Sílabo de Cálculo Integral
|
|
|
- José Ángel Cortés Gallego
- hace 8 años
- Vistas:
Transcripción
1 Sílabo de Cálculo Integral Código: MAT1056 Unidades Valorativas: 4 Pre-Requisitos: Cálculo Diferencial Carreras: Ingeniería Civil Ingeniería en Computación Ingeniería Industrial Ingeniería de la Construcción Ingeniería Agrícola Ingeniería Forestal Diseño de Interiores Arquitectura Administración de Empresas Administración de Empresas Turísticas Requisitos para el curso: - Puntualidad - Responsabilidad - Manejo de herramientas de cálculo diferencial. - Tener su cuenta de Sección: Año/ Periodo: / Horario: 16:50-18:40 Días de clase: Lunes, Miércoles Nombre del catedrático (a): Elías A. Molina Lugar y horario de atención: Viernes de las 18:00 en adelante Horario de Tutorías: N/A Teléfono: Correo Electrónico: [email protected] [email protected] Página WEB D
2 DESCRIPCIÓN DEL CURSO: El curso de Cálculo Integral forma parte del segundo curso de Cálculo de de una variable y comprende la teoría de integrales y todo lo relacionado con este tema. Dentro del curso se mostrarán las técnicas de integración para la resolución de problemas que implican el cálculo de áreas bajo la curva de, así como el cálculo de volúmenes de sólidos de revolución. Además se hará uso de la integración definida para el cálculo de valores promedio de una función, la longitud del arco formado por una función. Se aplicarán los teoremas de las integrales para resolver problemas relacionados con el cálculo de magnitudes físicas y fenómenos de interés en las ciencias económicas, para impulsar el interés por parte de los alumnos en estos temas. Finalmente se estudiarán las series y todas sus variaciones y los cambios en los sistemas de coordenadas en los que puede representarse una función. OBJETIVOS DEL CURSO: Al finalizar el curso, Usted será capaz de: a) Calcular la integral de una función de una variable. b) Calcular elementos de geometría analítica como áreas y volúmenes a partir de la integración de. c) Describir procesos físicos y económicos que involucren procesos diferenciales. d) Analizar y resolver problemas que impliquen integración numérica. e) Realizar cambios de sistemas de coordenadas espaciales. f) Modelar fenómenos reales en el ámbito económico, biológico y de ingeniería que requieren de sistemas integrables. g) Aplicar las propiedades de las series numéricas para resolver problemas en los que se necesita conocer la convergencia o divergencia de datos. METODOLOGIA DE ENSEÑANZA-APRENDIZAJE a. Clases magistrales donde el maestro explica cada uno de los temas a incluir en el curso, se incentiva la participación activa mediante un corolario de preguntas y respuestas al finalizar cada tema. b. Exposiciones de problemas resueltos por los estudiantes, mediante la presentación de ejercicios que se resuelven en equipos de trabajo. c. Uso de Material interactivo, software de análisis de datos y páginas web. d. Asignación de trabajo en casa, que aparte de ser presentado será discutido en su totalidad. e. Explicación de aplicaciones de cada tema en los tópicos de interés del estudiante. f. Proyecto final de matemática aplicada al diseño de proyectos y simulación.
3 LIBRO DE TEXTO: Texto: El Cálculo, Séptima edición. Leithold. MATERIALES OBLIGATORIOS: Es muy importante que el alumno se presente a clase con su respectivo cuaderno de notas, calculadora, lápices LECTURAS COMPLEMENTARIAS Y BIBLIOGRAFÍA: El/la estudiante deberá leer uno de los siguientes libros: - El Cálculo, séptima edición. Leithold. - Guías Metodológicas de Cálculo II, UNAH. SITIOS DE INTERÉS: POLÍTICAS DEL CURSO: En el aula: Es muy apreciada la puntualidad y la disciplina. Muy bien asistir y participar regularmente a la clase ya que a diario se desarrollan actividades cuya evaluación no podrá recuperarse en caso de no haber asistido a la misma. Muy bien presentar excusa por escrito en caso de inasistencia, el reglamento de la UJCV ( documentos) así lo solicita. En esta clase (5h/semanales) por reglamento se les permiten un total de 8 inasistencias, sin embargo la asistencia perfecta será premiada. Usted tiene derecho a la reposición de uno de los exámenes de los primeros dos parciales (nunca del tercer parcial). Deberá presentar autorización firmada por la Vice- Rectoría Académica y la solvencia administrativa. No se reponen actividades y/o trabajos realizados en clase. Excelente presentar los trabajos en el día establecido por este sílabo, al inicio de clase! Los trabajos que se presenten después de la fecha establecida serán recibidos con máximo tres días de retraso, pero serán sujetos a penalización en su evaluación. Excelente NO copiar! Todo trabajo debe ser original, el plagio es un crimen punible por la ley. Todo trabajo plagiado perderá la totalidad del puntaje asignado (o sea este trabajo le valdrá cero). Muy apreciado: dejar los celulares en silencio o vibrador durante el desarrollo de la clase, si necesario, por favor, salir a contestar. Muy bien! Dejar ordenado el salón de clases al salir. Excelente apoyarse en la plataforma virtual o correo electrónico para el envío de notificaciones/asignaciones, etc. a su profesor. EVALUACIÓN y NOTAS: Este curso se aprueba con 65%
4 Los puntos serán asignados de la siguiente manera: 1er PARCIAL: Tarea en casa y clases (2) ACUMULATIVO Investigation o expo (1) EXAMEN 28 Enero, 11 Febrero de individual 30 % 20 % (100%) 50% Puntos oro (30 pts.) 15 pts. 50 % 50% 15 pts. 2º PARCIAL: individual (100%) Puntos oro (30 pts.) Tarea en casa y 30 % clases (2) ACUMULATIVO Investigation o expo (1) 20 % 50% 15 pts. EXAMEN 4 Marzo, 18 Marzo del 50 % 50 % 15 pts. 3er PARCIAL: individual 30 % (100%) Puntos oro (40 pts.) Tarea en casa y clases (2) 50% 20 pts. ACUMULATIVO Investigation o 30 % expo (1) EXAMEN FINAL 8, 22 Abril del 50 % 50 % 20pts. Asistencia y participación activa PROGRAMACIÓN: (La presente programación puede estar sujeta a cambios). FECHA(S) CONTENIDO TEMATICO OBJETIVOS ASIGNACIONES Semana 1 Semana 2 - Repaso de Cálculo Integral - Repaso de geometría y trigonometría. - La integral indefinida y sus propiedades - La integral definida y el segundo Teorema Fundamental del - Analizar el nivel de conocimientos básicos del estudiante en el área de cálculo integral y los conceptos básicos de geometría analítica. - Describir los procesos para el cálculo de integrales mediante la
5 Cálculo definición básica. Semana 3 Semana 4 Semana 5 Semana 6 Semana 7 - Cálculo de áreas bajo la curva usando métodos de Suma de Riemann - Área bajo la curva de una función. - Cálculo de áreas acotadas por dos o más mediante la integral definida. - Técnicas de Integración: Método de sustitución por cambio de variable. - Integración por partes Repaso - Integración numérica: La regla del Trapecio - Integración numérica: La regla de Simpson - Integración Trigonométrica e Integrales de trigonométricas inversas. - Integrales impropias Tipo I - Aplicar la suma de Riemann para aproximar áreas bajo la curva de - Calcular mediante la integral definida. - Aplicar la integral definida en el cálculo de áreas que se encuentran limitadas por varias. - Resolver integrales que no se pueden resolver pos sustitución simple mediante el teorema de integración por partes - Aproximar integrales de mediante métodos de integración numérica. - Resolver integrales que involucren trigonométrica s circulares inversas - Analizar y resolver - Prueba 1 Parcial 1 Prueba 2 Parcial 1
6 Semana 8 Semana 9 - Integrales impropias tipo II - Volúmenes de sólidos de revolución. Método de capas cilíndricas. - Volúmenes de sólidos de revolución. Método de arandelas o discos. - Longitud de arco de una función. integrales de cuyos límites de integración son valores infinitos. - Analizar y resolver integrales divergentes. - Calcular volúmenes de que giran sobre un eje determinado. - Identificar el método a usar tomando en cuenta la simetría y el eje de rotación. - Calcular el valor del segmento de arco que una función forma en una trayectoria determinada. Prueba 1 Parcial 2 Semana 10 Repaso Prueba 2 Parcial 2 Semana 11 - Aproximaciones polinomiales mediante Serie de Taylor. - Sucesiones - Series infinitas de términos constantes. - Series geométricas y convergencia - Series infinitas de términos positivos y criterios de comparación. - Identificar los tipos de series y establecer los criterios de convergencia y comparación necesarios para cada una de ellas.
7 Semana 12 Semana 13 Semana 14 Semana 15 - Series infinitas de términos positivos y negativos (Series alternantes) - Criterios sobre convergencia y divergencia de series infinitas. - Series de potencias - Intervalo de convergencia de una serie de potencias - Diferenciación e integración de series de potencias. - Serie binomial. - Coordenadas curvilíneas - Sistema de coordenadas polares - Secciones cónicas: La circunferencia. - La elipse. - La parábola - La hipérbola. Repaso - Analizar y describir las seres alterantes y sus respectivos criterios de convergencia y divergencia. - Identificar las series de potencias y las operaciones diferenciales que pueden presentarse en dichas series. - Establecer sistemas de coordenadas curvilíneas a partir del sistema de coordenadas rectangulares. - Enunciar y describir las secciones cónicas y sus características. - Describir matemáticame nte y gráficamente la parábola y la hipérbola y sus parámetros. Prueba 1 Parcial 3 Prueba 2 Parcial 3
Silabo de Calculo Diferencial
Silabo de Calculo Diferencial Código: MAT1045 Unidades Valorativas: 4 Pre-Requisitos: Orientación Universitaria Carreras: Arquitectura e Ingenierías. Requisitos para el curso: MAT1014 Y MAT1015 Secciones:
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS FUNDAMENTACIÓN CIENTÍFICA PROGRAMA ACADÉMICO:
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS 1. IDENTIFICACIÓN DE LA ASIGNATURA. NOMBRE: MATEMÁTICAS II CÓDIGO: CB215 ÁREA: FUNDAMENTACIÓN CIENTÍFICA PROGRAMA
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE MATEMÁTICA APLICADA LABORATORIO:
Fundamentación La matemática es una ciencia esencialmente relacional, estudia las relaciones entre los objetos matemáticos, pero al mismo tiempo es sistemática, es decir tiene organización en el sentido
TEMAS Y SUBTEMAS DEL CURSO
MA1014 Matemáticas II C - L - U: 3-0-8 Requisito: Haber aprobado MA1012 Equivalencia: MA00816, MA1004 Programas académicos: 2 BCT08, 2 BEC08, 2 BNT08, 2 BTM08, 2 IA 07, 2 IA 08, 2 IAB07, 2 IBT07, 2 IC
Programa de Cálculo II
Programa de Matemáticas Programa de Cálculo II Índice 1. Generalidades. 2 2. Información General 2 3. Descripción General 2 4. Justificación 2 5. Objetivos 3 6. Créditos Académicos 3 7. Competencias a
NOMBRE DEL CURSO: Matemática Básica 1
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS, DEPARTAMENTO DE MATEMÁTICA NOMBRE DEL CURSO: Matemática Básica 1 http://mate.ingeniería.usac.edu.gt CÓDIGO: 101 CRÉDITOS:
UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS CENTRO UNIVERSITARIO REGIONAL DEL LITORAL ATLANTICO DEPARTAMENTO DE MATEMATICAS LA CEIBA, ATLANTIDA SILABO
SILABO 1.- IDENTIFICACION CARRERA : CENTRO DE ESTUDIOS GENERALES ASIGNATURA : CALCULO II CODIGIGO : MM-202 U.V. : 5 AREA : FISICO MATEMATICA TOTAL DE HORAS : 80 HORAS REQUISITO : CALCULO I AÑO : III PERIODO,
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA
Universidad Nacional de Rio Cuarto Facultad de Ciencias Exactas, Físico-Químicas y Naturales UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FÍSICO QUÍMICAS Y NATURALES DEPARTAMENTO DE
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
Universidad de Puerto Rico Recinto de Mayagüez Colegio de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMATICAS. Juan Ariel Ortiz Navarro
Universidad de Puerto Rico Recinto de Mayagüez Colegio de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMATICAS Curso: Cálculo II Codificación: Mate 3032 Número de horas/crédito: 4 Prerrequisitos, correquisitos
INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS
ESCUELA: UPIICSA CARRERA: INGENIERIA EN TRANSPORTE ESPECIALIDAD: COORDINACION: ACADEMIAS DE MATICAS DEPARTAMENTO: CIENCIAS BASICAS ASIGNATURA: CALCULO INTEGRAL CLAVE: TMIN SEMESTRE: SEGUNDO CREDITOS: 8
Actualización de conocimientos matemáticos
Curso presencial 1. Presentación Con frecuencia encontramos artículos que hablan sobre los radicales cambios de la educación matemática y cómo esta se sigue enseñando de la misma forma y con el mismo enfoque
Sílabo de Cálculo II
Sílabo de Cálculo II I. Datos Generales Código Carácter UC0066 Obligatorio Créditos 5 Periodo Académico 2017 Prerrequisito Cálculo I Horas Teóricas 4 Prácticas 2 II. Sumilla de la Asignatura La asignatura
Asignaturas antecedentes y subsecuentes Cálculo Diferencial
PROGRAMA DE ESTUDIOS CÁLCULO INTEGRAL Área a la que pertenece: Área General Horas teóricas: 4 Horas prácticas: 2 Créditos: 10 Clave: F0034 Asignaturas antecedentes y subsecuentes Cálculo Diferencial PRESENTACIÓN
PROGRAMA INSTRUCCIONAL ASIGNATURA :CÁLCULO II. PROGRAMA: Licenciatura en Ciencias Matemáticas
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE MATEMÁTICAS ÁREA DE CÁLCULO Y ANÁLISIS PROGRAMA INSTRUCCIONAL ASIGNATURA :CÁLCULO II PROGRAMA: Licenciatura
CÁLCULO INTEGRAL HORAS TEÓRICAS UNIDADES CRÉDITO HORAS PRÁCTICAS CODIGO (COMPUTACION) (SISTEMAS) CALCULO DIFERENCIAL III
CÁLCULO INTEGRAL CODIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES CRÉDITO SEMESTRE PRE REQUISITO 213154 (COMPUTACION) 223154 (SISTEMAS) 03 02 04 III CALCULO DIFERENCIAL ELABORADO POR REVISADO POR APROBADO
CALCULO INTEGRAL 2AMB
INSTITUTO TECNOLÓGICO SUPERIOR DEL SUR DEL ESTADO DE YUCATÁN Organismo Público Descentralizado del Gobierno del Estado de Yucatán CALCULO INTEGRAL 2AMB Horario: Martes: 9:30 a 11:30 Jueves: 8:30 a 9:30
Asignaturas antecedentes y subsecuentes Cálculo Diferencial
PROGRAMA DE ESTUDIOS CÁLCULO INTEGRAL Área a la que pertenece: ÁREA SUSTANTIVA PROFESIONAL Horas teóricas: 4 Horas prácticas: 2 Créditos: 10 Clave: F0034 Asignaturas antecedentes y subsecuentes Cálculo
e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105
e+ I f 1.1 Números reales y desigualdades 2 1.2 Coordenadas y rectas 16 1.3 Circunferencias y gráficas de ecuaciones 32 1.4 Funciones 42 1.5 Gráficas de funciones S5 1.6 Funciones trigonométricas 61 Ejercicios
Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios
l' Indice de contenido Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades Ejes de coordenadas / Coordenadas / Cuadrantes / Fórmula de la distancia / Fórmulas
DEPARTAMENTO DE MATEMATICA CALCULO EN UNA VARIABLE 2010 LICENCIATURA EN SISTEMAS
UNIVERSIDAD CAECE DEPARTAMENTO DE MATEMATICA PROGRAMA DE: CALCULO EN UNA VARIABLE CODIGO DE LA CARRERA 072 AÑO 1º CARRERA: PLAN DE LA CARRERA CODIGO ASIGNATURA 10 1618/10S CUATRIMESTRE VIGENCIA 2º 2010
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO II SEMESTRE 1/2015 INFORMACIÓN GENERAL
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO II SEMESTRE 1/2015 INFORMACIÓN GENERAL I. INFORMACIÓN CURRICULAR Código: 0252 Unidades: 5 Horas semanales:
INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS
ESCUELA: UPIICSA CARRERA: INGENIERÍA INDUSTRIAL ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS ASIGNATURA: CÁLCULO INTEGRAL CLAVE: IMCI SEMESTRE : do. CRÉDITOS: 8 VIGENTE:
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS SILABO P.A. 2012-I 1. INFORMACION GENERAL Nombre del
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL SILABO DE MATEMÁTICAS II I. DATOSGENERALES 1.0. Unidad Académica : Ingeniería Ambiental 1.1. Semestre Académico : 2018-1B
MAT022 : CRONOGRAMA SEMESTRE
MAT022 : CRONOGRAMA SEMESTRE 2015-2 Semana Cálculo Complementos Semana 1 Repaso de derivadas: regla de la cadena, derivación Matrices. Álgebra Básica de Matrices. Clase 1 paramétrica, regla de L'Hopital.
UNIVERSIDAD RURAL DE GUATEMALA ASIGNATURA: MATEMÁTICA III CODIGO: CB011 PRERREQUISITO: CB005 MATEMATICAS II
1 UNIVERSIDAD RURAL DE GUATEMALA ASIGNATURA: MATEMÁTICA III CODIGO: CB011 PRERREQUISITO: CB005 MATEMATICAS II 1. Descripción: Este curso está integrado por 6 unidades, en donde se desarrollan temas fundamentales
PROGRAMA INSTRUCCIONAL MATEMÁTICA II
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA PROGRAMA INSTRUCCIONAL MATEMÁTICA II CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A
UNIVERSIDAD LIBRE FACULTAD DE INGENIERIA SYLLABUS. Carácter asignatura O X E OP Prerrequisitos: Álgebra y Trigonometría y Cálculo Diferencial.
PROGRAMA: CIENCIAS BÁSICAS UNIVERSIDAD LIBRE Área de formación: MATEMÁTICAS Asignatura: CÁLCULO INTEGRAL Código: 02303 Semestre: TERCERO N de créditos: 3 Horas presenciales: 64(4h semanales) Horas independientes:
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA PROGRAMA INSTRUCCIONAL DATOS BÁSICOS DE LA ASIGNATURA Nombre de la asignatura: Código Semestre U.C. Pre- Requisito MATEMÁTICA II
Matemáticas para Arquitectos 2
Matemáticas para Arquitectos 2 Área Académica : Tecnología Docente : Francisco Ugarte Guerra Coordinador de teoría y prácticas: Francisco Ugarte Guerra Jefe de Práctica : Créditos : 4 créditos Nivel :
Carrera: QUÍMICO FARMACOBIOLOGO Asignatura: CALCULO INTEGRAL Área del Conocimiento: Ciencias Básicas Fundamentales. Cálculo Integral.
Carrera: QUÍMICO FARMACOBIOLOGO Asignatura: CALCULO INTEGRAL Área del Conocimiento: Ciencias Básicas Fundamentales Generales de la Asignatura: Nombre de la Asignatura: Cálculo Integral. Clave Asignatura:
INDICE Presentación Preliminar del Cálculo 1. Funciones y Modelos 2. Límites y Derivadas Problemas especiales 3. Reglas de Derivación
INDICE Presentación Preliminar del Cálculo 2 1. Funciones y Modelos 10 1.1. Cuatro maneras de representar una función 11 1.2. Modelos matemáticos 24 1.3. Nuevas funciones a partir de funciones ya conocidas
Universidad Ricardo Palma
Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA DEPARTAMENTO ACADÉMICO DE CIENCIAS PLAN DE ESTUDIOS 2006 II SÍLABO 1. DATOS ADMINISTRATIVOS 1.1
PROGRAMA DE MATEMÁTICA II
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICERECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA NUCLEO: 2 / COORDINACIÓN DE MATEMÁTICA II PROGRAMA DE MATEMÁTICA II Código:
Análisis Matemático 1 para estudiantes de Ingeniería
Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de
INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales
INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:
PLAN DE ESTUDIOS: 3 ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 1. DATOS GENERALES PRERREQUISITOS/CORREQUISITOS: NINGUNO VERSIÓN: UNO 2.
Página 1 de 6 PROGRAMA: INGENIERÍA DE TELECOMUNICACIONES PLAN DE ESTUDIOS: 3 ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 68 ASIGNATURA/MÓDULO/SEMINARIO: CÁLCULO DIFERENCIAL 1. DATOS GENERALES CÓDIGO: 911115
UNIVERSIDAD DE GUANAJUATO CAMPUS LEÓN; DIVISIÓN DE CIENCIAS E INGENIERÍAS
NOMBRE DE LA ENTIDAD: NOMBRE DEL PROGRAMA EDUCATIVO: UNIVERSIDAD DE GUANAJUATO CAMPUS LEÓN; DIVISIÓN DE CIENCIAS E INGENIERÍAS Licenciatura en Ingeniería Química NOMBRE DE LA MATERIA: Cálculo Integral
ESCUELA COLOMBIANA DE INGENIERÍA
ESCUELA COLOMBIANA DE INGENIERÍA ASIGNATURA: CÁLCULO INTEGRAL y ECUACIONES DIFERENCIALES DEPARTAMENTO: MATEMÁTICAS PLANES DE ESTUDIO: CÓDIGO: Mnemónico CIED Numérico 1. OBJETIVOS GENERALES Estudiar los
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura NOMBRE DE LA ASIGNATURA: CÁLCULO DIFERENCIAL E INTEGRAL PLAN 2007 Tipo de Asignatura:
CALCULO 1 COMISION 1
PROGRAMA ANALÍTICO CALCULO 1 COMISION 1 Unidad 1: Funciones, Límite y Continuidad de funciones Desigualdades. Inecuaciones. Valor absoluto. Funciones: Dominio, Imagen, Intersecciones con los ejes. Funciones
PROGRAMA INSTRUCCIONAL MATEMÁTICA II
UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA AL MATEMÁTICA
DEPARTAMENTO DE MATEMÁTICAS Página 1
DEPARTAMENTO DE MATEMÁTICAS Página 1 APROBADO EN EL CONSEJO DE LA FACULTAD DE CIENCIAS EXACTAS ACTA 13 DEL 21 ABRIL 2010A L PROGRAMAS DEL DEPARTAMENTO DE MATEMÁTICAS El presente formato tiene la finalidad
CÁLCULO INTEGRAL TEMARIO
CÁLCULO INTEGRAL TEMARIO 1. LA INTEGRAL 1.1 La integral indefinida Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Elementos
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA PROGRAMA INSTRUCCIONAL DATOS BÁSICOS DE LA ASIGNATURA Nombre de la asignatura: Código Semestre U.C. Pre- Requisito MATEMÁTICA III
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática
CÁLCULO DIFERENCIAL E INTEGRAL (1202). ÁREA DE CONOCIMIENTO: MATEMATICAS CRÉDITOS: 7 HORAS TEÓRICAS ASIGNADAS A LA SEMANA: 4 HORAS PRÁCTICAS ASIGNADAS A LA SEMANA: 0 PROGRAMAS EDUCATIVOS EN LOS QUE SE
DEPARTAMENTO DE MATEMÁTICAS Página 1
DEPARTAMENTO DE MATEMÁTICAS Página 1 APROBADO EN EL CONSEJO DE LA FACULTAD DE CIENCIAS EXACTAS Y NATURALES ACTA 13 DEL 21 ABRIL 2010 PROGRAMAS DEL DEPARTAMENTO DE MATEMÁTICAS El presente formato tiene
PROGRAMA DE MATEMÁTICAS PRONTUARIO
Página 1 de 6 UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO METROPOLITANO FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE CIENCIAS DE COMPUTADORAS Y MATEMÁTICAS I. INFORMACIÓN GENERAL PROGRAMA DE
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FCO-QCAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS FCO-QCAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA CARRERA: Licenciatura en Geología ASIGNATURA: CÁLCULO CÓDIGO: 3600 PROFESOR RESPONSABLE:
Carta al estudiante MAT003 Cálculo II
1. Aspectos generales del curso Unidad: Escuela de Matemática Nombre: Cálculo II Código: MAT003 Nivel: Bachillerato Periodo lectivo: I y II ciclo Tipo de curso: Regular Modalidad: Presencial Naturaleza:
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (UNIVERSIDAD DEL PERÚ, DECANA DE AMÉRICA) FACULTAD DE QUÍMICA E INGENIERÍA QUÍMICA ESCUELA ACADÉMICO PROFESIONAL DE QUÍMICA 07.1 Departamento Académico de Ciencias
PROGRAMA DE CURSO. Cálculo Diferencial e Integral. Nombre en Inglés Single variable calculus SCT ,0 2,0 5,0
PROGRAMA DE CURSO Código MA1002 Nombre Cálculo Diferencial e Integral Nombre en Inglés Single variable calculus Unidades Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA SYLLABUS (2014) FACULTAD DE INGENIERIA NOMBRE DEL DOCENTE: DOCENTES DE MATEMÀTICAS FACULTAD DE INGENIERÌA ESPACIO ACADÉMICO (Asignatura):
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA INDUSTRIAL
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA INDUSTRIAL I. DATOS GENERALES SILABO CÁLCULO VECTORIAL 1.0. Unidad Académica : Ingeniería Industrial 1.1. Semestre Académico : 2018
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL I. DATOS GENERALES SILABO DE CÁLCULO VECTORIAL 1.0. Unidad Académica : Ingeniería Civil 1.1. Semestre Académico : 2018 1B 1.2.
https://serviciosva.itesm.mx/planesestudio/consultas/materias/consultamaterias.aspx?form=consultar_materias_analiticoesp&clavemateria=ma1017
Datos de la materia Nombre de la Matemáticas para Ingeniería II materia: Clave de la MA1017 materia: Liga al programa de la asignatura: Competencias CE1. Aplicar el análisis y pensamiento matemático para
Universidad de Guanajuato Tronco Común de Ingnierías
Objetivo del Area. Programa. Universidad de Guanajuato Tronco Común de Ingnierías Diseñar modelos matemáticos y proponer alternativas de solución a problemas. AREA: Matemáticas MATERIA: Cálculo II CLAVE:
UNIVERSIDAD NACIONAL DE ITAPÚA FACULTAD DE HUMANIDADES, CIENCIAS SOCIALES Y CULTURA GUARANÍ Encarnación Paraguay
PROGRAMA DE ESTUDIOS I - IDENTIFICACIÓN CARRERA: Licenciatura en Ciencias de la Educación con mención en Matemática ASIGNATURA: Matemática VI (Calculo Infinitesimal) CURSO: Tercero CARGA HORARIA: Semanales:
Objetivos de la materia:
Objetivos de la materia: Desarrollar formal y sistemáticamente competencias y habilidades de cálculo diferencial e integral necesarias como herramienta fundamental para la ingeniería y concurrentemente
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 CICLO BÁSICO DE INGENIERÍA ASIGNATURA
PROGRAMA DETALLADO VIGENCIA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 CICLO BÁSICO DE INGENIERÍA SEMESTRE ASIGNATURA 1er. GEOMETRÍA ANALÍTICA CÓDIGO HORAS MAT-21524 TEORÍA
UNIVERSIDAD MILITAR NUEVA GRANADA
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2013/07/12 Revisión No. 1 AC-DO-F- Página 1 de NOMBRE DEL CONTENIDO PROGRAMÁTICO: CALCULO INTEGRAL CÓDIGO 100103 PROGRAMA Cálculo Integral ÁREA DE FORMACIÓN Ciencias
CÁLCULO DIFERENCIAL E INTEGRAL
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1111 SEMESTRE:
Matemáticas para estudiantes de Química
Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes
