FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora"

Transcripción

1 FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

2 TEMARIO 0. Presentación 1. Mediciones y vectores 2. Equilibrio traslacional 3. Movimiento uniformemente acelerado 4. Trabajo, energía y potencia 5. Fluidos 6. Termodinámica 7. Electricidad y magnetismo 8. Óptica 9. Física moderna

3 TEMARIO 8.- ELECTRICIDAD Y MAGNETISMO. 1. Naturaleza de las cargas. 2. Fuerza eléctrica y Ley de Coulomb. 3. Campo, Potencial y Capacitancia. 4. Corriente y resistencia, potencia. 5. Campo magnético y corriente eléctrica. 6. Inducción electromagnética. Tópico suplementario: Electroforesis, conducción eléctrica en nervios.

4 NATURALEZA DE LAS CARGAS. Antecedentes. Desde la antigua Grecia, los filósofos de la época ya conocían la existencia del ámbar y que al frotarlo este atraía trocitos de ámbar. En 1820, Hans Christian Oersted encontró que al pasar una corriente eléctrica por una alambre esta desviaba la aguja magnética de una brújula. Entre 1831 y 1879 se introducen los conceptos de carga eléctrica, fuerza electromagnética, campo, corriente, energía potencial electrostática, etc.

5 NATURALEZA DE LAS CARGAS. Antecedentes. En 1873 James Clerk Maxwell unificó las ideas de la electricidad y el magnetismo, prevalecientes hasta entonces, en lo que se conoce como las ecuaciones de Maxwell. Esta teoría sugirió la posibilidad de generar ondas electromagnéticas en el laboratorio, hecho que corroboró Heinrich Hertz en 1887, ocho años después de la muerte de Maxwell, y que posteriormente supuso el inicio de la actual era de la comunicación rápida a distancia.

6 NATURALEZA DE LAS CARGAS

7 NATURALEZA DE LAS CARGAS. Fuentes y tipos de carga eléctrica Existen dos tipos de carga eléctrica: positiva negativa protones electrones Modelo atómico de Bohr Los materiales con carga positiva y negativa igual se llaman eléctricamente neutros. En la naturaleza los objetos son eléctricamente neutros

8 NATURALEZA DE LAS CARGAS. Propiedades de la Carga Eléctrica La carga eléctrica se conserva. Lo que implica que La carga no se crea ni se destruye, sólo se transfiere entre átomos entre moléculas entre cuerpos En el sistema SI la unidad de carga es el Coulomb (C). En un átomo neutro, las cargas positiva y negativa tienen la misma magnitud.

9 NATURALEZA DE LAS CARGAS. Propiedades de la Carga Eléctrica La carga esta cuantizada y su unidad fundamental es e, cuyo valor en el SI es e = x10-19 C. Lo que implica que La carga de un cuerpo siempre se puede expresar como un múltiplo entero de la carga fundamental, es decir Q Ne

10 NATURALEZA DE LAS CARGAS. La carga eléctrica en la materia Z = número electrones = número protones A = número protones + neutrones Elemento Isótopo Si un átomo tiene el mismo número de electrones que de protones entonces es neutro Q Z q p Z q 0 Ión positivo : le faltan electrones Q n e q e e Ión negativo: tiene electrones añadidos Q n e q e

11 NATURALEZA DE LAS CARGAS. El coulomb (que se selecciona para usar con corrientes eléctricas) en realidad es una unidad muy grande para electricidad estática. Por ende, con frecuencia es necesario usar los prefijos métricos. 1 mc = 1 x 10-6 C 1 nc = 1 x 10-9 C 1 pc = 1 x C

12 NATURALEZA DE LAS CARGAS. Conductores, aislantes y semiconductores Dependiendo de los mecanismos de transporte de cargas, los materiales se clasifican en tres categorías: Conductores, Aislantes (o no conductores) y Semiconductores Conductores Los electrones son libres de moverse en el material Ejemplos de conductores son los metales, ya que en ellos los electrones tienen libertad de movimiento al encontrarse débilmente ligados al núcleo.

13 NATURALEZA DE LAS CARGAS. Conductores, aislantes y semiconductores Ejemplos de conductores son comunmente los metales, ya que en ellos los electrones tienen libertad de movimiento al encontrarse débilmente ligados al núcleo.

14 Conductores, aislantes y semiconductores Aislantes Ejemplos de no conductores o aislantes son, por ejemplo, la madera, el plástico, el vidrio, etc. Los electrones están ligados a los átomos por lo que no se mueven (no conducen).

15 Conductores, aislantes y semiconductores Semiconductores Los semiconductores son un tipo especial de materiales debido a que presentan la característica de que se pueden comportar como conductores o como aislantes, dependiendo de las condiciones en que se utilicen.

16 NATURALEZA DE LAS CARGAS. Conductores, aislantes y semiconductores Dependiendo de los mecanismos de transporte de cargas, los materiales se clasifican en tres categorías: Conductores, Aislantes (o no conductores) y Semiconductores Conductores (Sí conducen) Aislantes (No conducen) Semiconductores (A veces conducen)

17 NATURALEZA DE LAS CARGAS. Cómo cargar un material En un material no cargado, los átomos libres están orientados al azar en el bulto del material Al cargar el material, las cargas atómicas se alinean, consiguiendo un efecto de carga sobre las superficies.

18 NATURALEZA DE LAS CARGAS. Carga por inducción Cargar eléctricamente un objeto por inducción implica que se induce en el cuerpo una carga sin necesidad de tocarlo. Este proceso aplica (principalmente) para materiales conductores 1. Cargando por inducción (1 conductor a tierra) 2. Cargando por inducción (dos conductores aislados) Este mecanismo se fundamenta en que en los materiales conductores es factible que la carga se mueva físicamente de un lugar a otro.

