8 La interacción entre ondas sísmicas e interfases

Tamaño: px
Comenzar la demostración a partir de la página:

Download "8 La interacción entre ondas sísmicas e interfases"

Transcripción

1 Sismología 75 8 La interacción entre ondas sísmicas e interfases La aproximación de rayos es una solución válida para la ecuación de ondas cuando la frecuencia es suficientemente alta para que los parámetros elásticos del medio, y la amplitud de la onda, no cambien apreciablemente en una longitud de onda. Esta aproximación es válida en muchas partes de la Tierra, pero hay otras regiones, como las de las fronteras corteza-manto y núcleo-manto, donde existen grandes contrastes en la velocidad. Podemos extender la aproximación de rayos a medios que contienen fuertes contrastes en velocidad, considerando las dos regiones alrededor de la interfase separadamente e igualando las condiciones de borde en la interfase donde las propiedades elásticas se cambian. Conceptos importantes La continuidad del desplazamiento en una interfase entre dos medios sólidos nos da una ley general de Snell, que incluye las conversiones entre los tipos de onda. La continuidad de las tracciones y del desplazamiento en una interfase entre dos medios sólidos nos da coeficientes de reflexión y transmisión que describen la partición de energía en la interfase (de la onda incidente a las ondas reflectadas y transmitidas). Cuando la velocidad aparente en la interfase es menor que la velocidad del medio, la amplitud de la onda transmitida decae exponencialmente con la distancia de la interfase. 8.1 La ley general de Snell para una interfase interna La ecuación de ondas elásticas se aplica en un medio homogéneo. Para el caso de dos semi espacios homogéneos adheridos necesitamos usar condiciones de borde en el desplazamiento y las tracciones para igualar los movimientos y las fuerzas a través de la interfase entre los dos medios. Fig 85: Frentes de ondas y rayos incidentes en una interfase entre dos medios homogéneos. Si tenemos una onda P propagándose en el medio 1 incidente en la interfase, generaráunaondap reflectadaenelmedio1yunaondap refractadaenelmedio

2 Sismología 76 2 (ver la Figura 85). Sin embargo, estas tres ondas no cumplen las condiciones de borde entre ellas y por eso ocurre la generación de las ondas SV en ambos medios. Las potenciales P y SV son φ Ae i(ωt kα 1 x 1±k α3 x 3 ) y ψ Be i(ωt k β 1 x 1 ±k β3 x 3 ) (8.1) Las componentes de los vectores de los números de onda satisfacen k α 2 k 2 α 1 +k 2 α 3 ω2 α 2 y k β 2 k 2 β 1 +k 2 β 3 ω2 β 2 (8.2) y las direcciones del vector del número de onda, en términos de los ángulos de incidencia, son sini k α1 (k 2 α 1 +k 2 α 3 ) 1/2 k α 1 k α y sinj k β1 (k 2 β 1 +k 2 β 3 ) 1/2 k β 1 k β (8.3) donde i y j son los ángulos de incidencia de la onda P y la onda SV respectivamente. De la Figura 85, c v/sini ω/k 1 es la velocidad aparente, la velocidad en que la onda plana parece viajar a lo largo de la interfase. La velocidad aparente es siempre igual a, o mayor que, la velocidad del medio v. Finalmente, definimos la tasa entre los números de onda horizontal y vertical: r α k ( ) α 3 c 2 1/2 k α1 α 2 1 y r β k ( ) β 3 c 2 1/2 k β1 β 2 1 (8.4) Usando (8.4), los potenciales son φ Ae i(ωt kα 1 x 1±k α1 r αx 3 ) y ψ Be i(ωt k β 1 x 1 ±k β1 r β x 3 ) (8.5) En la interfase (x 3 0) el argumento de la exponencial se reduce a la forma (ωt k 1 x 1 ) k 1 (ct x 1 ) donde c ω/k 1. Las tracciones y el desplazamiento son continuos en la interfase. Si la solución para las cinco ondas en la Figura 85 satisface todas las condiciones en la interfase para todos x y t, los argumentos de todas las ondas deben ser iguales en la interfase. Entonces, k 1 y c en la interfase deben ser igual para cada onda, y las ondas se propagan a lo largo de la interfase a la misma velocidad y continúan en fase. Esta condición da 1 c sini sini 1 sini 2 sinj 1 sinj 2 (8.6) v α 1 α 2 β 1 β 2 que es una generalización de la ley de Snell. (Esta ecuación también se aplica para ondas SH pero no existe acoplamiento entre diferentes tipos de ondas como en el sistema P SV). De la ecuación (8.6), el ángulo de incidencia de la onda refractada es ( ) i 2 sin 1 α2 sini 1 (8.7) α 1

3 Sismología 77 Si α 2 > α 1, entonces a un cierto ángulo de incidencia, i c, el ángulo transmitido, i 2, es 90 y la onda refractada se propaga paralelo a la interfase. Para i 1 > i c no hay una onda transmitida y casi toda la energía está en la onda reflectada. Aún puede existir una onda SV transmitida para la condición i 1 > i c. i c es llamado ángulo crítico y separa el sistema de reflexiones precríticas (donde la mayoría de la energía de la onda es transmitida) con el sistema de reflexiones poscríticas (donde casi toda la energía está en el rayo reflectado). 8.2 Los coeficientes de reflexión y transmisión para el caso SH Fig 86: Onda SH incidente, reflectada y transmitida en una interfase. Ahora podemos describir cómo la interfase afecta la amplitud de las ondas. El caso P SV es complicado debido a la conversión entre ondas P y SV, entonces consideremos el caso SH. El movimiento SH puede ser escrito en términos del desplazamiento: u 2 Be i(ωt k β x) Be i(ωt k 1x 1 ±k β3 x 3 ) Be i(ωt k 1x 1 ±k 1 r β x 3 ) (8.8) donde r β k β3 /k 1. En el medio 1 existen ondas incidente y reflectada u 1 2(x 1,x 3,t) B 1 e i(ωt k 1x 1 k 1 r β1 x 3 ) +B 1e i(ωt k 1x 1 +k 1 r β1 x 3 ) (8.9) y en el medio 2 existe una onda transmitida u 2 2 (x 1,x 3,t) B 2 e i(ωt k 1x 1 k 1 r β2 x 3 ) (8.10) La continuidad del desplazamiento a través de la interfase da u 1 2 u 2 2

4 Sismología 78 (B 1 +B 1)e i(ωt k 1x 1 ) B 2 e i(ωt k 1x 1 ) B 1 +B 1 B 2 (8.11) Para una interfase horizontal, el vector normal es (0,0,1), y entonces T i σ ij n j (σ 13,σ 23,σ 33 ) (8.12) Para el caso SH, u 1 u 3 0, u 2 0 entonces σ 13 σ 33 0 y σ 23 es continuo. ( u2 σ 23 2µe 23 µ + u ) 3 µ u 2 porque u 3 0 (8.13) x 3 x 2 x 3 Para la continuidad de la tracción en la interfase µ 1 ik 1 r β1 (B 1 B 1)e i(ωt k 1x 1 ) µ 2 ik 1 r β2 B 2 e i(ωt k 1x 1 ) ( ) (B 1 B 1) µ2 r β2 B2 µ 1 r β1 (8.14) Las ecuaciones (8.11) y (8.14) se juntan para dar los coeficientes de reflexión y transmisión: R 11 B 1 B 1 µ 1r β1 µ 2 r β2 µ 1 r β1 +µ 2 r β2 T 12 B 2 B 1 2µ 1 r β1 µ 1 r β1 µ 2 r β2 (8.15) Los coeficientes de reflexión y transmisión dependen del ángulo de incidencia y de la rigidez; proveyendo información sobre las propiedades del medio. Los coeficientes de reflexión y transmisión pueden ser expresados de varias formas. Una forma es en términos de la lentitud vertical η βi r βi /c (1/B 2 i p2 ) 1/2 cosj i /β i donde R 11 µ 1η β1 µ 2 η β2 µ 1 η β1 +µ 2 η β2 T 12 o, explícitamente, en términos del ángulo de inclinación 2µ 1 η β1 µ 1 η β1 µ 2 η β2 (8.16) µ i η βi ρ i β 2 i η β i ρ i β 2 i cosj i donde R 11 ρ 1β 1 cosj 1 ρ 2 β 2 cosj 2 ρ 1 β 1 cosj 1 +ρ 2 β 2 cosj 2 T 12 2ρ 1 β 1 cosj 1 ρ 1 β 1 cosj 1 +ρ 2 β 2 cosj 2 (8.17) Cuando la interfase es una superficie libre, µ 2 0 y el coeficiente de reflexión es 1 para cualquier ángulo de incidencia; es decir, que ocurre una reflexión total

5 Sismología 79 (las ondas incidente y reflectada tienen la misma amplitud). El desplazamiento observado en un sismómetro en la superficie es el movimiento total de ambas ondas incidente y reflectada. Noten que las tracciones de las ondas SH incidente y reflectada son iguales en magnitud y opuestas en dirección, que resulta en cero tracción en la superficie libre; y que la amplificación en la superficie libre es un factor de 2. Cuandoel ángulo de incidencia de la onda SH es mayor que el ángulo crítico, la velocidad aparente es menor que la del medio 2 (es decir, c < β 2 ). La onda transmitida está dada por u 2 2 B 2 e i(ωt k 1x 1 k 1 r β2 x 3 ) (8.18) con r β2 (c 2 /β 2 1) 1/2 imaginaria en esta situación. Aquí la componente x 3 es imaginaria y no representa una onda oscilatoria en la dirección x 3. Elegimos la ruta cuadrada negativa (por la conservación de la energía) para que ) 1/2 e ik 1r β2 x 3 e k 1rβ x 3 2 con r β2 (1 c2 (8.19) que decae exponencialmente con la distancia de la interfase en el medio 2. Esta es una onda evanescente. 8.3 La reflexión de las ondas P y SV en una superficie libre Elcaso paraunaondap (o unaondasv) incidente enunasuperficielibrees más complicado. Siel mediosuperiorenla Figura85es unvacío (o, decimos, aire), no hay ondas P y SV transmitidas, y solamente existen ondas P y SV reflectadas. Porque la onda P involucra desplazamiento en x 1 y x 3, las componentes del tensor de estrés σ 13 y σ 33 deben ser iguales a cero en la superficie libre. Para satisfacer la condición de borde en la superficie libre se requiere que la energía reflectada se conforme de ondas P y SV. Las potenciales P y SV, en esta situación, son φ Ae i(ωt k 1x 1 +k 1 r αx 3 ) +A e i(ωt k 1x 1 k 1 r αx 3 ) y ψ Be i(ωt k 1x 1 k 1 r β x 3 ) β 2 2 (8.20) En la superficie (x 3 0) no hay tracciones, por lo tanto σ 13 σ Para un medio isotrópico, podemos escribir los estrés en términos de los potenciales: { } σ 13 µ 2 2 φ + 2 ψ x 1 x 3 x 2 2 ψ 1 x 2 3 { 2 } { φ y σ 33 λ x φ 2 } φ 1 x 2 +2µ 3 x ψ (8.21) 3 x 1 x 3 Para un sólido de Poisson (λ µ), sustituyendo (8.20) en (8.21) en la interfase (x 3 0) da σ 13 0 µ[2r α (A A )+(r 2 β 1)B]k2 1 ei(ωt k 1x 1 )

6 Sismología 80 σ 33 0 [λ(1+r 2 α)(a+a )+2µ(r 2 α(a+a )+r β B)]k 2 1e i(ωt k 1x 1 ) (8.22) Podemos solucionar estas para obtener las coeficientes de reflexión de las ondas P y SV: A A 4r αr β (r 2 β 1)2 4r α r β +(r 2 β 1)2 y B A 4r α (1 rβ 2) 4r α r β +(rβ 2 (8.23) 1)2 o A A 4ρ2 η α η β (ηβ 2 p2 ) 2 4ρ 2 η α η β +(ηβ 2 p2 ) 2 y B A 4ρη α (p 2 ηβ 2) 4ρ 2 η α η β +(ηβ 2 p2 ) 2 (8.24) donde (1+r 2 α ) (c2 /α 2 ) c 2 ρ/(λ+2µ). Las expresiones dadas en (8.23) son para potenciales, no para desplazamientos. Podemos usarlas para determinar la amplitud de desplazamiento usando la ecuación (1.16). Entonces (u 1,u 3 ) P(incidente) ( ik 1,ik 1 r α )φ(incidente) (u 1,u 3 ) P(reflectada) ( ik 1, ik 1 r α )φ(reflectada) (u 1,u 3 ) SV(reflectada) ( ik 1,ik 1 r β )ψ(reflectada) (8.25) La amplitud de cualquier componente del desplazamiento se puede encontrar en términos de las coeficientes de reflexión y transmisión usando (8.25). Porque las componentes de los vectores del número de onda satisfacen la ecuación (8.2), la tasa entre las amplitudes del desplazamiento de las ondas P reflectada e incidente es u P(reflectada) u P(incidente) k α φ (reflectada) k α φ (incidente) A (8.26) A y la tasa entre las amplitudes del desplazamiento de la onda SV reflectada y la onda P incidente es u SV(reflectada) u P(incidente) k β ψ (reflectada) k α φ (incidente) α B β A (8.27) Entonces, cuando las ondas son convertidas a un tipo de onda diferente, la tasa entre las amplitudes del desplazamiento se obtiene de la multiplicación de (i) la tasa entre las amplitudes de los potenciales por (ii) la tasa entre las velocidades.

7 Sismología 81 Fig87: El caso deondas P ysv incidenteen unainterfase entredos medios. Las trayectorias de los rayos y el flujo de la energía para las ondas P y SV reflectada y transmitida (en comparación con la energía de la onda incidente). La escala-x es el ángulo de incidencia. El medio superior tiene α kms 1, β kms 1, ρ gcm 3 ; el medio inferior tiene α kms 1, β kms 1, ρ gcm 3.

2 Ondas superficiales

2 Ondas superficiales 513430 - Sismología 6 2 Ondas superficiales En las interfases que separan medios elásticos de diferentes características, las ondas del cuerpo (P, S) se interfieren constructivamente para producir ondas

Más detalles

SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas.

SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas. SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas. I. Introducción II. Mecánica de un medio elástico. Ecuación del desplazamiento en un medio elástico, isótropo, homogéneo

Más detalles

2.3 Velocidad de fase y grupo

2.3 Velocidad de fase y grupo 2.3 Velocidad de fase y grupo La velocidad c en las secciones anteriores es la velocidad de fase de las ondas superficiales (c = ω/k). Es la velocidad con que una fase se propaga. En general, las velocidades

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

3.1 El campo de ondas global

3.1 El campo de ondas global 513430 - Sismología Apl. y de Explor. 22 3.1 El campo de ondas global Fig 22: Sismogramas globales para un evento cerca de Sumatra. Fig 23: La terminología para fases de la corteza. P g - Onda P que dobla

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

Clase Práctica 2: Localización y magnitudes de terremotos.

Clase Práctica 2: Localización y magnitudes de terremotos. 513430 - Sismología Apl. y de Explor. 1 Clase Práctica 2: Localización y magnitudes de terremotos. Localización 1. En figura 2 están las componentes verticales y horizontales de sismogramas de cuatro estaciones

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

La luz. Según los datos del problema se puede esbozar el siguiente dibujo:

La luz. Según los datos del problema se puede esbozar el siguiente dibujo: La luz 1. Se hace incidir sobre un prisma de 60º e índice de refracció un rayo luminoso que forma un ángulo de 45º con la normal. Determinar: a) El ángulo de refracción en el interior del prisma. b) El

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui

TEMA I.2. Movimiento Ondulatorio Simple. Dr. Juan Pablo Torres-Papaqui TEMA I.2 Movimiento Ondulatorio Simple Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

6.1. Condición de magnitud y ángulo

6.1. Condición de magnitud y ángulo Capítulo 6 Lugar de las raíces La respuesta transitoria de un sistema en lazo cerrado, está ligada con la ubicación de los polos de lazo cerrado en el plano complejo S. Si el sistema tiene una ganancia

Más detalles

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra?

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra? Cómo puede un buceador estimar la profundidad a la que se encuentra? http://www.buceando.es/ Física A qué distancia podemos distinguir los ojos de un gato montés? Soy daltónico? La luz: naturaleza dual

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

5.3 Estructura térmica de la litósfera oceánica

5.3 Estructura térmica de la litósfera oceánica 513314 Geofísica de la Tierra Sólida 165 5.3 Estructura térmica de la litósfera oceánica 5.3.1 Introducción La estructura térmica de la litósfera oceánica esta restringida por las observaciones de: 1.

Más detalles

La interpretación de sismogramas

La interpretación de sismogramas 513314 Geofísica de la Tierra Sólida La interpretación de sismogramas Una clase práctica de GTS Matt Miller 2013-1 Referencia: IASPEI New Manual of Seismological Observatory Practice p. 1/20 1 Introducción

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesia Física y Geofísica I semestre, 2014 Ing. José Francisco Valverde Calderón Email: jose.valverde.calderon@una.ac Sitio web: www.jfvc.wordpress.com Prof: José Fco Valverde Calderón Geodesia Física

Más detalles

CURVATURA EN COLUMNAS

CURVATURA EN COLUMNAS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo

Más detalles

Seminario 1: Reflexión, Refracción y ángulo crítico

Seminario 1: Reflexión, Refracción y ángulo crítico Seminario 1: Reflexión, Refracción y ángulo crítico Fabián Andrés Torres Ruiz Departamento de Física,, Chile 21 de Marzo de 2007. Problemas 1. Problema 16, capitulo 33,física para la ciencia y la tecnología,

Más detalles

ELEMENTOS DE PROSPECCIÓN SÍSMICA Alfonso Muñoz Martín

ELEMENTOS DE PROSPECCIÓN SÍSMICA Alfonso Muñoz Martín ELEMENTOS DE PROSPECCIÓN SÍSMICA Alfonso Muñoz Martín. - INTRODUCCIÓN En la prospección sísmica, las ondas sísmicas se propagan hacia el interior de la tierra y se miden los tiempos de viaje de las ondas

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

Tema 6. Óptica y Ondas. Imágenes reales y virtuales (conceptos). 2. Establecer las características de las imágenes reales y las virtuales.

Tema 6. Óptica y Ondas. Imágenes reales y virtuales (conceptos). 2. Establecer las características de las imágenes reales y las virtuales. Tema 6. Óptica y Ondas CONTENIDOS Reflexión de la luz en la superficies planas y curvas. Análisis cualitativo y cuantitativo. OBJETIVOS 1. Analizar el fenómeno de reflexión de la luz y las leyes que la

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura. VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables)

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables) 6.4 Método de solución de las ecuaciones diferenciales parciales(directos, equiparables con las ordinarias, separación de variables) 439 6.4 Método de solución de las ecuaciones diferenciales parciales

Más detalles

En qué consisten los fenómenos ondulatorios de :

En qué consisten los fenómenos ondulatorios de : Cuáles son las características de una onda? Cuáles son los tipos de ondas que existen? Cuáles son las diferencias más importantes entre las ondas mecánicas y las electromagnéticas? En qué consisten los

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Tensores cartesianos.

Tensores cartesianos. Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,

Más detalles

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES"

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN GUÍAS DE ONDA Y RESONADORES UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES" Prof. Francisco J. Zamora Propagación de ondas electromagnéticas en guías

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Tema III. Propagación de ondas sísmicas: Ondas Superficiales. Anelasticidad y anisotropía. I. Propagación en un medio semiinfinito: Ondas Rayleigh

Tema III. Propagación de ondas sísmicas: Ondas Superficiales. Anelasticidad y anisotropía. I. Propagación en un medio semiinfinito: Ondas Rayleigh Tema III. Propagación de ondas sísmicas: Ondas Superficiales. Anelasticidad y anisotropía. I. Propagación en un medio semiinfinito: Ondas Rayleigh II. Propagación en un medio y una capa: OndasLove III.

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 EL MOVIMIENTO ONDULATORIO 1 Cuando a un muelle se le aplica una fuerza de 20 N, sufre una deformación de 5 cm. Cuál es el valor de la constante de recuperación? Cuáles serán sus unidades?

Más detalles

Ayudantía 1 Fibras Ópticas

Ayudantía 1 Fibras Ópticas Ayudantía 1 Fibras Ópticas Ley de Snell Utilizada básicamente para calcular el ángulo de refracción de la luz cuando cambia la superficie entre dos medios de propagación (con distinto índice de refracción).

Más detalles

Efectos del Viento y Sismos en Equipos Verticales. Entendiendo las Cargas de Viento y Sismo en Equipos Verticales. Presentado por: Intergraph

Efectos del Viento y Sismos en Equipos Verticales. Entendiendo las Cargas de Viento y Sismo en Equipos Verticales. Presentado por: Intergraph Efectos del Viento y Sismos en Equipos Verticales Entendiendo las Cargas de Viento y Sismo en Equipos Verticales Presentado por: Intergraph Considerando una Torre Típica Efectos del Viento y Sismos en

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

La propagación de la luz

La propagación de la luz La propagación de la luz 1. Introducción La luz es una onda electromagnética. Sin embargo, muchos aspectos de las ondas luminosas se pueden comprender sin considerar su carácter electromagnético. En efecto,

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor.

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor. Ondas 1. En ciertas ondas transversales la velocidad de propagación es inversamente proporcional a la densidad del medio elástico en que se propagan. Si en el fenómeno de refracción su frecuencia permanece

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

Trigonometría y Análisis Vectorial

Trigonometría y Análisis Vectorial Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el

Más detalles

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento

Más detalles

5.1.1 Geometría, condiciones de frontera y modos de propagación en una fibra óptica.

5.1.1 Geometría, condiciones de frontera y modos de propagación en una fibra óptica. 5.1 CARACTERÍSTICAS GENERALES DE LAS FIBRAS ÓPTICAS 5.1.1 Geometría, condiciones de frontera y modos de propagación en una fibra óptica. Una fibra óptica consta fundamentalmente de dos cilindros dieléctricos

Más detalles

ETSECCPB. Teoría Lineal de Oleaje

ETSECCPB. Teoría Lineal de Oleaje ETSECCPB. Teoría Lineal de Oleaje Teoría Lineal. Definición del Problema Aproximación al problema (válida solo donde las suposiciones básicas se cumplen) Otras teorías mas complejas de orden superior Descripción

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA

CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA Las superficies S1 y S2 están limitadas por la misma trayectoria S. La corriente de conducción en el cable pasa únicamente a través de

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

CAPITULO VI ONDAS ELASTICAS

CAPITULO VI ONDAS ELASTICAS CAPITULO VI ONDAS ELASTICAS - 140 - 6. ONDAS ELASTICAS La onda elástica es la perturbación efectuada sobre un medio material y que se propaga con movimiento uniforme a través de este mismo medio. La rapidez

Más detalles

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno para S.D.O. Lineales 4.1. Problemas de contorno para s.d.o. lineales. Teorema de alternativa 4.1. Problemas de contorno. Teorema de alternativa Fijemos A C 0 ([α, β]; L(R N )) y b C 0 ([α, β]; R N ), dos

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Ondas : Características de las ondas

Ondas : Características de las ondas Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Parte IV Sismolog ıa 121

Parte IV Sismolog ıa 121 Parte IV Sismología 121 513314 Geofísica de la Tierra Sólida 123 Sismología 4.1 Perspectiva Histórica 1678 - Ley de Hooke F=-ku (o σ=e ǫ) 1760 - Mitchel. Él reconoce que el movimiento del suelo debido

Más detalles

, (1) = 344 (3) (2) sonido

, (1) = 344 (3) (2) sonido !"" # # " $% " %& % % ' %& (% ) $ *!+& ' 1. INTRODUCCIÓN: En esta práctica estudiaremos la propagación de ondas sonoras (ondas armónicas producidas por un diapasón*) en el interior de un tubo semiabierto,

Más detalles

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada

DINAMICA ESTRUCTURAL. SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada DINAMICA ESTRUCTURAL SISTEMAS DE UN GRADO DE LIBERTAD Vibración Forzada Sistema sometido a cargas armónicas: Donde la carga p(t) tiene una forma senosoidal con amplitud P o y una frecuencia angular w Consideramos

Más detalles

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Seminario 3: Lentes, espejos y formación de imágenes

Seminario 3: Lentes, espejos y formación de imágenes Seminario 3: Lentes, espejos y ormación de imágenes Fabián Andrés Torres Ruiz Departamento de Física,, Chile 4 de Abril de 2007. Problemas. (Problema 8, capitulo 35,Física, Raymond A. Serway, las supericies

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Seminario 4: Óptica Geométrica

Seminario 4: Óptica Geométrica Seminario 4: Óptica Geométrica Fabián Andrés Torres Ruiz Departamento de Física,, Chile 7 de Abril de 2007. Problemas. (Problema 5, capitulo 36,Física, Raymond A. Serway, V2, cuarta edición) Un espejo

Más detalles