Derivación Numérica. 22 Derivada del polinomio interpolador

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Derivación Numérica. 22 Derivada del polinomio interpolador"

Transcripción

1 La definición de la derivada de una función como un límite lleva implícito un método de aproximación numérica: f (x) f(x + h) f(x) h D h f(x); diremos que esta última cantidad es una derivada numérica de f con paso h. Ejemplo Si calculamos la derivada numérica de f(x) = x 2 en x = 1, h D h f Error Utilizando la fórmula de Taylor, f(x + h) = f(x) + hf (x) h2 f (c) así D h f(x) = f (x) hf (c) por lo tanto el error en la derivada numérica es del orden de h. De hecho en nuestro ejemplo f (1) = 2, por tanto el error es exactamente h. 22 Derivada del polinomio interpolador Si observamos la derivada numérica recién definida, podemos ver que es simplemente la pendiente de la secante por (x, f(x)) y (x + h, f(x + h)), es decir la derivada del polinomio interpolador de f en los nodos x, x + h. Podemos aproximar numéricamente la derivada de una función aproximando esta por medio de un polinomio interpolador y calculando la derivada de este último. 1

2 Por ejemplo, sea P 2 el polinomio que interpola a f con nodos en los puntos x 0 = x h, x 1 = x, x 2 = x + h; se obtiene P 2 (t) = (t x 1)(t x 2 ) 2 f(x 0 )+ (t x 0)(t x 2 ) h 2 f(x 1 )+ (t x 0)(t x 1 ) 2 f(x 2 ). Por tanto, P 2(t) = 2t (x 1 + x 2 ) 2 f(x 0 )+ 2t (x 0 + x 2 ) h 2 f(x 1 )+ 2t (x 0 + x 1 ) 2 f(x 2 ); en particular P 2(x 1 ) = x 2 x 1 f(x 2 0 )+ (x 1 x 0 ) + (x 1 x 2 ) f(x h 2 1 )+ x 1 x 0 f(x 2 2 ) = f(x 2) f(x 1 ). Es decir, f (x 1 ) f(x 1 + h) f(x 1 h). que representa una especie de media entre la derivada hacia adelante (h > 0) y la derivada hacia atrás (h < 0) de la anterior. Cómo estimar el error en P n(x)? Teorema 5. Sea f C n+2 ([a, b]) y sea P n (t) el polinomio interpolador de f con nodos x 0,..., x n [a, b]; t [a, b], ξ 1, ξ 2 [a, b] tales que f (t) P n(t) = L n (t) f (n+2) (ξ 1 ) (n + 2)! + L n(t) f (n+1) (ξ 2 ) (n + 1)! donde L n (t) = (t x 0 )(t x 1 ) (t x n ). Demostración. El error en P n viene dado por P n (t) f(t) = L n (t)f[x 0, x 1,..., x n, t] por tanto, E(t) = P n (t) f (t) = L n(t)f[x 0,..., x n, t] + L n (x) d dt f[x 0,..., x n, t] = L n(t)f[x 0,..., x n, t] + L n (t)f[x 0,..., x n, t, t] dado que f C (n+2), ξ 1, ξ 2 [a, b] tal que E(x) = L n(x) f (n+1) (ξ 1 ) (n + 1)! L n (x) f (n+2) (ξ 2 ) (n + 2)!. 2

3 A fin de obtener el orden más alto en la última estimación tratamos de conseguir L (x) = 0. Podemos lograrlo para n impar si distribuimos los nodos simétricamente respecto de x. Ejemplo Para n = 1, x = 1 2 (x 0 + x 1 ), x 0 = x δ, x 1 = x + δ: L(x) = (x x 0 )(x x 1 ); L (x) = (x x 1 )+(x x 0 ) = δ+δ = 0 Ejemplo Para n = 3, x 0 = x µ, x 1 = x δ, x 2 = x + δ, x 3 = x + µ: L(x) = (x x 0 )(x x 1 )(x x 2 )(x x 3 ) L (x) = Así: 3 i,j,k=0;distintos (x x i )(x x j )(x x k ) = δ( δ)( µ) + µ(δ)( µ) + µδ( µ) + µδ( δ) = 0. E(x) = P n(x) F (x) = δ 2 µ 2 f (n+2) (ξ) (n + 2)!. En el caso general de n impar y nodos igualmente espaciados a distancia δ y distribuidos simétricamente respecto de x P n (x) f (x) = ( 1) n n 2 ( δ 2 )n+1 f (n+2) (ξ) (n + 2)!. De forma análoga, podemos conseguir que L(x) = 0 para n par tomando x como uno de los nodos. Resulta entonces que L (x) tiene un solo término no nulo y se obtiene un resultado análogo al anterior. 23 Coeficientes indeterminados El procedimiento descrito produce fórmulas de derivación numérica del tipo: f (k) (x) = n w i f(x i ) i=1 donde los x i son nodos predeterminados y los w i los pesos co- No son propiamente pesos ya que wi 1. De hecho w i = 0. rrespondientes. Una vez prefijados los nodos, para determinar los pesos podemos recurrir al método siguiente de coeficientes indeterminados. Ejemplo Supongamos que f (x) = Af(x h) + Bf(x) + Cf(x + h); 3