19 Carga por inducción Cargar eléctricamente un objeto por inducción implica que se induce en el cuerpo una carga sin necesidad de tocarlo. Un proceso similar aplica para materiales aislantes 3. Cargando por inducción a un no conductor. La carga se redistribuye polarizando al material. En este caso no hay movimiento de cargas de un lugar a otro, sino sólo un reacomodo alrededor de la posición de equilibrio, lográndose una carga efectiva en las capas superficiales del aislante, lo que se conoce como polarización.

20 NATURALEZA DE LAS CARGAS. Carga por inducción El electroscopio es un dispositivo empleado para detectar la existencia de carga eléctrica en un cuerpo. Al acercar un cuerpo cargado, por inducción, las láminas adquieren carga y se separan.

21 NATURALEZA DE LAS CARGAS. Carga por contacto Cargar eléctricamente un objeto por contacto implica que se transfiera la carga de un cuerpo a otro, generalmente neutro. En todo momento, la suma algebraica de carga antes y después DEBE ser la misma, como consecuencia de la conservación de carga. En este caso hay transferencia de carga de un objeto cargado a uno inicialmente neutro, obteniendo al final dos cuerpos cargados con el mismo tipo de carga, ya que el exceso de carga se distribuye en ambos cuerpos.

22 NATURALEZA DE LAS CARGAS. Carga por frotamiento Cargar eléctricamente un objeto por frotamiento implica que en este caso se transfiere carga entre dos cuerpos inicialmente neutros, pero que terminan cargados. La conservación de la carga nos permite escribir, antes Q Q Q i 1i 2i 0 y después Q Q Q f 1f 2 f 0 De donde Q Q 1f 2 f Como en este caso hay transferencia de carga entre dos cuerpos inicialmente neutros (la carga total es cero), al final los cuerpos terminan cargados con la misma cantidad de carga, pero de signos opuestos.

23 NATURALEZA DE LAS CARGAS. Cuando una barra de caucho se frota con piel, se remueven electrones de la piel y se depositan en la barra. Piel Caucho Los electrones se mueven de la piel a la barra de caucho. positivo negativo Se dice que la barra se cargó negativamente debido a un exceso de electrones. Se dice que la piel se cargó positivamente debido a una deficiencia de electrones.

24 NATURALEZA DE LAS CARGAS. Cuando una barra de vidrio se frota con seda, se remueven electrones del vidrio y se depositan en la seda. vidrio sed a negativo positivo Se dice que el vidrio está cargado positivamente debido a una deficiencia de electrones. Se dice que la seda está cargada negativamente debido a un exceso de electrones.

25 NATURALEZA DE LAS CARGAS. Para cargar una varilla se debe frotar con un material adecuado, para transferir cargas entre ellos. Sin embargo, para saber si está cargado es necesario que interactúe con otro cuerpo y ver el efecto de dicha interacción. Interacción entre cargas En la figura se muestra una bola, inicialmente neutra, al ser tocada se carga por contacto e inmediatamente hay una repulsión entre los cuerpos. Lo anterior permite establecer que cargas de igual signo se repelen, de manera similar se puede mostrar que cargas de signos opuestos se atraen.

26 NATURALEZA DE LAS CARGAS.

27 FUERZA ELÉCTRICA Y LEY DE COULOMB. Antecedentes. La existencia de las cargas eléctricas permite que exista el comportamiento de atracción y repulsión. En este punto, vale la pena mencionar que en el caso de la fuerza gravitacional, solamente se presenta el fenómeno de atracción, en ese caso, entre las masas. La regla fundamental y básica que subyace a todo fenómeno eléctrico nos dice que: LAS CARGAS ELÉCTRICAS DE IGUAL SIGNO SE REPELEN LAS CARGAS DE SIGNOS OPUESTOS SE ATRAEN

28 FUERZA ELÉCTRICA Y LEY DE COULOMB. El Experimento: Balanza de Torsión de Coulomb Esta escala permite ajustar y medir la torca y de allí calcular la fuerza entre las cargas Esta escala permite leer la separación entre las cargas

29 FUERZA ELÉCTRICA Y LEY DE COULOMB. Conclusiones del Experimento de Coulomb A partir del experimento de Coulomb se puede concluir que la fuerza ejercida por una carga puntual sobre otra está dirigida a lo largo de la línea que las une; es repulsiva si las cargas tienen el mismo signo y atractiva si tienen signos opuestos; varía inversamente proporcional al cuadrado de la distancia que separa las cargas; y es proporcional al valor de cada una de ellas.

30 FUERZA ELÉCTRICA Y LEY DE COULOMB. Enunciado de la Ley de Coulomb Charles-Augustin de Coulomb ( ). Físico e ingeniero militar francés La fuerza existente entre dos cargas puntuales está dirigida a lo largo de la línea que las une, es proporcional al producto de ellas y varía inversamente con el cuadrado de la separación entre ellas, siendo de carácter repulsivo si las cargas tienen el mismo signo y atractivo si tienen signos opuestos

31 x FUERZA ELÉCTRICA Y LEY DE COULOMB. Expresión matemática de la Ley de Coulomb Como la fuerza es una cantidad vectorial es importante mencionar que la forma vectorial de la Ley de Coulomb es z r r r q 2 q 1 r r 1 2 donde k e es la llamada Constante de Coulomb, cuyo valor depende del sistema de unidades y del medio en el que trabajemos. En el Sistema Internacional de Unidades (SI) el valor de la Constante de Coulomb en el vacio es k e = 9x10 9 N m 2 /C 2 y qq F k rˆ e 2 12 r12

32 FUERZA ELÉCTRICA Y LEY DE COULOMB. Expresión matemática de la Ley de Coulomb Para el caso en que tenemos solamente dos cargas puntuales y nos interesa conocer la magnitud de la fuerza podemos considerar que F k e qq r donde q 1 y q 2 son las cargas interactuantes y r es la separación entre ellas. r q 2 q 1

33 FUERZA ELÉCTRICA Y LEY DE COULOMB. Un ejemplo de la Ley de Coulomb El objeto A tiene una carga +2mC y el objeto B tiene una carga de +6mC. Si la separación entre ellas es de 2.5cm, (a) cuál es el valor de la fuerza? (b) Es atractiva o repulsiva? 2.5cm A +2 mc qq r 1 2 F ke N B +6 mc b) Como las cargas son de igual signo, el valor de F es positivo, lo que significa que es una fuerza repulsiva. Si el valor de F hubiese sido negativo tendríamos una fuerza atractiva.

