Inteligencia Artificial: Prolog
|
|
|
- María Rosa Parra Hernández
- hace 8 años
- Vistas:
Transcripción
1 Inteligencia Artificial: Prolog Aritmética Christopher Expósito-Izquierdo 1, Belén Melián-Batista 2 {cexposit 1, mbmelian 2 }@ull.es Universidad de La Laguna (España)
2 Contenidos Introducción a la Aritmética en Prolog Operadores y Funciones Aritméticas El predicado factorial 2 of 14
3 Introducción a la Aritmética en Prolog Prolog es un lenguaje de programación que no fue planteado en sus orígenes para la manipulación de la aritmética. Sin embargo, hoy en día, Prolog facilita las tareas relativas a la manipulación de operaciones aritméticas mediante el empleo de notación similar a la familiar para muchos usuarios. En este sentido, es innegable a su vez que no permite la realización de tareas pesadas aparecidas en el mundo matemático. 3 of 14
4 Introducción a la Aritmética en Prolog Prolog basa la gestión de las operaciones aritméticas fundamentalmente a través del predicado predefinido en el lenguaje is. Éste es un predicado infijo, de tal manera que debe ser empleado entre dos argumentos. Habitualmente, el predicado is se emplea entre dos argumentos, donde el argumento situado a la izquierda es una variable no enlazada mientras que el argumento situado a la derecha es una expresión aritmética o un número. 4 of 14
5 Introducción a la Aritmética en Prolog A continuación podemos ver algunos ejemplos en los que el predicado is se pone en práctica: 5 of 14
6 Introducción a la Aritmética en Prolog El argumento situado a la derecha del predicado is puede incluir variables. Sin embargo, estas variables deben haber sido previamente enlazadas a algún valor. En aquellos casos en que las posibles variables aparecidas en el argumento situado a la derecha del predicado is no han sido previamente enlazadas a ningún valor, el intérprete de Prolog retorna un mensaje de error como resultado. 6 of 14
7 Introducción a la Aritmética en Prolog A continuación podemos ver algunos ejemplos: 7 of 14
8 Operadores y Funciones Aritméticas A continuación podemos ver los principales operadores aritméticos disponibles en Prolog: X + Y: la suma de X e Y X - Y: la diferencia de X e Y X * Y: el producto de X e Y X / Y: el cociente de X e Y X // Y: el cociente entero de X e Y. El resultado es truncado al entero más cercano X mod Y: el resto del cociente cuando X es dividido por Y X Y: el valor de X a la potencia de Y -X: el negativo de X 8 of 14
9 Operadores y Funciones Aritméticas A continuación podemos ver las principales funciones aritméticas disponibles en Prolog: abs(x): el valor absoluto de X sin(x): el seno de X cos(x): el coseno de X max(x, Y): el valor mayor de X e Y round(x): el valor de X redondeado al entero más cercano sqrt(x): la raíz cuadrada de X 9 of 14
10 El predicado factorial Objetivo: definir un predicado en Prolog que permita calcular el valor factorial de un número entero dado El predicado propuesto debe tener dos argumentos: 1. El entero cuyo factorial desea calcularse 2. El valor factorial del número indicado en el primer argumento 10 of 14
11 El predicado factorial El valor factorial de 0 es 1. Esto significa que cuando el primer argumento establecido en el predicado es el entero 0, el segundo argumento debe tomar el valor 1. Se puede expresar en Prolog con el siguiente hecho: factorial(0, 1). 11 of 14
12 El predicado factorial Por otro lado, el valor factorial de un entero positivo N es N multiplicado por el factorial del entero N-1. En Prolog debemos plantear una regla que en primer lugar compruebe que el primer argumento sea un entero positivo, luego calculamos el valor N-1, calculamos el factorial del entero N-1 (denotado como F1) y finalmente calculamos el valor factorial de N. Esto puede expresarse a través de la siguiente regla: factorial(n, F) :- N > 0, N1 is N-1, factorial(n1, F1), F is N * F1. 12 of 14
