Momento cuadrupolar eléctrico
|
|
|
- Marina Figueroa Ortega
- hace 8 años
- Vistas:
Transcripción
1 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna S el pomedo tempoal de la dstbucón de caga dento del núcleo se desvía de la smetía esféca, entonces los núcleos poseeán momentos multpolaes eléctcos fntos. Estos momentos multpolaes contbuyen a la enegía electostátca del estado electónco del átomo. Efectos medbles en la estuctua hpefna de espectos atómcos y moleculaes pueden se atbudos a momentos nucleaes cuadupolaes eléctcos. Momento multpolaes cláscos de cagas puntales q q a q q q q q b a a b
2 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna Desaollo multpola de una dstbucón de caga ( 4 0 ( d 0 ( ( d ( d (3 ( d ,
3 El núcleo y sus adacones Cuso 0 Págna 3 Depatamento de Físca Fac. Cencas Eactas - UNLP ( (3 6 ( (3 6, 5, 5, d d kl l k k l ( (3 6, 5, d kl l k k l ( (3 6, 5, d kl k l l k ( (3 6 5, d Momento cuadupola eléctco
4 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna 4 ( q p. Q , Q (3 ( d Una dstbucón de caga sn smetía esféca posee momentos multpolaes adconales al momento monopola. Una únca caga, cuando no está localzada en el ogen de coodenadas, tambén posee momentos multpolaes.
5 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna 5 Enegía de nteaccón ente una dstbucón de caga y un potencal eteno W ( ( d ( ( (0 0, 0... (
6 El núcleo y sus adacones Cuso 0 Págna 6 Depatamento de Físca Fac. Cencas Eactas - UNLP ( , (5 0 0 (4... (3 6 6 (0 ( 0, 0 0 Momento cuadupola eléctco
7 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna 7 W ( (0 d ( d 6 ( d 6, ( (3 d...(6 Q ( (3 d (7
8 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna 8 op ( e (8 k k Q op op ( (3 d (9 f ( ( k f ( k (0
9 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna 9 Q op e k (3 k k k ( H Q 6, Q op ( teoema de Wgne -Eckat : op op I, m, Q ( ( I, m, CI, m, Q ( I I, m, (3
10 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna 0 I, m, Q op I, m, 3 CI, m, ( I I I I I I, m, (4 Paa enconta la constante C utlzamos m=m =I, ==z Defnmos la pate zqueda de la ecuacón (4 como eq, entonces la constante constante C es C eq I( I (5
11 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna Q 6, eq I(I 3 ( I I I I I (6 H Q eq 6I( I ( 3I I ( yy 3I y I ( zz 3I z I ( 7 Y Utlzando la ecuacón de Laplace 0 H Q eq 4I(I, (3I I ( ( I I (8 zz z yy y
12 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna yy zz (0 H Q eqzz 4I(I (3I I ( I I ( z y
13 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola eléctco El núcleo y sus adacones Cuso 0 Págna 3 Consdeemos la componente Q zz del tenso: Q zz (3z ( d emos que s ( ( Q 0 Igual paa una dstbucón de caga postva ρ(,y,z =cte. con smetía cúbca. z Q zz 0 zz z Q 0 z Q 0 Dstbucón polada Dstbucón oblada
14 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola Q El núcleo y sus adacones Cuso 0 Págna 4
15 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola nuclea El núcleo y sus adacones Cuso 0 Págna 5 Q tene una defncón dstnta de la defncón clásca. No se calcula especto del ee de smetía, sno especto del ee donde es máma la poyeccón de I ( m I =I La densdad de caga se eemplaza po la pobabldad de que haya un potón en el punto de coodenadas (, y, z e (, y, z, y, La ntegal sobe la densdad de caga se dvde po la caga del potón. Q (3z d e z (pomedo tempoal Las undades de Q son las de áea. Se utlza la undad ban : 4 ban 0 cm
16 Depatamento de Físca Fac. Cencas Eactas - UNLP Relacones ente Q, m I e I El núcleo y sus adacones Cuso 0 Págna 6 m I I cos z m I( I I Q (3cos d e La evaluacón del momento cuadupola en el estado cuántco m I = I es coheente con las defncones convenconales del momento magnétco μ y del momento mecánco I. En el caso de Q, las componentes efectvas paa otos valoes de m, no sguen una smple ley de cosenos como lo hacen paa μ e I. Se puede demosta que: Q( m 3cos 3cos m Q I 3m I( I Q I(I Q 0 obsevable s y solo s I
17 Depatamento de Físca Fac. Cencas Eactas - UNLP Sgnfcado de los datos epementales de momentos cuadupolaes El núcleo y sus adacones Cuso 0 Págna 7 Los vectoes meddos de Q caen en el ango de 0-6 a 0-4 cm, que son del oden del cuadado del dámeto nuclea. Tales momentos son poducdos po uno o algunos potones a dstancas del oden del ado nuclea.
18 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola nuclea El núcleo y sus adacones Cuso 0 Págna 8 Elptcdad de la dstbucón de caga Asumendo un modelo de densdad constante de los núcleos, paa la dstbucón de caga y masa, el hecho de que los núcleos tengan valoes fntos de Q sgnfca que la dstbucón de caga es lgeamente elpsodal. Consdeamos un núcleo elpsodal 4 a 3 b b z a Límte clásco I I 3Ze 4a b Q Q zz (3z d e Z( b 5 a
19 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola nuclea El núcleo y sus adacones Cuso 0 Págna 9 Paa núcleos eales a b, así que defnmos a b R b a b R b : ado nuclea a a : elptcdad Q 4 ZR 5 Númeo de potones equedos paa poduc el valo Q obsevado Paa I =0, I =/, η =0 Paa I, η es una faccón muy pequeña. Es una buena apomacón supone que los núcleos son esfécos.
20 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola nuclea El núcleo y sus adacones Cuso 0 Págna 0
21 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola nuclea El núcleo y sus adacones Cuso 0 Págna
22 Depatamento de Físca Fac. Cencas Eactas - UNLP Momento cuadupola nuclea El núcleo y sus adacones Cuso 0 Págna
23 Depatamento de Físca Fac. Cencas Eactas - UNLP Estuctua de capas de los núcleos El núcleo y sus adacones Cuso 0 Págna 3 La vaacón sstemátca de Q y η con Z muesta que Q tene mínmos absolutos ceca de Z =50 y 8. eamos como funcona el modelo caozo + patícula únca Un caozo con Z pa, que tendía I =0 y μ =0, no puede espease que, en geneal, cancele su momento cuadupola. Solo especales valoes paes de Z, contendían potones en todos los posbles estados m y tendían smetía esféca y Q =0. Este es el caso de las capas ceadas coespondentes a los númeos mágcos, 8, 0, 8, 40, 50, 8. Paa Z mpa, N pa, tal que Z coesponde a una capa ceada más un potón, debemos espea una dstbucón de caga oblada, tpo lentea y Q <0. S el Z mpa coesponde a un potón menos que las de la capa ceada, este hueco en la capa se compota como una caga negatva y Q >0. e po eemplo: 5 49In y 5Sb
24 Depatamento de Físca Fac. Cencas Eactas - UNLP Estuctua de capas de los núcleos El núcleo y sus adacones Cuso 0 Págna 4 Paa núcleos con Z pa, N mpa, se obseva una vaacón sstemátca smla al caso Z mpa, N pa. Esto sugee que las fuetes fuezas atactvas ente potones y neutones son tales que la dstosón en la dstbucón de los neutones poduce una dstosón smla en la dstbucón de potones. En conclusón: Z mpa, N pa Q depende pmaamente del númeo de potones. Q >0 antes del llenado de una capa de potones. Q <0 nmedatamente después.
25 Depatamento de Físca Fac. Cencas Eactas - UNLP Estuctua de capas de los núcleos El núcleo y sus adacones Cuso 0 Págna 5 Z pa, N mpa La magntud de Q depende del númeo de potones, peo el sgno depende del númeo N, como s los neutones tuvean caga postva. Z mpa, N mpa Depende de cómo se acoplan los espnes del potón y neutón mpaes. S son paalelos, Q tene magntud y sgno compaable a un smla nucleído Z mpa, N pa. ( 0 B, 4 N, 76 Lu. De ota manea Q es consdeablemente educdo. ( 6 L, 36 Cl Paa Z pa, N pa, I =0 y Q =0
Electrostática. Campo electrostático y potencial
Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes
CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas
COTEIDO Defncón y cálculo del cento de masas ovmento del cento de masas Fuezas ntenas y fuezas enas Enegía cnétca de un sstema de patículas Teoemas de consevacón paa un sstema de patículas B. Savon /.A.
Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición
Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones
OBJETIVO. La guía debe ser resuelta de manera grupal o individual y tendrá un valor según lo pactado.
1 DEPARTAMENTO DE CIENCIAS BÁSICAS CALCULO VECTORIAL Y MULTIVARIADO TALLER 1 CAMPOS VECTORIALES CAMPOS CONSERVATIVOS ROTACIONAL Y DIVERGENCIA BIBLIOGRAÍA SUGERIDA CALCULO JAMES STEWART CALCULO THOMAS INNEY
UNIDAD I: CARGA Y CAMPO ELECTRICO
UNN Facultad de Ingeneía Físca III UNIDAD I: CARGA Y CAMPO LCTRICO Caga eléctca. Induccón eléctca. Consevacón y cuantzacón de la caga. Conductoes y asladoes. Ley de Coulomb. Analogía ente la Ley de Coulomb
Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:
PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido
Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.
Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
Potencial eléctrico. Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla
Potencal eléctco Físca II Gado en Ingeneía de Oganzacón Industal Pme Cuso Joaquín enal Méndez Cuso 11-1 Depatamento de Físca plcada III Unvesdad de Sevlla Índce Intoduccón: enegía potencal electostátca
Para caracterizar completamente una magnitud vectorial, como son la velocidad, aceleración, fuerza, etc, es preciso indicar tres cosas:
VECTORES Y ESCLRES Las magntudes escalaes son aquellas que quedan totalmente defndas al epesa la cantdad la undad en que se mde. Eemplos son la masa, el tempo, el tabao todas las enegías, etc. Las magntudes
2 pr = (B.5) Fig. B.2 Tensión longitudinal en un cilindro
ANXO B- Tensones en un clndo debdas a pesón hdáulca ANXO B Tensones en un clndo debdas a la pesón hdáulca. B.1 Tensones en un anllo ccula y en un clndo de paed guesa S se somete un anllo ccula delgado
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO
EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina
6 Sistemas Autoorganizativos
6 Sstemas Autooganzatvos 6.1 Intoduccón Las edes de neuonas atfcales con apendzae no supevsado se han aplcado con éxto a poblemas de econocmento de patones y deteccón de señales. Estas edes constuyen clases
Tema 0 Conocimientos previos al curso de Física
Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional
CURSO CERO DE FÍSICA ELECTROSTÁTICA
CURSO CERO DE FÍSIC ELECTROSTÁTIC Depatamento de Física CURSO CERO DE FÍSIC.UC3M ELECTROSTÁTIC CONTENIDO Caga eléctica. Fuezas ente cagas elécticas: Ley de Coulomb. Campo eléctico. Tabajo y enegía: Potencial
ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas
ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo
Adaptación de impedancias
.- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
CAPITULO 5. TRABAJO Y ENERGIA.
CAPITULO 5. TRABAJO Y ENERGIA. El poblema undamental de la Mecánca es descb como se moveán los cuepos s se conocen las uezas aplcadas sobe él. La oma de hacelo es aplcando la segunda Ley de Newton, peo
Examen de Selectividad de Física. Septiembre 2008. Soluciones.
Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000
Ecuaciones generales Modelo de Maxwell
Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de
I ESCUELA DE EMPRESARIALES DIPLOMATURA DE EMPRESARIALES ESTADÍSTICA
Depatamento de Economía Aplcada I EUELA DE EMPREARIALE DIPLOMATURA DE EMPREARIALE ETADÍTIA Ejeccos Resueltos REGREIÓ O LIEAL Y REGREIÓ LIEAL MÚLTIPLE uso 006-00 Escuela de Empesaales Depatamento de Economía
Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.
CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de
De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS
6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la
* Introducción * Principio de mínima energía * Transformaciones de Legendre * Funciones (o potenciales) termodinámicas. Principios de mínimo.
5. otencales emonámcos * Intouccón * ncpo e mínma enegía * ansomacones e Legene * Funcones (o potencales) temonámcas. ncpos e mínmo. * Enegía lbe (potencal) e Helmholtz lt * Entalpía. * Enegía lbe e Gbbs.
TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA
ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación
IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas
IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el
9. NÚMEROS COMPLEJOS EN FORMA POLAR
Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta
9. NÚMEROS COMPLEJOS EN FORMA POLAR
9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un
GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones
Fluidos: generalidades y definiciones.
Fluidos: genealidades y definiciones. Intoducción a la Física Ambiental. Tema 4. Tema 4. IFA (Pof. RAMOS) 1 Tema 4.- Fluidos Genealidades y Definiciones. El fluido como medio continuo. Mecánica de los
q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los
Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS
Tea. DIÁMICA DE SISTEMAS DE PARTÍCULAS. Intoduccón. Cento de asas.. Movento del cento de asas.. Masa educda..3 Consevacón del oento lneal..4 Consevacón del oento angula.3 Enegía de un sstea de patículas.3.
Capitulo 1. Carga y Campo eléctricos.
Capitulo 1. Caga y Campo elécticos. INTRODUCCIÓN Todos estamos familiaizados con los efectos de la electicidad estática, incluso algunas pesonas son más susceptibles que otas a su influencia. Cietos usuaios
El campo electrostático
1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos
INTRODUCCION AL ANALISIS VECTORIAL
JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una
ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO
Insttuto de Poesoes Atgas Físca Expemental 1 Guía páctca Nº ANÁLISIS GRÁFICO DE UN MOVIMIENTO RECTILÍNEO DISPOSITIVO EXPERIMENTAL El dspostvo expemental se muesta en la gua 1. Un egstado electónco o tme
CAPÍTULO III TRABAJO Y ENERGÍA
TRAJO Y ENERGÍA CAPÍTULO III "De todos los conceptos físcos, el de enegía es pobablemente el de más vasto alcance. Todos, con fomacón técnca o no, tenen una pecepcón de la enegía y lo que esta palaba sgnfca.
FÍSICA I TEMA 0: INTRODUCCIÓN
FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg
Elementos de la geometría plana
Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po
Notas de clase. Trabajo de las fuerzas internas
Notas de clase. Tabajo de las fuezas ntenas J Güémez Depatamento de Físca Aplcada, Unvesdad de Cantaba, España M Folhas CFsUC, Depatamento de Físca, Unvesdade de Comba, Potugal Mazo, 06 El concepto de
Parametrizando la epicicloide
1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))
TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico
Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.
Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el
Mdel 0. Pegunta. l camp electstátc cead p una caga puntual, stuada en el gen de cdenadas, vene dad p la expesón: u, dnde se expesa en m y u es un vect unta dgd en la deccón adal. S el taba ealzad paa lleva
200. Hallar la ecuación de la simetría ortogonal respecto de la recta:
Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto
TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.
TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta
RR 1 Para interpretar los fenómenos de reflexión y refracción de la luz, debemos considerar que la luz se propaga en forma de rayos.
3. Refaccón de la Luz. Psmas. 3.. Intoduccón. S un ayo de luz que se popaga a tavés de un medo homogéneo ncde sobe la supefce de un segundo medo homogéneo, pate de la luz es eflejada y pate enta como ayo
TEMA 1: MODELOS DE REPRESENTACIÓN DE OBJETOS 3D
TEMA : MODELOS DE REPRESENTACIÓN DE OBJETOS 3D.. MODELOS DE SUPERFICIES Exsten vaas azones paa quee epesenta un objeto medante un modelo de supefce: Cuando el objeto msmo es una supefce que podemos supone
D = 4 cm. Comb. d = 2 mm
UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible
Tema 2 Masas de galaxias
Tema Masas de galaxas Esquema: Hace dagamas y esquemas paa ve como se mden velocdades adales de estellas desde el sol Explca como vaían las velocdades de las estellas en un escenao de otacón galáctca Utlza
CUERPOS REDONDOS. LA ESFERA TERRESTRE
IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes
Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones
Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.)
CARACERÍSCAS DE LOS GENERADORES DE CORRENE CONNUA (C.C.) Fueza electomotiz (f.e.m.) Es la causa que mantiene una tensión en bones del geneado. La fueza electomotiz (f.e.m.) es la tensión eléctica oiginada
TEMA3: CAMPO ELÉCTRICO
FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo
UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 5 RESORTE ESPIRAL.
Página 1 de 6 NÚCLEO UNIERSITARIO RAFAEL RANGEL UNIERSIDAD DE LOS ANDES T R U J I L L O - E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA I/11 PRÁCTICA No. 5 RESORTE ESPIRAL.
PROBLEMA EXAMEN B2. CURSO MODELO A
OEM EMEN. USO 007-008. MODEO Un clndo hueco y homoéneo, de ado nteo y ado exteo, ueda sn deslza a lo lao de un plano nclnado un ánulo sobe la hozontal. Suponendo que ncalmente se encontaba en eposo, se
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
5 Procedimiento general para obtener el esquema equivalente de un transformador
Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de
TEMA 4. TRABAJO Y ENERGIA.
TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero
RODAMIENTOS DE BOLAS DE RANURA PROFUNDA
RODAMIENTOS DE OLAS DE RANURA PROUNDA RODAMIENTOS DE OLAS DE RANURA PROUNDA DE UNA SOLA HILERA Tipo Abieto, Tipo lindado, Tipo Sellado Diámeto Inteio 10~240mm...Páginas 8~19 Tipo Abieto Diámeto Inteio
Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA
Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m
Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE
U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El
TEMA 4. SISTEMAS DE PARTÍCULAS
EMA 4. SISEMAS DE PARÍCULAS. Cento de asas y coodenadas elatvas. Fuezas ntenas y enas.. Consevacón del oento lneal total de un sstea. Ssteas de asa vaable y ejeplos. 3. Consevacón del oento angula de un
Puntos, rectas y planos en el espacio. Problemas métricos en el espacio
1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto
Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio
Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P
BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?
EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500
PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES
PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos
TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1
TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa
El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas
I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio
El método de las imágenes
El método de las imágenes Antonio González Fenández Dpto. de Física Aplicada III Univesidad de Sevilla Sinopsis de la pesentación El teoema de unicidad pemite enconta soluciones po analogías con poblemas
F. Trig. para ángulos de cualquier magnitud
F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo
Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría
Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice
SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO
acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la
GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia
Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones
Definir los conceptos de autoinducción, inducción mutua. Analizar circuitos con bobinas y resistencias. Definir energía magnética.
Capítulo 8 nduccón electomagnétca 8.1 ntoduccón 8. Fenómenos de nduccón electomagnétca 8.3 Ley Faaday. Ley de Lenz 8.4 nduccón mutua. Autonduccón 8.5 Ccuto L 8.6 Enegía almacenada en una autonduccón. 8.7
Tema 1: Campo eléctrico en el vacío. Física II Grado en Química Curso 1º. 2º Cuatrimestre
Tema 1: Campo eléctco en el vacío Físca II Gado en Químca Cuso 1º. º Cuatmeste 1 Índce 1. Intoduccón: la caga y la matea. Fueza electostátca: ley de Coulomb 3. El campo eléctco Líneas de fueza del campo
CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB
7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,
2.7 Cilindros, conos, esferas y pirámides
UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos
2.1. Sustancias puras. Medida de los cambios de entalpía.
2 Metalurga y termoquímca. 7 2. Metalurga y termoquímca. 2.1. Sustancas puras. Medda de los cambos de entalpía. De acuerdo a las ecuacones (5 y (9, para un proceso reversble que ocurra a presón constante
Electromagnetismo: Electrostática
lectomagnetsmo: lectostátca Octube 7 Índce 1.1. Intoduccón.. 1.. Caga eléctca... 1.. Ley de Coulomb 1.4. Campo eléctco y fueza eléctca 1.5. Líneas de fueza y supefces equpotencales. 1.6. Potencal eléctco