34 FUERZA ELÉCTRICA Y LEY DE COULOMB. Ahora consideremos un arreglo de varias cargas: Esto se hace mediante el Principio de superposición de fuerzas que establece que la fuerza neta ejercida sobre una carga q 0 es la suma vectorial de las fuerzas individuales ejercidas sobre dicha carga por cada una de las cargas del sistema. F Total F 41 + F 21 - q 2 qq F F k r i 0 Total i 2 i i i ri q 1 F 31 - q 3 + q 4

35 FUERZA ELÉCTRICA Y LEY DE COULOMB. qq i 0 FTotal Fi k 2 i i r i

36 Esta fuerza es repulsiva pero en la dirección de las x negativas. Esta fuerza es atractiva, y en dirección de las x positivas. La fuerza resultante es por lo tanto la suma de las 2 fuerzas (tomando en cuenta el signo de cada una) F 112mN 84mN 28mN x Por lo tanto, la fuerza total hacia las x negativas.

37 FUERZA ELÉCTRICA Y LEY DE COULOMB. Una carga q 2 = 6μC se coloca 2cm a la izquierda de otra carga de q 1 = 5μC. La fuerza entre ellas, es atractiva o repulsiva? Calcule la magnitud de la fuerza sobre la carga q 1. En qué dirección va? Si a 2cm a la derecha de q 1 colocamos una tercera carga q 3 = 9μC. Cuál es la fuerza resultante sobre una carga q 1? -6 mc +9 mc q 1 q r 1 2 cm r 2 2 cm F 1 = 675 N F 2 = 1013 N Ambas fuerzas van hacia la derecha F=1688N

38 FUERZA ELÉCTRICA Y LEY DE COULOMB. Consideremos un átomo de Hidrógeno. Cuál es la magnitud y dirección de la fuerza entre el núcleo (formado por un protón) y el electrón que lo orbita? Considere el siguiente esquema. q p =1.6x10-19 C F + - r=1x10-10 m De acuerdo a la Ley de Coulomb, la magnitud de la fuerza está dada por F=(9x10 9 N m 2 /C 2 )(1.6x10-19 C)(1.6x10-19 C)/(10-10 m) 2 F=2.3x10-8 N De igual manera, acorde a la Ley de Coulomb, la dirección de la fuerza es a la derecha, tal como se muestra.

39 CAMPO, POTENCIAL Y CAPACITANCIA. Antecedentes. En física, el campo eléctrico E es un ente físico (de carácter vectorial) que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica, de tal forma que la fuerza eléctrica (o de Coulomb) F experimentada por una carga q está relacionada con el campo eléctrico E mediante la expresión F qe Esta definición general indica que el campo eléctrico no es directamente medible, sino a través de la fuerza actuante sobre alguna carga. La unidad del campo eléctrico en el SI es N/C, V/m o, en unidades básicas: kg m s 3 A 1.

40 CAMPO, POTENCIAL Y CAPACITANCIA. Antecedentes. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año El campo eléctrico asociado a una carga aislada o a un conjunto de cargas es aquella región del espacio en donde se dejan sentir sus efectos. Así, si en un punto cualquiera del espacio en donde está definido un campo eléctrico se coloca una carga de prueba o carga testigo, se observará la aparición de fuerzas eléctricas, es decir, de atracciones o de repulsiones sobre ella.

41 CAMPO, POTENCIAL Y CAPACITANCIA. Campo eléctrico a partir de la Ley de Coulomb Conocida la expresión para la fuerza eléctrica, podemos escribir la expresión para el campo eléctrico en el punto P, a una distancia r de la carga puntual q, como q r P E P q ke r 2 Si la carga es positiva, el campo eléctrico apunta en la dirección de alejamiento ; mientras que si la carga es negativa, el campo apunta en la dirección de acercamiento

42 CAMPO, POTENCIAL Y CAPACITANCIA. Las líneas de campo son una manera de poder visualizar la distribución de un campo eléctrico en una región del espacio. Las reglas para construir las líneas de campo son las siguientes: 1. Las líneas deben empezar en cargas positivas y terminar en cargas negativas. 2. Las líneas se dibujan de tal forma que a mayor densidad de líneas, mayor intensidad (magnitud) del campo eléctrico. 3. Las líneas NO se cruzan, porque en cada punto el valor del campo es único y un cruce significaría que existen dos valores para el campo total.