4 dado que el polinomio de Taylor de f nos da: f(x ± h) = f(x) ± f (x)h f (x)h 2 ± 1 6 f (x)h f ıv (ξ ± )h 4 Despejando f (x) obtenemos (23.1) f (x) = (A + B + C)f(x) + h( A + C)f (x) h2 (A + C)f (x) h3 ( A + C)f (x) h4 (Af ıv (ξ ) + Cf ıv (ξ + )). Si identificamos coeficientes obtenemos el sistema A + B + C = 0 A + C = 1 h A + C = 0, cuya solución es A = C = 1, B = 0; por tanto f (x) f(x + h) f(x h) = D h f(x); f (x) D h f(x) = h3 48 [f ıv (ξ ) + f ıv (ξ + )] Ejemplo Queremos deducir una derivada segunda de la forma D 2 hf(x) = Af(x ) + Bf(x h) + Cf(x + h) + Df(x + ). Para ello, junto con (23.1) utilizamos f(t±) = f(t)±f (t)+ 2 f (t)± 4 3 h3 f (t)+ 2 3 h4 (f ıv (ζ 1 )+f ıv (ζ 2 )) De ellas resulta que (23.2) f (t) = (A+B+C+D)f(t)+h( 2A B+C+2D)f (t)+ h2 2 (4A+B+C+4D)f (t) + h3 6 ( 8A B+C+8D)f (t)+ h4 24 (16Af ıv (ζ )+Bf ıv (ξ )+Cf ıv (ξ + )+16Df ıv (ζ + )) lo que da el sistema lineal A + B + C + D = 0 2A B + C + 2D = 0 4A + B + C + 4D = 1 h 2 8A B + C + 8D = 0 4

5 que resuelto proporciona D 2 hf(x) = con error f(x ) f(x h) f(x + h) + f(x + ) 3h 2 h2 72 [16f ıv (ζ ) f ıv (ξ ) f ıv (ξ + ) + 16f ıv (ζ + )]. 24 Estabilidad Numérica Si observamos todas las reglas de derivación numérica que hemos deducido, veremos que consisten en un cociente de dos números que cuando h (distancia entre nodos) tiende a cero es de la forma 0. De ello resulta que cuando h es muy pequeño vamos a tener una 0 pérdida de significación en el numerador amplificada por la división por h k. Esto hace que, dada una cierta precisión en los cálculos, habrá un h óptimo que nos dará la precisión máxima en el cálculo de la derivada numérica. Supongamos que ε es la precisión relativa de nuestros cálculos (digamos ε 10 16, como ocurre con Matlab). Vamos a estudiar qué sucede con la derivada numérica D h f(x) = f(x + h) f(x h). En su cálculo con la máquina tenemos D h f(x) = f(x + h) f(x h), donde f(x h) = (1 + ε 2 )f(x h); f(x + h) = (1 + ε1 )f(x + h); ( ε i ε, i = 1, 2), por tanto D h f(x) f (x) = ε 1f(x + h) ε 2 f(x h) dado que D h f(x) f (x) 1 6 h2 sup f resulta D h f(x) f (x) sup f ε h + sup f es decir E(h) = D h f(x) f (x) C 1 ε h + C 2 + D h f(x) f (x); para buscar el E mínimo hacemos E (h) = 0, es decir 2C 2 h C 1 εh 2 = 0, que tiene solución h = 3 C 1 Como esperamos 2C 2 ε. que tanto C 1 como C 2 tengan un valor moderado, h C 3 ε (si trabajamos con Matlab, h 10 5 ). 5

6 Ejemplo Calculemos la derivada de la función f(x) = x 4 en el punto x = 2, cuyo valor sabemos que es 32, por medio de la derivada numérica D h f(x) = f(x + h) f(x h) para valores de h = 10 k, k = 1,..., 20. Según el apartado anterior debemos esperar que el mejor resultado se produzca para k 5. Matlab nos da los siguientes resultados, en los cuales hemos incluido la tabla de errores: h Df error e e e e e e e e e e e e e e e e e e e e Podemos observar que el menor error se produce para k = 6 (h = 10 6 ), para el que este error es , es decir, del orden de C C 2(10 6 ) 2 C

Interpolación. 12 Interpolación polinómica

Interpolación. 12 Interpolación polinómica El objeto de este capítulo es el estudio de técnicas que permitan manejar una función dada por medio de otra sencilla y bien determinada que la aproxime en algún sentido. El lector ya conoce la aproximación

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

Derivadas de orden superior

Derivadas de orden superior Tema 6 Derivadas de orden superior 6 Polinomios de Taylor Nuestro objetivo es aproimar una función dada mediante funciones polinómicas Resulta conveniente estudiar las funciones polinómicas con más detenimiento

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Aproximación de funciones Interpolación Int. Segm. Complementos de Matemáticas, ITT Telemática Tema 2. Departamento de Matemáticas, Universidad de Alcalá Aproximación de funciones Interpolación Int. Segm.

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Interpolación y aproximaciones polinómicas

Interpolación y aproximaciones polinómicas This is page i Printer: Opaque this Interpolación y aproximaciones polinómicas Oldemar Rodríguez Rojas Octubre 008 ii This is page iii Printer: Opaque this Contents 1 Interpolación y aproximaciones polinómicas

Más detalles

EL TEOREMA DE TAYLOR INTRODUCCION:

EL TEOREMA DE TAYLOR INTRODUCCION: EL TEOREMA DE TAYLOR INTRODUCCION: Sabemos que la recta tangente, como la mejor aproximación lineal a la gráfica de f en las cercanías del punto de tangencia (x o, f(x o )), es aquella recta que pasa por

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Polinomios de Aproximación (Polinomios de Taylor P n )

Polinomios de Aproximación (Polinomios de Taylor P n ) Polinomios de Aproximación ( P n ) Sabemos que la recta tangente a una función en un punto es la mejor aproximación lineal a la gráca de f en las cercanías del punto de tangencia (xo, f(xo)), es aquella

Más detalles

Tema 4: Funciones. Límites de funciones

Tema 4: Funciones. Límites de funciones Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Tema 4: Teorema de la función inversa e impĺıcita

Tema 4: Teorema de la función inversa e impĺıcita Tema 4: Teorema de la función inversa e impĺıcita Teorema de la función inversa para varias variables Sea A R n un conjunto abierto, f : A R n y ā A Si f es de clase C 1 en A y det(df(ā)) 0, entonces existe

Más detalles

TEMA 6: DERIVACION NUMERICA

TEMA 6: DERIVACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 6: DERIVACION NUMERICA 1 INTRODUCCION En este tema nos ocupamos de aproximar las derivadas de orden arbitrario ν en un punto cualquier α de una función

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 8 - Polinomio de Taylor

Teóricas de Análisis Matemático (28) - Práctica 8 - Polinomio de Taylor Práctica 8 Polinomio de Taylor. Polinomio de Taylor El análisis completo de una función puede resultar muy difícil. Una forma de abordar este problema es aproximar la función por una más sencilla. En este

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Métodos Multipaso lineales

Métodos Multipaso lineales Elementos de Cálculo Numérico - Cálculo Numérico Segundo Cuatrimestre de 2008 (FCEN - UBA) Métodos Multipaso lineales Consideramos el problema de valores iniciales (PVI) y = f(x, y) a x b y(a) = α Dado

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para Lección 3: Aproximación de funciones por polinomios. Fórmula de Taylor para funciones escalares 3.1 Introducción Cuando es difícil trabajar con una función complicada, tratamos a veces de hallar una función

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler

Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler Lección 6 Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler 61 Introducción a los métodos numéricos En este capítulo y en los anteriores estamos estudiado algunas técnicas

Más detalles

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o Capítulo 11 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor.

Más detalles

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]:

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]: Tema 2 Interpolación 2.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal.

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal. Tema 8 Interpolación 8.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Integración Numérica. Regla de Simpson.

Integración Numérica. Regla de Simpson. Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Lo que ya se vió

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límites de sucesiones----------------------------------------------------------------------------

Más detalles

Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico

Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico Facultad de Ciencias UNAM Tema: Diferenciación Numérica Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico Profesor: Pablo Barrera 2 INDICE Preliminares 3 Diferenciación numérica 5 Ejemplos

Más detalles

1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones

1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones Capítulo 2 Funciones de varias variables. Diferenciabilidad 1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones reales

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

lim lim lim LÍMITES DE FUNCIONES

lim lim lim LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan las imágenes de la función cuando x se aproxima al valor de a. Lo veremos con un ejemplo: EJEMPLO 1: Sea

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim Teóricas de Análisis Matemático (8) Práctica 6 L Hospital Caso cero sobre cero Veamos tres problemas de límites conocidos: Práctica 6 Parte Regla de L Hospital 3 3 3 sen(3) Los límites y se resuelven mediante

Más detalles

EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS

EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 14 de mayo de 2011 Contenidos 1 Cuadratura numérica Técnicas elementales

Más detalles

Relación de ejercicios 6

Relación de ejercicios 6 Relación de ejercicios 6 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 6.1. 1. Construye, usando la base canónica del espacio

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica Cuadratura Numérica Javier Segura Tema: Integración numérica. Contenidos Fórmulas de Newton-Cotes: Error en las fórmulas de Newton-Cotes. Fórmulas compuestas de Newton-Cotes. Error; Evaluación recurrente.

