Lección 7 Superficies En lo que sigue vamos a hacer un tratamiento básico de las superficies en R 3, que guarda cierto paralelismo con el estudio de las curvas en el plano hecho anteriormente. 7.1. Forma

Más detalles

Exámenes de Álgebra Local. Pedro Sancho

Exámenes de Álgebra Local. Pedro Sancho Exámenes de Álgebra Local Pedro Sancho 2003 2 Índice General 1 Examen de Álgebra Local. Abril-2001 5 2 Examen de Álgebra Local. Abril-2001 7 3 Examen de Álgebra Local. Junio-2001 9 4 Examen de Álgebra

Más detalles

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria Minería de Datos Árboles de Decisión Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Otoño de 2012 Twenty questions Intuición sobre los árboles de decisión Juego

Más detalles

Álgebra. Curso de junio de Grupo B

Álgebra. Curso de junio de Grupo B Álgebra. Curso 2008-2009 9 de junio de 2009. Grupo B Primera parte Ejercicio. 1. Sea D un dominio noetheriano que no es un cuerpo. Demuestra que son equivalentes: (a) D es un dominio de Dedekind. (b) Todo

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Teoremas de Existencia y Unicidad) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO 1/15

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

1. Sumar monomios semejantes:

1. Sumar monomios semejantes: HOJA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a 6

Más detalles

Normalización Clase Práctica SPI y SPDF

Normalización Clase Práctica SPI y SPDF Normalización Clase Práctica Departamento de Computación - Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Base de Datos 2do. Cuatrimestre 2015 Esquema General 1 Introducción 2 Sin

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

7. Seguiría siendo válida la proposición anterior si algunos de los conjuntos A, B, C y D son vacíos?

7. Seguiría siendo válida la proposición anterior si algunos de los conjuntos A, B, C y D son vacíos? UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE COMPUTACIÓN Y TECNOLOGÍA DE LA INFROMACIÓN ESTRUCTURAS DISCRETAS I GUÍA PRÁCTICA Nº 2. Demuestre lo siguiente mediante inducción matemática: a) 3 + 2 4 + 3 5 +...

Más detalles

CARACTERIZACIÓN DEL SOFTWARE DE COMPUTADORES Y PERIFÉRICOS

CARACTERIZACIÓN DEL SOFTWARE DE COMPUTADORES Y PERIFÉRICOS CARACTRIZACIÓN L SOFTWAR COMPUTAORS Y PRIFÉRICOS CASO - FC - Revisión : Página de 8 Fecha de misión : 25/6/8 RSPONSABL: ING. ROGL MIGUZ Copia No Controlada, Impresa el día 25/6/8! CARACTRIZACIÓN L SOFTWAR

Más detalles

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n ) El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la

Más detalles

Conexión Motivación. Lección 10

Conexión Motivación. Lección 10 Lección 10 Conexión Estudiamos la propiedad topológica que nos va a permitir obtener una versión general para espacios métricos del teorema del valor intermedio que conocemos para funciones reales de variable

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Álgebra. Curso

Álgebra. Curso Álgebra. Curso 2012-2013 14 de junio de 2013 Resolución Ejercicio. 1. (2 puntos) Utiliza el teorema del descenso (o alternativamente la localización en primos) para probar el siguiente resultado: Sea K

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

LógicaS Modales. Ricardo Oscar Rodríguez Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

LógicaS Modales. Ricardo Oscar Rodríguez Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Segunda Clase. 1er. Cuatrimestre, 2016 Outline 1 Repaso clase anterior Sintáxis Lógicas Modales Autocongruentes

Más detalles

Información importante

Información importante Coordinación de Matemática I (MAT021) 1 er Semestre de 2010 Semana 8: Lunes 10 viernes 14 de Mayo Información importante El viernes 14 ser publicada la tarea preparatoria de Taller de Sala. Durante la