43 CAMPO, POTENCIAL Y CAPACITANCIA. Líneas de campo eléctrico Cargas opuestas dipolo eléctrico (formado por dos cargas: positiva y negativa de igual magnitud) Cargas iguales Placas cargadas

44 CAMPO, POTENCIAL Y CAPACITANCIA. Un campo constante E=40,000 N/C se mantiene entre las dos placas paralelas. Cuáles son la magnitud y dirección de la fuerza sobre un electrón que pasa horizontalmente entre las placas? El campo E es hacia abajo, y la fuerza sobre e - es arriba e - e e F qe 6.4x10 N

45 CAMPO, POTENCIAL Y CAPACITANCIA. Ejemplos de cálculo de Campo eléctrico a partir de la Ley de Coulomb Calcular la magnitud del campo eléctrico producido por una carga q 1 =7μC en un punto situado a una distancia r = 0.08m. q k r k e = 9x10 9 N m 2 /C 2 EP e 2

46 CAMPO, POTENCIAL Y CAPACITANCIA. Energía potencial eléctrica y potencial eléctrico La energía potencial eléctrica de un sistema formado por dos cargas q 1 y q 2 situadas a una distancia r una de la otra es igual a U e k donde k e es la constante de Coulomb introducida con anterioridad. e qq r Una definición de energía potencial eléctrica sería la siguiente: La energía potencial eléctrica es la cantidad de trabajo que se necesita realizar para acercar una carga puntual q 1 (de masa nula) con velocidad constante, desde el infinito hasta una distancia r de una carga q 2, la cual utilizamos como referencia. En el infinito la carga de referencia ejerce una fuerza nula. 1 2

47 CAMPO, POTENCIAL Y CAPACITANCIA. Energía potencial eléctrica y potencial eléctrico A partir de la expresión anterior para la energía potencial eléctrica se define el potencial eléctrico V producido por la carga q 1, en el punto de ubicación de la carga de referencia q 2, como q U 1 V ke r q P donde k e es la constante de Coulomb, q 1 es la carga que produce el potencial eléctrico en un punto P a una distancia r. r En honor a Alessandro Volta, la unidad del potencial eléctrico, en el SI, es el Volt (V). q 1

48 CAMPO, POTENCIAL Y CAPACITANCIA. Líneas de potencial eléctrico El nombre de superficie equipotencial es dado a cualquier superficie formada por una distribución continua de puntos que tienen el mismo potencial eléctrico. Una característica fundamental de las superficies equipotenciales es que en cualquier punto son perpendiculares a las líneas de campo eléctrico. Dipolo eléctrico Placas cargadas

49 CAMPO, POTENCIAL Y CAPACITANCIA. EJERCICIO 20. Dos cargas puntuales Q1=+5.00nC y Q2=-3.00nC, están separadas 35.0cm. (a) Cuál es la energía potencial del par? (b) Cuál es el potencial eléctrico en el punto medio entre las cargas? U e k e qq r 1 2 q V ke k r q 1 2 e 1 r2

50 CAMPO, POTENCIAL Y CAPACITANCIA. Capacitancia Los capacitores son dispositivos usados comúnmente en una gran variedad de circuitos eléctricos. Se usan, por ejemplo, para ajustar la frecuencia de recepción de señales de radiofrecuencia, como filtros en fuentes de poder, para eliminar el ruido en los sistemas de encendido de los automóviles, para hacer funcionar las lámparas de destello ( flashes ) de las cámaras fotográficas, etc.

51 CAMPO, POTENCIAL Y CAPACITANCIA. El sintonizador en un radio es un capacitor variable. El área cambiante A altera la capacitancia hasta que se obtiene la señal deseada Capacitor variable Área cambiante A -- Un capacitor consiste de dos conductores separados por un aislante y su capacidad depende de la geometría y del material (llamada dieléctrico) que separa los conductores.

52 CAMPO, POTENCIAL Y CAPACITANCIA. La capacitancia es una propiedad de los cuerpos para mantener una carga eléctrica, también es una medida de la cantidad de energía eléctrica almacenada para un potencial eléctrico dado. La relación entre la diferencia de potencial existente entre las placas del capacitor y la carga eléctrica almacenada se escribe como: C Q V donde C es la capacitancia, medida en faradios (en honor al físico experimental Michael Faraday) siempre que Q esté en Coulombs y V en Volts.

53 CAMPO, POTENCIAL Y CAPACITANCIA. Capacitancia El farad (F) es una unidad relativamente grande por lo que suelen utilizarse submúltiplos como el microfaradio (mf) o picofaradio (pf). Cabe destacar que la capacidad es siempre una cantidad positiva y que depende de la geometría del capacitor considerado (de placas paralelas, cilíndrico, esférico).

54 CAMPO, POTENCIAL Y CAPACITANCIA. Ejemplo. Cuánta carga almacena un capacitor de 3.3nF si se conecta a una batería de 6V? Despejamos Q de la fórmula para la capacitancia, y obtenemos: 9 9 Q CV 3.3x10 F 6V 19.8x10 C

55 CAMPO, POTENCIAL Y CAPACITANCIA. Continuación Una vez cargado el capacitor se modifica su geometría, de tal forma que su nueva capacitancia es de 2.5mF, qué voltaje aparece en sus terminales? (Considere que el cambio de geometría no modifica la carga en las placas que forman el capacitor) Para este caso, la carga se mantiene igual pero cambian la capacitancia y el voltaje. Ahora despejamos V: V 6 Q 2.5x10 F 9 C 19.8x10 C V

56 CORRIENTE Y RESISTENCIA, POTENCIA ELÉCTRICA. Siempre que cargas eléctricas del mismo signo están en movimiento, se dice que existe una corriente. La corriente es la rapidez con la que fluye la carga a través de una superficie determinada. Si Q es la cantidad de carga que pasa a través de esta área en un tiempo t, la corriente I es igual a: I Q t La unidad SI de la corriente es el ampere (A), donde: 1A = 1C/s

57 CORRIENTE Y RESISTENCIA, POTENCIA ELÉCTRICA. LA CORRIENTE ELÉCTRICA EN UN ALAMBRE ES DE 6 A. CUÁNTOS ELECTRONES FLUYEN A TRAVÉS DE UN PUNTO DADO EN UN TIEMPO DE 3 S? I Q t Q It 6A 3s 18C I = 6 A Podemos calcular el numero de electrones ya que conocemos la carga del electrón 1 e - = 1.6 x C 1e x10 C 19 C C x electrones 19

58 RESISTENCIA ELÉCTRICA Suponga que se aplica una diferencia de potencial constante de 4 V a los extremos de barras geométricamente similares de acero, cobre y vidrio. Acero Cobre Vidrio I s I c I g 4 V 4 V 4 V La corriente en el vidrio es mucho menor para el acero o el hierro, lo que sugiere una propiedad de los materiales llamada resistencia eléctrica R.