Más detalles

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p).

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p). 1 PROBLEMA.1 Convergencia de esquemas iterativos para una matriz tridiagonal. Se considera una matriz tridiagonal de 3x3 del tipo siguiente: 1 a 12 A = a 21 1 a 23 a 32 1 Se pide: 1. Estudiar si los métodos

Más detalles

UNIDAD 2.- Polinomios (tema 2 del libro)

UNIDAD 2.- Polinomios (tema 2 del libro) UNIDAD.- Polinomios tema del libro). OPERACIONES CON POLINOMIOS n Un monomio en la indeterminada es toda epresión de la forma a donde a se llama coeficiente y n grado del monomio. Dos monomios se dicen

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

Derivadas para estudiantes de economía

Derivadas para estudiantes de economía Derivadas para estudiantes de economía Eliseo Martínez H. Noviembre 2015 Abstract A partir de una función regular con cierta simetría se inicia el estudio de monotonía (creciente o decreciente), mínimos

Más detalles

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos.

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. INTRODUCCION SERIES a) Seno b) e x c) Cotangente APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. EXTRAS INTRODUCCION La serie

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c, PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene

Más detalles

CÁLCULO TEMA 4. SERIES DE TAYLOR Y MacLAURIN

CÁLCULO TEMA 4. SERIES DE TAYLOR Y MacLAURIN CÁLCULO TEMA 4 SERIES DE TAYLOR Y MacLAURIN Apuntes preparados por: Prof. Dr. Ignacio García-Juliá 1.- Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase:

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

Interpolación. Javier Segura. February 12, 2012

Interpolación. Javier Segura. February 12, 2012 February 12, 2012 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x)

Más detalles

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes: 22 CAPÍTULO 3. INTEGRALES: CÁLCULO POR MEDIO DE PRIMITIVAS 3.2. La derivada En la sección 3. analizamos los incrementos y cocientes incrementales de varias funciones. En esta sección nos concentraremos

Más detalles

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I. Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito

Más detalles

DIFERENCIACION NUMERICA

DIFERENCIACION NUMERICA DIFERENCIACION NUMERICA La derivada de una unción tiene mucas aplicaciones, entre las cuáles esta la determinación de la velocidad instantánea de una partícula o móvil a partir de su unción de posición.

Más detalles

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

AN ALISIS MATEM ATICO B ASICO. POLINOMIOS DE TAYLOR. DEFINICI ON. Vamos a considerar una funcion polinomica. P (0) = a 0. P 00 (0) = 2a 2.

AN ALISIS MATEM ATICO B ASICO. POLINOMIOS DE TAYLOR. DEFINICI ON. Vamos a considerar una funcion polinomica. P (0) = a 0. P 00 (0) = 2a 2. AN ALISIS MATEM ATICO B ASICO. POLINOMIOS DE TAYLOR. DEFINICI ON. Vamos a considerar una funcion polinomica Observemos que P (x) = a n x n + a n 1x n 1 + + a 1 x + a 0 P (0) = a 0 P 0 (0) = a 1 P 00 (0)

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA

ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA TEMA 1. ERRORES DE REDONDEO Y ARITMÉTICA DE PRECISIÓN FINITA 1. Introducción 2. Nomenclatura 3. Representación de un número en un ordenador 4. Truncamiento y redondeo 5. Error de truncamiento y de redondeo

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 7 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor es el estudio de los extremos relativos de una función escalar. Aunque la analogía con el caso de una variable es total,

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado

Más detalles

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0. CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión

Más detalles

III) INTERPOLACIÓN INTRODUCCIÓN

III) INTERPOLACIÓN INTRODUCCIÓN III) INTERPOLACIÓN INTRODUCCIÓN En numerosos fenómenos de la naturaleza observamos una cierta regularidad en la forma de producirse, esto nos permite sacar conclusiones de la marcha de un fenómeno en situaciones

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS REASO DE LA FACTORIZACIÓN DE OLINOMIOS OLINOMIO IRREDUCIBLE O RIMO.- Un polinomio ( x se llama irreducible o primo, si ( x o más polinomios con grado. Según esta definición: o Todos los polinomios de grado

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla.

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla. Extremos Locales Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor. Definicón.- Si f : u

Más detalles

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 3

Análisis Numérico para Ingeniería. Clase Nro. 3 Análisis Numérico para Ingeniería Clase Nro. 3 Ecuaciones Diferenciales Ordinarias Introducción Problemas de Valores Iniciales Método de la Serie de Taylor Método de Euler Simple Método de Euler Modificado

Más detalles