Más detalles

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de

Más detalles

Clases Prácticas Base de Datos DF y FN 10 y 17/09/ C.2010

Clases Prácticas Base de Datos DF y FN 10 y 17/09/ C.2010 Ej.1.- Sea la relación R = (A, B, C, D, E, F) y el conjunto de dependencias funcionales FD1: {A BD, B CD, AC E} FD2: {A BD, B CD, AC E, C A} FD3: {A BD, B ACD, AC E, C B} Cuál es la clausura de A, B y

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

Completitud en Lógica de Predicados

Completitud en Lógica de Predicados Completitud en de Predicados Predicados - Completitud 1 Corrección. Significa que las derivaciones expresan una consecuencia lógica. Establece una correspondencia tal que partiendo de nociones sintácticas

Más detalles

Restricción de valor único. Indispensable para diseñar esquemas de bases de datos que eliminen al redundancia.

Restricción de valor único. Indispensable para diseñar esquemas de bases de datos que eliminen al redundancia. CC42A Auxiliar #3 Dependencias funcionales, reglas, axiomas de Armstrong, cerradura de dependencias Martes, 03 de Septiembre de 2002 Profesor: Claudio Gutiérrez Auxiliar: Tania Gallardo Consultas a tgallard@dcc.uchile.cl

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Relaciones IIC1253. IIC1253 Relaciones 1 / 32

Relaciones IIC1253. IIC1253 Relaciones 1 / 32 Relaciones IIC1253 IIC1253 Relaciones 1 / 32 Relaciones binarias Dado: conjunto A R es una relación binaria sobre A si R A A. Para indicar que a,b A están relacionados a través de R usamos las notaciones:

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Actividad: Figuras Semejantes

Actividad: Figuras Semejantes Actividad: Figuras Semejantes Curso: Matemáticas Nivel: Septimo Grado Tiempo sugerido: 2 periodos de 50 minutos Estándar Expectativa Indicador Geometría: El estudiante es capaz de identificar formas geométricas,

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

Conjuntos Abiertos y Conjuntos Cerrados

Conjuntos Abiertos y Conjuntos Cerrados El espacio R n 1 Conjuntos Abiertos y Conjuntos Cerrados Definición. Un conjunto V R n se dice que es abierto si para cada x V existe una bola abierta B( x, r) contenida en V. Es decir si para cada x V

Más detalles

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Elementos de Bases de Datos 2do. Cuatrimestre de 2004

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Elementos de Bases de Datos 2do. Cuatrimestre de 2004 2do. Cuatrimestre de 2004 Elementos de Bases de Datos Dpto.Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Lic. María Mercedes Vitturini [mvitturi@cs.uns.edu.ar] Clase 9 1er. Cuatrimestre

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados

MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 009 010 Temario por Grados Nombre: Grado: Escuela: Provincia: Municipio: Número C.I.: Calif: La distribución de

Más detalles

Lenguajes Incontextuales

Lenguajes Incontextuales Tema 5: Gramáticas Formales Lenguajes Incontextuales Departamento de Sistemas Informáticos y Computación http://www.dsic.upv.es p.1/31 Tema 5: Gramáticas Formales Gramáticas. Tipos de Gramáticas. Jerarquía

Más detalles

z-ultrafiltros y compactificación de Stone-Čech

z-ultrafiltros y compactificación de Stone-Čech Universidad de Cantabria Departamento de Matemáticas, Estadística y Computación z-ultrafiltros y compactificación de Stone-Čech Víctor Diego Gutiérrez Trabajo dirigido en Matemática Fundamental por Jesús

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Álgebra Lineal V: Subespacios Vectoriales.

Álgebra Lineal V: Subespacios Vectoriales. Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Minería de Datos. Presentación de la asignatura. Fac. Ciencias Ing. Informática Otoño de 2012. Dept. Matesco, Universidad de Cantabria

Minería de Datos. Presentación de la asignatura. Fac. Ciencias Ing. Informática Otoño de 2012. Dept. Matesco, Universidad de Cantabria Minería de Datos Presentación de la asignatura Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Otoño de 2012 Cuestiones Factuales De índole práctica Personal e

Más detalles

Series de potencias y modos de convergencia. Pedro Tamaroff

Series de potencias y modos de convergencia. Pedro Tamaroff Series de potencias y modos de convergencia Pedro Tamaroff 1. El álgebra de series de potencias I. Series formales Una serie de potencias formal con coeficientes complejos es una expresión f = ν 0 a ν

Más detalles

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Elementos de Bases de Datos 2do. Cuatrimestre de 2004

Universidad Nacional del Sur Departamento de Ciencias e Ingeniería de la Computación Elementos de Bases de Datos 2do. Cuatrimestre de 2004 do. Cuatrimestre de 004 Formas Normales Elementos de Bases de Datos Dpto.Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Lic. María Mercedes Vitturini [mvitturi@cs.uns.edu.ar] Clase

Más detalles

Álgebras de Boole. Definición 1 Un álgebra de Boole es un conjunto parcialmente ordenado (B, ) que verifica las siguientes condiciones:

Álgebras de Boole. Definición 1 Un álgebra de Boole es un conjunto parcialmente ordenado (B, ) que verifica las siguientes condiciones: Álgebras de Boole Sea (P, ) un conjunto parcialmente ordenado y sea S un subconjunto de P. Una cota superior de S es un elemento c P tal que s c para todo s S. Una cota inferior de S es un elemento d P

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

Diseño de Base de Datos Relacional. Diseño de Base de Datos Relacional

Diseño de Base de Datos Relacional. Diseño de Base de Datos Relacional Diseño de Base de Datos Relacional Temas: - Pautas informales para diseño de esquemas - Dependencias Funcionales - Formas Normales - Algoritmos de diseño - Dependencias multivaluadas y cuarta forma normal

Más detalles

Diseño de Base de Datos Relacional

Diseño de Base de Datos Relacional Diseño de Base de Datos Relacional Temas: - Pautas informales para diseño de esquemas - Dependencias Funcionales - Formas Normales - Algoritmos de diseño - Dependencias multivaluadas y cuarta forma normal

Más detalles

Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es

Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es 2. LA FUNCIÓN VOLUMEN Definición 9. Volumen de un poliedro convexo Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es un poliedro convexo, X E. Definimos una función que

Más detalles

Tema 10: Teorema de Hahn-Banach. 14 y 17 de junio de 2010

Tema 10: Teorema de Hahn-Banach. 14 y 17 de junio de 2010 Tema 10: Teorema de Hahn-Banach 14 y 17 de junio de 2010 1 Versión anaĺıtica Enunciado del teorema Dual topológico Teoremas de extensión Duales de subespacios y cocientes Límites de Banach 2 Separación

Más detalles

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria Las (k) Las Gramáticas con Parsing Eficiente Universidad de Cantabria Outline Las (k) 1 Las (k) 2 3 Las (k) Formalizalización del Concepto LL Definición Una gramática libre de contexto G = (V, Σ, Q 0,

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases.

Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases. Cambio de base Objetivos Estudiar la relación entre las coordenadas de un vector en dos bases Requisitos Definición de una base, multiplicación de una matriz por un vector, delta de Kronecker Definición

Más detalles

ax + by = 1 cx + dy = 0

ax + by = 1 cx + dy = 0 1.61. Considere el sistema ax + by = 1 cx + dy = 0 Muestre que si ad bc 0, el sistema tiene solución única x = d/(ad bc, y = c/(ad bc. Demostrar además que si ad bc = 0, c 0 o d 0, entonces el sistema

Más detalles

Ecuaciones Funcionales Involucrando Funciones Trigonométricas y Exponenciales

Ecuaciones Funcionales Involucrando Funciones Trigonométricas y Exponenciales Ecuaciones Funcionales Involucrando Funciones Trigonométricas y Exponenciales Alexandra K urepa Abstract Este artículo puede servir como una introducción al área de ecuaciones funcionales dando los ejemplos

Más detalles

Dependencias Funcionales. Bibliografía: Fundamentos de bases de datos Korth, Silberschatz

Dependencias Funcionales. Bibliografía: Fundamentos de bases de datos Korth, Silberschatz Dependencias Funcionales Bibliografía: Fundamentos de bases de datos Korth, Silberschatz Conceptos básicos Las DF son un tipo particular de restricción. Permiten expresar hechos acerca de la realidad que

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

Dependencias funcionales

Dependencias funcionales CC42A/CC55A - BASES DE DATOS Profesor: Claudio Gutiérrez Auxiliar: Mauricio Monsalve Dependencias funcionales 1 El concepto de dependencia funcional 1.1 El concepto de dependencia funcional Hay veces en

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Exámenes Selectivos para la Olimpiada Iberoamericana de Matemática

Exámenes Selectivos para la Olimpiada Iberoamericana de Matemática Exámenes Selectivos para la Olimpiada Iberoamericana de Matemática Comisión de Olimpiadas de la Sociedad Matemática Peruana Edición: Jorge Tipe Versión: mayo 2016 Prólogo En la Olimpiada Iberoamericana

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

Algoritmos de Descomposición primaria

Algoritmos de Descomposición primaria Algoritmos de Descomposición primaria Santiago Laplagne Directora: Teresa Krick 10 de septiembre de 2004 1 Gracias! Voy a hacer como si fuera posible escribir todo el agradecimiento que siento hacia todos

Más detalles

V 2 : vectores libres en el plano

V 2 : vectores libres en el plano V 2 : vectores libres en el plano Egor Maximenko ESFM del IPN 8 de agosto de 2009 Egor Maximenko (ESFM del IPN) V 2 : Vectores libres en el plano 8 de agosto de 2009 1 / 13 Contenido 1 Conjunto V 2 2 Operaciones

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos. MSc. Angel Padilla. Cumaná, Marzo 2012

Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos. MSc. Angel Padilla. Cumaná, Marzo 2012 Dilatación unitaria de semigrupos locales de contracciones con parámetro en los racionales diádicos Autor: MSc. Angel Padilla Cumaná, Marzo 2012 2 A continuación se fija algo de la notación que se utilizará

Más detalles

Teoría de Galois de extensiones no normales

Teoría de Galois de extensiones no normales Cuartas Jornadas de Teoría de Números Universidad Euskal Herriko del País Vasco Unibertsitatea 13 de julio de 2011 Teoría de Galois de extensiones no normales Teresa Crespo, Universitat de Barcelona Un

Más detalles

TEMA Espacios métricos

TEMA Espacios métricos TEMA 55 Bolas abiertas y cerradas. Conjuntos abiertos y cerrados. Conjuntos compactos. Aplicaciones continuas de R n en R m. Propiedades de las aplicaciones continuas En la primera sección se introducen

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

Luego 72 = 2 3. Luego 48 = 2 3

Luego 72 = 2 3. Luego 48 = 2 3 72 2 36 2 8 2 9 3 3 3 3 2 Luego 72 = 2 3 48 2 24 2 2 2 6 2 3 3 4 Luego 48 = 2 3 Así que el m.c.m. de 72 y 48 es 2 4 3 2 = 44. Como la rueda mayor tiene 72 dientes, para "recorrer" 44 dientes dee dar 44

Más detalles

Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de

Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de TEMA 8 Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de Isomorfía En la primera sección introducimos los conceptos de grupo y subgrupo y, además de presentar varios ejemplos, prestamos

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 2

CURVAS Y SUPERFICIES. RELACIÓN 2 CURVAS Y SUPERFICIES. RELACIÓN 2 SUPERFICIES EN EL ESPACIO Curso 2015-16 1. Demostrar que las siguientes cuádricas reales son superficies. Obtener una parametrización de cada una de ellas. En cada caso,

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO)

DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO) DISEÑO FACTORIAL Niveles de B Niveles de A 1 2 3 4 5 1 y 11 y 12 y 13 y 14 y 15 2 y 21 y 22 y 23 y y 3 y 31 y 32 y 33 y 34 y 35 4 y 41 y 42 y 43 y 44 y 45 Todos los niveles de cada factor están combinados

Más detalles