59 CORRIENTE Y RESISTENCIA, POTENCIA ELÉCTRICA. La ley de Ohm afirma que la corriente I a través de un conductor dado es directamente proporcional a la diferencia de potencial V entre sus puntos extremos. Ley deohm I V La ley de Ohm permite definir la resistencia R y escribir las siguientes formas de la ley: V I ; V IR; R R V I

60 EJEMPLO 2. CUANDO UNA BATERÍA DE 3 V SE CONECTA A UNA LUZ, SE OBSERVA UNA CORRIENTE DE 6 MA. CUÁL ES LA RESISTENCIA DEL FILAMENTO DE LA LUZ? R V I R = 500 W 3.0 V A La unidad SI para la resistencia eléctrica es el ohm, W: 1 V 1 W 1 A I + - R 6 ma V = 3 V Fuente de FEM

61 FACTORES QUE AFECTAN LA RESISTENCIA 1. La longitud L del material. Los materiales más largos tienen mayor resistencia. L 1 W 2L 2 W 2. El área A de sección transversal del material. Las áreas más grandes ofrecen MENOS resistencia. A 2A 2 W 1 W

62 FACTORES QUE AFECTAN R 3. La temperatura T del material. Las temperaturas más altas resultan en resistencias más altas. R o R > R o 4. El tipo del material. El hierro tiene más resistencia eléctrica que un conductor de cobre geométricamente similar. Cobre Hierro R i > R c

63 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA.

64 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Hoy en día sabemos que el magnetismo y la electricidad se relacionan estrechamente al producirse como consecuencia de la existencia de cargas, y dependiendo de su estado de movimiento dan lugar a uno o a otro fenómeno. La historia del magnetismo comienza con las civilizaciones de Asia Menor, ya que fue en una región de Asia Menor conocida como magnesia donde se encontró algunas rocas que se atraían entre sí. A estas rocas se les llamó magnetos, en alusión al lugar de su descubrimiento. Históricamente se ha usado el símbolo B para representar el campo magnético, debido a que es una cantidad vectorial, y está dado en teslas (T). La dirección del campo magnético en un punto dado está en la dirección en que apunta la aguja de una brújula en dicha ubicación.

65 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA.

66 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Líneas de campo magnético. Experimentalmente, se encuentra que las sustancias magnéticas presentan dos polos, que se denominan polo norte y polo sur. Dado un imán, podemos visualizar las líneas de su campo magnético mediante pequeñas limaduras de hierro, tal como se muestra en la siguiente imagen de un imán en forma de barra.

67 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. N S N N

68 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Es importante mencionar que no hay evidencia de la existencia de polos magnéticos de manera aislada, ya que siempre han sido encontrados ambos polos en todas las sustancia magnéticas.

69 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Generalmente se define el campo magnético en un punto del espacio en términos de la fuerza magnética (F B ) que experimenta una carga de prueba q, moviéndose con una velocidad v, al ubicarse en dicho punto. Los experimentos realizados considerando el movimiento de partículas cargadas, en presencia de campos magnéticos, arrojan los siguientes resultados: La magnitud de la fuerza F B ejercida sobre la partícula es proporcional a la carga q y a la rapidez v de la partícula. La magnitud y dirección de la fuerza F B depende de la velocidad v de la partícula y de la magnitud y dirección del campo magnético B. Cuando una partícula cargada se mueve paralela al vector de campo magnético, no hay fuerza magnética.

70 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Cuando la velocidad de la partícula forma un ángulo distinto de cero con el campo magnético, la fuerza magnética actúa en una dirección perpendicular tanto a v como a B. La fuerza magnética ejercida sobre una partícula cargada positivamente está en dirección opuesta a la ejercida sobre una partícula cargada negativamente. La magnitud de la fuerza magnética es proporcional al seno del ángulo formado entre la dirección del campo magnético B y la dirección del movimiento de la partícula cargada.

71 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Los resultados anteriores se pueden resumir en la siguiente expresión: F qv B B donde F B está en la dirección del producto vectorial v x B si q es positiva. Por definición del producto vectorial (o producto cruz), la fuerza magnética es perpendicular al plano formado por los vectores v y B. Se puede considerar a la anterior expresión como una definición operacional del campo magnético.

72 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Hay varias diferencias importantes entre las fuerzas eléctrica y magnética: La fuerza eléctrica actúa en dirección del campo eléctrico, en tanto que la fuerza magnética es perpendicular al campo magnético La fuerza eléctrica actúa sobre una partícula cargada independientemente de si la partícula está en movimiento o no, mientras que la fuerza magnética actúa sobre una partícula cargada sólo cuando esta se encuentra en movimiento. La fuerza eléctrica efectúa trabajo al desplazar a la partícula cargada, en tanto que la fuerza magnética asociada con un campo magnético estable no realiza trabajo cuando se desplaza una partícula. Esto último permite concluir que el campo magnético puede alterar la dirección del vector velocidad de una partícula pero no puede cambiarle su magnitud, por lo que la energía cinética no cambia para una partícula cargada que se mueve con una velocidad v a través de un campo magnético B.

73 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Regla de la mano derecha

74 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. Una vez conocida la fuerza magnética, se puede analizar el movimiento de una partícula cargada a través de un campo magnético. Para ello se considera una partícula que penetra moviéndose perpendicularmente a un campo magnético uniforme B. Entonces la partícula desarrollará un movimiento circular. B F B v F B v

75 EFECTOS DE B SOBRE CARGAS ELÉCTRICAS EN MOVIMIENTO

76 EFECTOS DE B SOBRE CORRIENTES ELÉCTRICAS

77 CAMPO MAGNÉTICO Y CORRIENTE ELÉCTRICA. El experimento de Oersted. En 1820 H. Oersted descubrió la relación entre la electricidad y el magnetismo en un experimento que hoy se nos presenta como muy sencillo, y que llevó a cabo ante sus alumnos. En su experimento demostró empíricamente que un hilo conductor de corriente podía mover la aguja imantada de una brújula, de tal forma que ésta se orientaba perpendicularmente al alambre.

78 DIRECCIÓN DE B USANDO LA REGLA DE LA MANO DERECHA

79 Fuerza entre dos alambres Consideremos dos alambres rectos de largo l, por los que circulan corrientes I 1 e I 2, y separados una distancia a. Si analizamos el cable con corriente I 2, vemos que este produce un campo B 2 tal como se muestra. En particular, vemos que en la posición del alambre 1 (con corriente I 1 ) el campo B es perpendicular a esta corriente I 1, de tal forma que si calculamos la fuerza que se ejerce sobre el alambre 1 encontramos que esta apunta hacia el alambre 2.

80 Fuerza entre dos alambres paralelos Si usamos la regla de la mano derecha para el caso en que las corrientes vayan en direcciones opuestas, encontraremos que la fuerza F 1 está dirigida en dirección opuesta, es decir, alejándose del alambre 2. Esto permite concluir que: Dos alambres paralelos que conducen corrientes en la misma dirección se atraen entre sí, mientras que dos conductores con corrientes en direcciones opuestas se repelen.

81 CAMPO MAGNÉTICO Un solenoide es un alambre largo enrollado en forma de hélice. Con este arreglo se logra un campo magnético razonablemente uniforme en el espacio delimitado por las espiras de alambre, lo que podríamos llamar el interior del solenoide, tal como se muestra en el esquema siguiente

82 CAMPO MAGNÉTICO Líneas de campo magnético de un solenoide con las espiras completamente adyacentes Campo magnético de un imán en forma de barra, visualizado mediante limaduras de hierro.

83 CAMPO MAGNÉTICO Un solenoide ideal se forma conforme las espiras están cada vez menos espaciadas, el largo crece y el radio de las espiras disminuye. En tal caso las líneas de campo magnético en el interior son cada vez más uniformes, mientras que el campo en el exterior es cada vez más débil. En este caso, podemos esquematizar un corte del solenoide tal como se muestra en la figura adjunta.

84 CAMPO MAGNÉTICO. UN EJEMPLO. F qv B B FB qvbsen

85 CAMPO MAGNÉTICO. UN EJEMPLO. Esta fuerza está en dirección negativa del eje y. En caso de que el haz fuera de electrones, la fuerza estaría dirigida hacia el lado positivo del eje y.

86 INDUCCIÓN ELECTROMAGNÉTICA. Experimentalmente se encuentra que (la variación del flujo de) un campo magnético induce una corriente en una espira cerrada, como se muestra en las siguientes figuras. Es importante notar que no es necesaria la existencia de una batería para producir una corriente en la espira, por lo que se dice que tenemos una corriente inducida en la espira como producto de la presencia de un flujo magnético

87 INDUCCIÓN ELECTROMAGNÉTICA. También se encuentra que si colocamos dos espiras cercanas, una de ellas conectada a una batería y la otra a un galvanómetro, al momento de cerrar el circuito hay un registro en el galvanómetro, pero ese desaparece hasta que se abre el circuito. De nuevo, en la espira secundaria NO hay conectada una batería para producir una corriente en la espira, por lo que se dice que tenemos una corriente inducida en la espira como producto de la presencia de un flujo magnético, en este caso, producido por la corriente en la espira primaria.

88

89 1. Imagine que tiene dos esferas metálicas ligeras y que cada una de ellas cuelga de un cordón de nailon aislante. Una de las esferas tiene carga neta negativa; en tanto que la otra no tiene carga neta. a) Si las esferas están cerca una de otra pero no se tocan, i) se atraerán mutuamente, ii) se repelerán o iii) no ejercerán fuerza alguna sobre la otra? b) Ahora se permite que las esferas entren en contacto. Una vez que se tocan, las dos esferas i) se atraerán, ii) se repelerán o iii) no ejercerán fuerza alguna sobre la otra? 2. Una carga puntual negativa se mueve a lo largo de una trayectoria recta directamente hacia una carga puntual positiva estacionaria. Qué aspecto(s) de la fuerza eléctrica sobre la carga puntual negativa permanecerán constantes a medida que se mueve? i) magnitud; ii) dirección; iii) tanto la magnitud como la dirección; iv) ni la magnitud ni la dirección. 3. Dibuje las líneas de campo eléctrico para un dipolo. 4. Dentro del salón existe un campo magnético que va del techo al piso, se abre la puerta y entra una partícula cargada rumbo a la ventana que tiene enfrente pero siente una fuerza que la desvía Qué tipo de fuerza es ésta y hacia dónde está dirigida? Haga un esquema.

90 FUERZA ELÉCTRICA Y LEY DE COULOMB. Consideremos un átomo de Hidrógeno. Cuál es la magnitud y dirección de la fuerza entre el núcleo (formado por un protón) y el electrón que lo orbita? Considere el siguiente esquema. q p =1.6x10-19 C F + - r=1x10-10 m De acuerdo a la Ley de Coulomb, la magnitud de la fuerza está dada por F=(9x10 9 N m 2 /C 2 )(1.6x10-19 C)(1.6x10-19 C)/(10-10 m) 2 F=2.3x10-8 N De igual manera, acorde a la Ley de Coulomb, la dirección de la fuerza es a la derecha, tal como se muestra.

91 1. Una carga q 1 = 5.5nC se encuentra a 20cm de otra carga q 2 = 0.9nC Cuál es el valor de la fuerza entre ellas? Esta fuerza es atractiva o repulsiva? 3. Cuál es la magnitud del campo eléctrico en un punto situado a 2.0 m de una carga puntual q = 4.0nC? (La carga puntual puede representar cualquier objeto pequeño cargado con este valor de q, si las dimensiones del objeto son mucho menores que la distancia entre el objeto y el punto del campo.)

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 Temario B. Electricidad 6. Cargas eléctricas y la Ley de Coulomb. (4horas) 1. Concepto

Más detalles

Física II. Electrostática

Física II. Electrostática Física II Electrostática Electrostática Concepto de Electrostática Conservación de la Carga Fuerzas y Cargas Eléctricas Ley de Coulomb & Cualitativa Conductores & Aislantes Electrostática Carga por Fricción

Más detalles

Tema 5: Electromagnetismo

Tema 5: Electromagnetismo Tema 5: Electromagnetismo Objetivo: El alumno conocerá los conceptos y leyes que le permitan comprender algunos de los fenómenos eléctricos y magnéticos, haciendo énfasis en los antecedentes necesarios

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

II. ELECTROSTÁTICA. Carga eléctrica:

II. ELECTROSTÁTICA. Carga eléctrica: FÍSICA II TELECOM Profesor BRUNO MAGALHAES II. ELECTROSTÁTICA La electrostática es la rama de la física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica.

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

TEMA 8:ELECTROSTATICA

TEMA 8:ELECTROSTATICA TEMA 8:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

núcleo electrones protones neutrones electrones electrostática Charles Agustín Coulomb

núcleo electrones protones neutrones electrones electrostática Charles Agustín Coulomb Ley de Coulomb El físico francés Charles A. Coulomb (1736-1804) es famoso por la ley física que relaciona su nombre. Es así como la ley de Coulomb describe la relación entre fuerza, carga y distancia.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros.

Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Fuerza eléctrica. Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos de la electricidad estática,

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

Ley de Coulomb. Introducción

Ley de Coulomb. Introducción Ley de Coulomb Introducción En este tema comenzaremos el estudio de la electricidad con una pequeña discusión sobre el concepto de carga eléctrica, seguida de una breve introducción al concepto de conductores

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

Módulo 1: Electrostática Fuerza eléctrica

Módulo 1: Electrostática Fuerza eléctrica Módulo 1: Electrostática Fuerza eléctrica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen, mientras que

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3 Circuitos eléctricos Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

FUERZAS ENTRE CARGAS EN REPOSO: COULOMB V/S NEWTON

FUERZAS ENTRE CARGAS EN REPOSO: COULOMB V/S NEWTON FUERZAS ENTRE CARGAS EN REPOSO: COULOMB V/S NEWTON CAMPO ELÉCTRICO. El campo eléctrico es un aspecto peculiar de la materia, transmite la acción de cuerpos electrizados a otros. Se pueden considerar un

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 9-11-011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA CUATRO ING. SANTIAGO GONZALEZ LOPEZ CAPITULO CUATRO Una fuerza magnética surge en dos etapas. Una carga en movimiento o un conjunto de cargan en movimiento

Más detalles

Introducción histórica

Introducción histórica Introducción histórica Tales de Mileto (600 a.c.) observó la propiedad del ámbar de atraer pequeños cuerpos cuando se frotaba. Ámbar en griego es electron ELECTRICIDAD. En Magnesia existía un mineral que

Más detalles

CIRCUITOS SIMPLES Y RESISTENCIAS EN SERIE

CIRCUITOS SIMPLES Y RESISTENCIAS EN SERIE CIRCUITOS SIMPLES Y RESISTENCIAS EN SERIE Un circuito eléctrico consiste en cierto número de ramas unidas entre sí, de modo que al menos una de ellas cierre la trayectoria que se proporciona a la corriente.

Más detalles

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en

Más detalles

Capacitores y capacitancia

Capacitores y capacitancia Capacitores y capacitancia Un capacitor es básicamente dos superficies conductoras separadas por un dieléctrico, o aisaldor. La capacitancia de un elemento es su habilidad para almacenar carga eléctrica

Más detalles

Magnetismo e inducción electromagnética. Ejercicios PAEG

Magnetismo e inducción electromagnética. Ejercicios PAEG 1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se

Más detalles

Ley de Coulomb. El Circuito Eléctrico

Ley de Coulomb. El Circuito Eléctrico C:\Users\Pepe\Dropbox\FisicaQuimica\3eso\tema8\tema8.4.jpg C:\Users\Pepe\Dropbox\FisicaQuimica\3eso\tema8\tema8.3.jpg C:\Users\Pepe\Dropbox\FisicaQuimica\3eso\tema8\tema8.8.gif El Circuito Eléctrico Los

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA

UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA ELECTRICIDAD TEORÍA Establezca las siguientes definiciones o conceptos: 1.- Carga. 2.- Ley de Coulomb. 3.- Ley de Conservación

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA. Nombre: Grupo Calif

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA. Nombre: Grupo Calif INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA Práctica N º 11 Nombre: Grupo Calif OBJETIVO El alumno realizara experimentos sencillos para

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

EJERCICIOS CONCEPTUALES

EJERCICIOS CONCEPTUALES ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: CAMPOS ELÉCTRICOS GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: 2 EJERCICIOS CONCEPTUALES 1. Suponiendo que el valor de la carga del protón fuera un poco diferente de la

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

INTERACCIÓN MAGNÉTICA

INTERACCIÓN MAGNÉTICA INTERACCIÓN MAGNÉTICA 1. Magnetismo. 2. El magnetismo natural. 3. Campo magnético. 4. Electromagnetismo. 5. El campo magnético frente la electricidad. 6. Campos magnéticos originados por cargas en movimiento.