13 El predicado factorial La definición del predicado factorial la guardamos en un fichero de texto denominado mypredicatefactorial.pl. Este fichero debe ser cargado en el intérprete antes de poder emplear el predicado. A continuación podemos ver ejemplos del uso: 13 of 14
14 Inteligencia Artificial: Prolog Aritmética Christopher Expósito-Izquierdo 1, Belén Melián-Batista 2 {cexposit 1, mbmelian 2 }@ull.es Universidad de La Laguna (España) 14 of 14
Inteligencia Artificial: Prolog
Inteligencia Artificial: Prolog Recursión Christopher Expósito-Izquierdo 1, Belén Melián-Batista 2 {cexposit 1, mbmelian 2 }@ull.es Universidad de La Laguna (España) Contenidos Concepto de Recursión Recursión
Inteligencia Artificial: Prolog
Inteligencia Artificial: Prolog Listas Christopher Expósito-Izquierdo 1, Belén Melián-Batista 2 {cexposit 1, mbmelian 2 }@ull.es Universidad de La Laguna (España) Contenidos Qué es una lista? Operador
Tema III Predicados Extralógicos de PROLOG
Tema III Predicados Extralógicos de PROLOG Programación Declarativa 1 Predicados Extralógicos Se incorporan al lenguaje como predicados predefinidos con usos limitados para acceder a funciones del sistema
LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6
LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada
Programación Declarativa. Ingeniería Informática Cuarto curso. Primer cuatrimestre. Escuela Politécnica Superior de Córdoba Universidad de Córdoba
Programación Declarativa Ingeniería Informática Cuarto curso. Primer cuatrimestre Escuela Politécnica Superior de Córdoba Universidad de Córdoba Curso académico: 2016 2017 Práctica número 1.- Introducción
Lenguajes de Inteligencia Artificial Segundo curso. Primer cuatrimestre
Lenguajes de Inteligencia Artificial Segundo curso. Primer cuatrimestre Ingeniería Técnica en Informática de Gestión Ingeniería Técnica en Informática de Sistemas Escuela Politécnica Superior Universidad
Números enteros (cortos, largos y sin signo) Números reales (precisión simple y doble) Carácter y cadenas de caracteres. Lógicos.
Universidad Rafael Urdaneta Escuela de Ingeniería de Computación Números enteros (cortos, largos y sin signo) Números reales (precisión simple y doble) Carácter y cadenas de caracteres. Lógicos. Asignación
CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.
DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,
2. OPERACIONES ALGEBRAICAS BÁSICAS.
Operaciones algebraicas básicas 27 2. OPERACIONES ALGEBRAICAS BÁSICAS. En este apartado vamos a realizar las operaciones algebraicas básicas que nos permiten utilizar DERIVE como herramienta de cálculo.
Práctica 0: Introducción a Matlab. Matlab es un acrónimo: MATrix LABoratory
Práctica 0: Introducción a Matlab Matlab es un acrónimo: MATrix LABoratory Práctica 0: Introducción a Matlab Matlab es un acrónimo: MATrix LABoratory La ventana de Matlab muestra un escritorio dividido
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
QUÉ ES UNA FUNCIÓN? ESTRUCTURA DE UNA FUNCIÓN. La sintaxis de cualquier función es:
QUÉ ES UNA FUNCIÓN? Una función es una fórmula predefinida por Excel que opera sobre uno o más valores (argumentos) en un orden determinado (estructura). El resultado se mostrará en la celda donde se introdujo
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.
DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1
Componentes Básicos. InCo. InCo Componentes Básicos 1 / 28
Componentes Básicos InCo InCo Componentes Básicos 1 / 28 Modelo de Computación Vemos al computador como un procesador de datos. +------------+ Entrada ===> Computador ===> Salida +------------+ InCo Componentes
TEMA 4 NÚMEROS ENTEROS
TEMA 4 NÚMEROS ENTEROS 1 2 3 Recta numérica. -9-8 -7-6 -5-4 -3-2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Enteros negativos A la izquierda del 0 están los números enteros negativos Enteros positivos A la derecha
Potencias de exponente entero o fraccionario y radicales sencillos
Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por
TEMA 3. NÚMEROS RACIONALES.
TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1
Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.
Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0
Cuadro de derivadas y = k La derivada de una cte es igual a cero. Es decir: 0 y = x y = + g(x) y = g(x) y = k y = g(x) La derivada de la función identidad es igual a. Es decir: La derivada de una suma
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
1. Números naturales y sistema de numeración decimal
1. Números naturales y sistema de numeración decimal Conocer el sistema de numeración decimal y relacionarlo con los números naturales. Representación en la recta real de los mismos. Realizar operaciones
Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15
Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de
Tema 4. Los números reales.
Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También
Álgebra y Trigonometría
Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
Práctica 2. TIPOS DE DATOS SIMPLES
Práctica 2. TIPOS DE DATOS SIMPLES 1 sesión Semana: 15 de octubre OBJETIVOS: Conocer los distintos tipos de datos simples y su correcta utilización en la construcción de algoritmos Formular expresiones
Programación-Tarea 14: Ocampo Venegas Josué
Programación-Tarea 14: Integrantes del Equipo: Álvarez Quesada Claudia Eréndira Ocampo Venegas Josué Parte 1 (condiciones if- else, sentencias, secuencia) Secuencia!! Valor expresión aritmética Fórmulas
RECORDAR TIPOS DE DATOS
RECORDAR TIPOS DE DATOS VARIABLES: OBJETO CUYO valor cambia: A510 nombres NOTAS Int A=0; float B=1; CONSTANTES: OBJETO cuyo valor no cambia PI= 3.14159 LAS COMAS NO SE PERMITEN Int PI=3.1415 EXPRESIONES:
POTENCIAS Y RAÍZ CUADRADA
POTENCIAS Y RAÍZ CUADRADA 1. POTENCIAS. 1.1. CONCEPTO DE POTENCIA. ELEMENTOS. Una potencia es un producto de factores iguales. Las potencias están formadas por: Base: factor que se repite. Exponente: número
Representación de números en la recta real. Intervalos
Representación de números en la recta real. Intervalos I. Los números reales En matemáticas los números reales se componen de dos grandes grupos: los números racionales (Q) y los irracionales (I). A su
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
TEMA 2: POTENCIAS Y RAÍCES. Matemáticas 3º de la E.S.O.
TEMA 2: POTENCIAS Y RAÍCES Matemáticas 3º de la E.S.O. 1. Potencias con exponente entero Potencias de exponente negativo a n = 1 a n Las potencias de exponente negativo cumplen las mismas propiedades que
Taller Matemático. Sucesiones. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid
Taller Matemático Sucesiones Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Sucesiones Sucesión: Lista de términos, ordenados: a 1, a 2,
Potencias y radicales
Potencias y radicales Contenidos 1. Radicales Potencias de exponente fraccionario Radicales equivalentes Introducir y extraer factores Cálculo de raíces Reducir a índice común Radicales semejantes. Propiedades
La raíz n ésima de un número puede ponerse en forma de potencia:
RADICALES Se llama raíz n ésima de un número a, y se escribe, a un número b que elevado a n dé a. se llama radical; a, radicando; y n, índice de la raíz. EXISTENCIA DE RADICALES. Primera: si a es positivo,
2 Números racionales
008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
MATLAB tiene un gran número de funciones incorporadas. Algunas son funciones intrínsecas, esto es, funciones incorporadas en el propio código
MATLAB tiene un gran número de funciones incorporadas. Algunas son funciones intrínsecas, esto es, funciones incorporadas en el propio código ejecutable del programa. Estas funciones son particularmente
Práctica 1. Ecuaciones de 2º grado.
Práctica 1. Ecuaciones de 2º grado. 1. Introducción a las hojas de cálculo. Una hoja de cálculo es una aplicación informática diseñada para el tratamiento matemático de la información. El área de trabajo
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
La eficiencia de los programas
La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos
Contenidos mínimos del área de matemáticas 1º ESO
1º ESO Unidad didáctica nº1: Los números naturales. Divisibilidad. Operaciones con números naturales: suma, resta, multiplicación y Calcular múltiplos y divisores de un número. Descomposición factorial
UNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo
MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO
Especificaciones MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO I. Estrategia: se destacan en cada paso II. Contenidos: Repaso contenidos del primer Semestre. III. Esta estrategia
La suma de dos números.
1 Números Mathematica es una herramienta matemática que, esencialmente, funciona como una calculadora. La secuencia básica consiste, entonces, en introducir una expresión y ordenarle a Mathematica que
NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS
COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S
MATEMÁTICAS 2º DE ESO LOE
MATEMÁTICAS 2º DE ESO LOE TEMA I: NÚMEROS ENTEROS (parte 3/3) Los divisores de un número entero. Descomposición factorial de un número entero. Máximo común divisor (m.c.d.) de dos o más números enteros.
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
TEMA 1 LOS NÚMEROS REALES
TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:
Operatoria con Potencias y Raíces
PreUnAB Clase # 3 Junio 2014 Definición Se llama potencia a una expresiń de la forma, donde a es la base y n es el exponente. Potencia de Exponente Entero a n = a a a... a Cuando el exponente es un número
Potencias y raíces Matemáticas 1º ESO
Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores
La recursividad forma parte del repertorio para resolver problemas en Computación y es de los métodos más poderosos y usados.
RECURSIVIDAD La recursividad forma parte del repertorio para resolver problemas en Computación y es de los métodos más poderosos y usados. Los algoritmos recursivos ofrecen soluciones estructuradas, modulares
TEMA 2: NÚMEROS ENTEROS
TEMA : NÚMEROS ENTEROS 1. NÚMEROS ENTEROS Los números naturales se utilizan para expresar matemáticamente multitud de situaciones cotidianas. Sin embargo, a veces no sirven para cuantificar las situaciones
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,
FUNCIONES POLINÓMICAS
PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n
Matemáticas. Matías Puello Chamorro. Algebra Operativa. 9 de agosto de 2016
Matemáticas Algebra Operativa Matías Puello Chamorro http://www.unilibrebaq.edu.co 9 de agosto de 2016 Índice 1. Introducción 3 2. Definiciones básicas del Algebra 4 2.1. Definición de igualdad............................
Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES
Septiembre 2.016 Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS U 1 Fracciones y decimales. Números racionales. Expresión fraccionaria - Números enteros. - Fracciones. - Fracciones propias
MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas
ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
Suma de números enteros
NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un
ULADECH Escuela Profesional de Contabilidad
Fórmulas Las fórmulas son ecuaciones que efectúan cálculos con los valores de las celdas de la hoja de cálculo. Una fórmula comienza por un signo igual (=). Son operaciones entre celdas, o combinaciones
SCUACAC030MT22-A16V1. SOLUCIONARIO Ejercitación Operatoria de Logaritmos
SCUACAC00MT-A6V SOLUCIONARIO Ejercitación Operatoria de Logaritmos TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE OPERATORIA DE LOGARITMOS Ítem Alternativa B A A 4 A 5 B 6 E ASE 7 B ASE B 9 B 0 E D
Informática General 2016 Cátedra: Valeria Drelichman, Pedro Paleo, Leonardo Nadel, Norma Morales
UNA / AREA TRANSDEPARTAMENTAL DE ARTES MULTIMEDIALES Licenciatura en Artes Multimediales Informática General 2016 Cátedra: Valeria Drelichman, Pedro Paleo, Leonardo Nadel, Norma Morales JavaScript Algoritmo
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
PROGRAMACIÓN DIDÁCTICA
PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo I Ámbito Científico-Tecnológico Bloque I Los números. Créditos 3 (30 horas) Bloque II Sistema Métrico Decimal y elementos de Créditos 4 (40 horas) geometría
Cálculo Simbólico. (MathCad) Ricardo Villafaña Figueroa
Cálculo Simbólico (MathCad) Ricardo Villafaña Figueroa Contenido Introducción al Cálculo Simbólico Cálculos Algebraicos Representación simbólica o algebraica de epresiones matemáticas Suma y resta algebraica
MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel
GUIA DE TEORIA NO. 1 LO QUE DEBO SABER Regla de Cramer Un sistema de ecuaciones lineales se dice de Cramer cuando cumple las siguientes condiciones: Es un sistema cuadrado, con igual número de ecuaciones
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en
Medidas de dispersión
Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia
INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO
AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO Instrucciones. Lee cuidadosamente los conceptos, los ejemplos y desarrolla los ejercicios propuestos. No olvides guardar esta guía de trabajo en tu
Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos
Algoritmos y Estructuras de Datos I 1 cuatrimestre de 009 Departamento de Computación - FCEyN - UBA Programación funcional - clase Tipos algebraicos Tipos algebraicos y abstractos ya vimos los tipos básicos
Programación Funcional Lisp-DrScheme Primera Parte. Dr. Oldemar Rodríguez Rojas Escuela de Informática Universidad de Nacional
Programación Funcional Lisp-DrScheme Primera Parte Dr. Oldemar Rodríguez Rojas Escuela de Informática Universidad de Nacional Programación Funcional! La programación funcional es un paradigma de programación
Créditos institucionales de la UA: 6 Material visual: Diapositivas. Unidad de competencia I Conceptos preliminares
UNIDAD ACADÉMICA PROFESIONAL TIANGUISTENCO PROGRAMA DE ESTUDIOS LICENCIATURA DE INGENIERÍA EN PRODUCCIÓN INDUSTRIAL UNIDAD DE APRENDIZAJE (UA): ÁLGEBRA Créditos institucionales de la UA: 6 Material visual:
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
TEMA 1: POTENCIAS Y RAICES CUADRADAS
TEMA 1: POTENCIAS Y RAICES CUADRADAS 1. POTENCIAS Una potencia es una forma abreviada de expresar una multiplicación en la que todos los factores son iguales. 2 2 2 2 2 = 2 5 Es una potencia. La base es
1. Divisibilidad y números enteros
CURSO 2015-2016. ASIGNATURA: MATEMATICAS CURSO-NIVEL: 2º ESO CONTENIDOS MÍNIMOS 1. Divisibilidad y números enteros La relación de divisibilidad. - Múltiplos y divisores: - Los múltiplos de un número. -
Matema ticas CERO, informacio n detallada
Matema ticas CERO, informacio n detallada Consolidar una buena base matemática empezando prácticamente desde cero. En este curso se dejan muy claras algunas definiciones y propiedades que, a pesar de ser
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.
Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A
CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO
CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 3º DE ESO UNIDAD 1 1.1. Simplifica y compara fracciones y las sitúa de forma aproximada sobre la recta. 1.2. Realiza operaciones aritméticas con números fraccionarios.
Cómo se hace la Prueba t a mano?
Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0
RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.
RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades
Suma de números enteros
NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un
CRITERIOS EVALUACIÓN MATEMÁTICAS
CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración
DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple
DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL
ESTIMACIÓN DE TIEMPO Y COSTO DE PRODUCTOS SOFTWARE
Análisis y costo de algoritmos Algoritmos Un algoritmo es un conjunto de pasos claramente definidos que a partir de un cierta entrada (input) produce una determinada salida (output) Algoritmos y programas
El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe
DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina
1 Con juntos de Números: Axiomas 1
ÍNDICE 1 Con juntos de Números: Axiomas 1 LOS CONJUNTOS EN EL ALGEBRA. 1-1 Los conjuntos y sus relaciones, 1.1-2 Conjuntos y variables, 6. AXIOMAS DE LOS NUMEROS REALES. 1-3 Orden en el conjunto de los
Herramientas computacionales para la matemática MATLAB:Introducción
Herramientas computacionales para la matemática MATLAB:Introducción Verónica Borja Macías Marzo 2013 1 Variables predefinidas MATLAB tiene un conjunto de variables predefinidas Variables predefinidas ans
CONJUNTO DE LOS NÚMEROS REALES
NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales y se representa por Q. Tanto
LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura...
LA MEDIDA IES La Magdalena Avilés. Asturias Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... etc. Medir una magnitud consiste en compararla