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996

Más detalles

Electroestática. Ing. Eduardo Cruz Romero

Electroestática. Ing. Eduardo Cruz Romero Electroestática Ing. Eduardo Cruz Romero Introducción Con el estudio de la electrostática se da inicio a la búsqueda del conocimiento que nos permitirá comprender algunos fenómenos eléctricos. La electrostática

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas.

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de cada una de ellas. EVALUACIÓN Por: Yuri Posadas Velázquez Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Contesta lo siguiente y haz lo que se pide. 1. Describe las tres formas de electrizar un cuerpo y da un ejemplo de

Más detalles

ELECTROMAGNETISMO ELECTROIMANES.

ELECTROMAGNETISMO ELECTROIMANES. ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la

Más detalles

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:

Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial)

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial) CAMPO ELECTRICO Concepto de Campo l El concepto de Campo es de una gran importancia en Ciencias y, particularmente en Física. l l La idea consiste en atribuirle propiedades al espacio en vez de considerar

Más detalles

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N?

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N? BOLETÍN DE PROBLEMAS SOBRE CAMPO ELÉCTRICO Ley de Coulomb 1. Calcula la intensidad (módulo) de las fuerzas que dos cargas Q 1 =8µC y Q 2 =-6µC separadas una distancia r=30cm se ejercer mutuamente. Dibújalas.

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

Guía de Verano Física 4 Medio 2017

Guía de Verano Física 4 Medio 2017 Electricidad Guía de Verano ísica 4 Medio 07 Introducción Los fenómenos eléctricos y magnéticos son sucesos que experimentamos en nuestro entorno en forma cotidiana. Por ejemplo, los electrodomésticos

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Trabajo De Tecnología. (La Electricidad) Saint Georger s college Area de tecnología III Unidad

Trabajo De Tecnología. (La Electricidad) Saint Georger s college Area de tecnología III Unidad Saint Georger s college Area de tecnología III Unidad Trabajo De Tecnología (La Electricidad) Integrantes (10º E): Stefan Jercic Ignacio Larraín Crsitian Majluf Profesor: Luis Paredes Fecha: Viernes 16

Más detalles

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO 1. Carga eléctrica y materia. Distribuciones de carga 2. Ley de Coulomb 3. Campo eléctrico Departamento de Electrónica y

Más detalles

Electricidad y magnetismo (parte 2)

Electricidad y magnetismo (parte 2) Semana Electricidad 13y magnetismo (parte 1) Semana 12 Empecemos! Continuando con el tema de la semana anterior, veremos ahora los aspectos teóricos y prácticos de algunos fenómenos magnéticos. El término

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

SOLUCIONARIO GUÍAS ELECTIVO

SOLUCIONARIO GUÍAS ELECTIVO SOLUCIONARIO GUÍAS ELECTIVO Electricidad I: electricidad estática SGUICEL001FS11-A16V1 Solucionario guía Electricidad I: electricidad estática Ítem Alternativa Habilidad 1 A Reconocimiento 2 A Reconocimiento

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

CUESTIONARIO 2 DE FISICA 2

CUESTIONARIO 2 DE FISICA 2 CUESTIONARIO 2 DE FISICA 2 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

INTENSIDAD DE CAMPO ELECTRICO (E)

INTENSIDAD DE CAMPO ELECTRICO (E) CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas

Más detalles

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Cuestiones 1. a) (12) Fuerza magnética sobre una carga en movimiento; ley de Lorentz. b) Si la fuerza magnética sobre una partícula cargada

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

SOLUCIONARIO GUÍAS ELECTIVO

SOLUCIONARIO GUÍAS ELECTIVO SOLUCIONARIO GUÍAS ELECTIVO Electricidad IV: campo magnético, fuerza magnética SGUICEL013FS11-A16V1 Solucionario guía Electricidad IV: campo magnético, fuerza magnética Ítem Alternativa Habilidad 1 E Aplicación

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo Nombre: Campo magnético Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 14 Magnetismo Fecha: Un imán genera en su entorno un campo magnético que es el espacio perturbado por

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Recordamos que: La carga eléctrica siempre

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo

FÍSICA 3 TEMA 2 Resumen teórico. Electricidad y magnetismo Electricidad y magnetismo CORRIENTE ELÉCTRICA Diferencia de potencial, resistencia e intensidad La palabra corriente se utiliza para expresar movimiento de. La corriente de un río, por ejemplo, nos expresa

Más detalles

Tema Magnetismo

Tema Magnetismo Tema 21.8 Magnetismo 1 Magnetismo Cualidad que tienen ciertos materiales de atraer al mineral de hierro y todos los derivados que obtenemos de él. Imán natural: magnetita tiene la propiedad de ejercer

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

Conceptos eléctricos. Conceptos eléctricos

Conceptos eléctricos. Conceptos eléctricos Conceptos eléctricos Conceptos eléctricos http://static.wixstatic.com/media/de4422_191819ffcc954559a53cebc68a67f6d4.jpg HYPERPHISIC Nunca consideres el estudio como una obligación, sino como una oportunidad

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Webpage:

Webpage: Magnetismo y Óptica Dr. Roberto Pedro Duarte Zamorano E-mail: roberto.duarte@didactica.fisica.uson.mx Webpage: http://rpduarte.fisica.uson.mx 2016 Departamento de Física Universidad de Sonora A. Magnetismo

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

Tema 2: Campo magnético

Tema 2: Campo magnético Tema 2: Campo magnético A. Fuentes del campo magnético A1. Magnetismo e imanes Magnetismo. Imán: características. Acción a distancia. Campo magnético. Líneas de campo. La Tierra: gran imán. Campo magnético

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles