Segunda Ley y los procesos espontáneos... Abstract

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Segunda Ley y los procesos espontáneos... Abstract"

Transcripción

1 Segunda Ley y los procesos espontáneos... Víctor Romero Rochín Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal , México D. F , México. Abstract En esta clase se revisa el hecho que la 2a. Ley de la Termodinámica implica que en cualquier proceso que ocurra en un sistema térmicamente aislado, la entropía aumenta o se queda igual. En particular, si el proceso es espontáneo, la entropía aumenta. Se muestra cómo es posible calcular dicho cambio de entropía, a pesar de que el sistema no pasa por estados de equilibrio termodinámico. Se discuten dos ejemplos sencillos. 1

2 En clases anteriores mostramos que la 2a. Ley, en particular, usando la desigualdad de Clausius, implica que si un proceso ocurre de un estado de equilibrio inicial i a uno final f, de equilibrio también, por medio de un proceso arbitrario, reversible o no, entonces se cumple que S f S i f n=i Q n T n (1) donde S i y S f son las entropías de los estados inicial y final, T n son las temperaturas de las fuentes térmicas con las que intercambio calor el sistema y Q n son los calores intercambiado. Si el proceso es reversible (es decir, quasiestático y pasando por estados de equilibrio) entonces la igualdad se cumple. En ese caso podemos dividir al proceso completo como la integral de procesos infinitesimales en los que se puede escribir, dq = T ds (2) donde dq indica una diferencial inexacta. Si el proceso es reversible o no, pero ocurre térmicamente aislado, es decir, a lo más permitiendo la realización de trabajo, entonces el intercambio de calor con los alrededores es cero: Q n = 0 para toda n. En este caso llegamos a uno de los resultados más importantes de la Segunda Ley: S f S i 0. (3) En palabras, en cualquier proceso que ocurra en un sistema térmicamente aislado, i.e. que no intercambie ninguna forma de calor con sus alrededores, la entropía aumenta o se queda igual. Si se queda igual, entonces el proceso en sentido contrario es también posible. Decimos entonces que si la entropía se queda igual el proceso es reversible; si la entropía aumenta el proceso es irreversible. Este resultado, además de decirnos que en todos los procesos naturales térmicamente aislados de sus alrededores, la entropía esencialmente siempre aumenta, nos permite a su vez determinar, dados dos estados de equilibrio de tales sistemas, determinar si existe o no un proceso que nos pueda llevar de un estado al otro. Es decir, aunque los procesos de sistemas macroscópicos son muy difíciles de calcular, la termodinámica nos permite decir si un proceso es posible o no. A su vez, desde un punto de vista un poco más filosófico, 2

3 tapón termómetro agua gas vacío V 1 V 2 FIG. 1. Expansión libre de un gas ideal. podemos decir que la Segunda Ley nos determina la dirección del tiempo: los procesos ocurren en la dirección del incremento de la entropía y esto define el pasado y el futuro de los sistemas macroscópicos. Un tipo de proceso que es necesariamente irreversible son los procesos espontáneos que ocurren en sistemas térmicamente aislados. Aqui discutiremos dos casos muy sencillos: la expansión libre de un gas ideal y el intercambio de calor entre dos cuerpos en contacto a diferentes temperaturas. Veremos que la entropía aumenta, lo que los hace irreversibles, pero sin necesidad de calcular los detalles del proceso en sí. I. EXPANSIÓN LIBRE DE UN GAS IDEAL Recordemos el problema de la expansión libre. Este se muestra en la figura 1: un gas de N átomos se encuentra en un recipiente térmicamente aislado de volumen V 1. El gas se encuentra a temperatura T. Como es un gas ideal monoatómico sabemos que su energía es E = 3/2NkT y su presión es p = NkT/V 1. El sistema también tiene una entropía S 1 bien definida, S 1 = S 1 (N, V 1, E) (aunque en estos momentos no sepamos su valor). El recipiente se encuentra conectado a otro recipiente de volumen V 2 por medio de un tapón inicialmente cerrado. En un instante dado, el tapón desaparece y el gas se expande espontáneamente llenando 3

4 todo el volumen V 1 + V 2. Dejamos que pase un buen rato hasta que el gas se equilibra de nuevo. El proceso es evidentemente irreversible. Es decir, el gas no regresará de manera espontánea a ocupar sólo el volumen V 1! Como el sistema está térmicamente aislado Q = 0, no entra ni sale calor del sistema. La condición de expansión libre es que el gas se expande sin empujar nada, es decir, no hace ningún trabajo, W = 0. Por lo tanto E = 0. Como la energía sólo depende de T, a N constante, la temperatura final es la misma que la inicial. Note que no podemos decir que la temperatura se mantuvo constante, sólo que la del estado inicial y final es la misma. Durante el proceso de expansión el gas está en estados de no equilibrio y, por lo tanto, no podemos definir su temperatura. Pero bueno, sí sabemos el estado final de equilibrio, que es N átomos en un volumen V 1 + V 2, a temperatura T. Este estado también tiene una entropía bien definida S 2 = S 2 (E, V 1 + V 2, N)... El resultado interesante es que podemos calcular el incremento de entropía S 2 S 1 por medio de un proceso reversible, sin necesidad de saber los detalles de la expansión libre. Hallaremos que S 2 S 1 > 0, es decir, el proceso es técnicamente irreversible. Veámos. Notamos que tanto el estado inicial como el final son de equilibrio. Ambos tienen bien definida la entropía. Vea la figura 2. Entonces, podemos imaginarnos un proceso reversible que inicie en el estado 1 y termine en el estado 2. Sin embargo, para hacerlo, necesitamos poner en contacto al sistema con alrededores apropiados. Debido a que la temperatura es la misma en los estados inicial y final, consideremos un proceso isotérmico reversible (todos los procesos isotérmicos son reversibles, sólo estamos haciendo énfasis). Este proceso debe ser una expansión isotérmica a T = constante, de V 1 a V 1 + V 2. Para lograrlo necesitamos un agente externo sobre el que se haga trabajo y la presencia de una fuente térmica a T para poder mantener la temperatura del gas. Como la expansión isotérmica es reversible podemos escribir a lo largo de todo el proceso, de = dq + dw = T ds pdv (4) Como el proceso es isotérmico y se trata de un gas ideal, entonces de = 0 en todo el proceso. 4

5 p T V 1 V 1 + V 2 V FIG. 2. Los puntos negros denotan los estados de equilibrio inicial y final de la expansión libre. La curva es el proceso isotérmico reversible que conecta los estados anteriores. Así, ds = p T dv = Nk dv V (5) donde en la segunda igualdad usamos la ecuación de estado de gas ideal p = NkT/V. Integrando la anterior expresión del estado inicial al final S2 S 1 ds = Nk V1 +V 2 V 1 dv V (6) lo que nos da S 2 S 1 = Nk ln V 1 + V 2 V 1 > 0. (7) El incremento de la entropía mayor que cero porque el logaritmo de un número mayor que uno es positivo... el proceso de expansión libre es, como era de esperarse, irreversible. II. FLUJO DE CALOR ENTRE DOS CUERPOS A DIFERENTE TEMPER- ATURA Considere dos sistemas a diferente temperatura T 1 > T 2, separados por una pared que no permite el paso del calor, vea la figura 3. Los dos sistemas a su vez, están térmicamente aislados del exterior. Para hacer el cálculo más sencillo, supongamos que los sistemas son 5

6 T 1 T 2 C V C V pared aislante y rígida FIG. 3. Dos cuerpos aislados inicialmente con temperaturas T 1 > T 2. La capacidad calorífica es la misma para ambos cuerpos. del mismo material y que tienen la misma masa N 1 = N 2. Además, supongamos que la capacidad calorífica a volumen constante sólo depende de N, es decir, la podemos considerar como una constante. En un tiempo dado, la pared que separa a los dos cuerpos pierde su propiedad de aislante, se hace diatérmica, y permite el paso del calor. Se inicia un proceso espontáneo hasta que los cuerpos se termalizan a la misma temperatura T. Este proceso es irreversible pues nunca veríamos que estando a la misma temperatura, de manera espontánea uno se enfriara y el otro se calentara. Nuestra intuición cotidiana nos indica que el caliente, a T 1 se enfriará a T y el frío se calentará a T, es decir T 2 > T > T 1. Veremos a continuación que esto realmente pasa y que el proceso es irreversible, en el sentido que la entropía final del sistema completo es mayor que la inicial. Inicialmente, la energía del sistema es E i = E 1i +E 2i y su entropía es S i = S 1i +S 2i, donde el subíndice i indica que es estado inicial. Como el sistema completo de los dos cuerpos está térmicamente aislado no entra ni sale calor, Q = 0. Además, como no existe ningún cambio de volumen, tenemos W = 0. Por lo tanto, E = E f E i = 0. Sin embargo, sífluye calor de un cuerpo a otro, es decir Q = Q 1 + Q 2 = 0 (8) 6

7 donde Q 1 es el calor que el cuerpo 1 recibe o cede (orita vemos) y Q 2 es el del cuerpo 2. Tenemos Q 1 = Q 2. La energía de cada cuerpo también cambia E 1 = E 2, con E 1 = Q 1 y E 2 = Q 2. En el estado final los dos cuerpos tienen la misma temperatura, pero entropías S 1f y S 2f, tal que (S if + S 2f ) (S i1 + S i2 ) > 0. Veámos. De nuevo, la estrategia es reemplazar el proceso irreversible fuera de equilibrio por uno que sea reversible, conectando los estados iniciales y finales de los cuerpos en cuestión. Uno de ellos se enfría lentamente manteniéndose en equilibrio, mientras que el otro se calienta. La idea es suponer que inicialmente el cuerpo 1 está en contacto con una fuente a temperatura T 1, luego lo ponemos en contacto con otro cuerpo a temperatura T 1 dt hasta que se equilibre; luego en contacto con otro a T 2 2dT... etc, hasta que el cuerpo alcance la temperatura T. Al otro cuerpo se le hace un proceso análogo. Los procesos son pues reversibles y podemos escribir de 1 = dq 1 + dw 1 Los trabajos son cero, dw 1 = dw 2 = 0. Usamos dq = C V dt, de 2 = dq 2 + dw 2 (9) de 1 = C V dt 1 de 2 = C V dt 2. (10) Como, por suposición, C V es la misma constante para ambos cuerpos podemos integrar: el cuerpo 1 de T 1 a T y el cuerpo 2 de T 2 a T, Ef1 T obteniendo E i1 Ef2 E i2 de 1 = C V de 1 = C V T 1 dt 1 T T 2 dt 1 (11) E 1 = C V (T T 1 ) E 2 = C V (T T 2 ). (12) Si ahora usamos el resultado que E 1 = E 2, obtenemos una ecuación para T. El resultado es, T = T 1 + T 2. (13) 2 7

8 Cuidado! obtuvimos que la temperatura final es el promedio de las iniciales, i.e. la temperatura a la mitad del intervalo entre las iniciales, porque supusimos que las capacidades caloríficas son las mismas. En general esto no es cierto... Pero bueno, ya tenemos en este caso la temperatura final. Ahora calculemos los cambios de entropía, de nuevo, usando los procesos reversibles. Usando la definición de la entropía ds = dq/t, y dq = C V dt, e integrando obtenemos que nos da Sf1 S i1 Sf2 S i2 ds 1 = C V ds 2 = C V T dt T 1 T T T 2 dt T (14) S 1 = C V ln T 1 + T 2 2T 1 S 2 = C V ln T 1 + T 2 2T 2. (15) El cambio de entropía total es S = S 1 + S 2, ( S = C V ln T 1 + T 2 + ln T ) 1 + T 2 2T 1 2T 2 = C V ln (T 1 + T 2 ) 2 0. (16) 4T 1 T 2 Esta cantidad es positiva porque el argumento del logaritmo es mayor o igual que uno, chequemos, (T 1 + T 2 ) 2 4T 1 T 2 1 T T 1 T 2 + T 2 2 4T 1 T 2 (T 1 T 2 ) 2 0 (17) lo cual es cierto. La igualdad se satisface cuando T 1 = T 2. Si T 1 > T 2 el proceso es irreversible. Notemos algo interesante. El sistema 1 cedió calor Q 1 y el sistema 2 recibió Q 2 con Q 1 = Q 2, es decir, conservación de energía. Sin embargo, el cuerpo 1 perdió entropía, S 1 < 0, mientras que el cuerpo 2 ganó entropía S 2 > 0... pero no hay balance! la suma es positiva... en los procesos irreversibles, la entropía total siempre aumenta. 8

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura:

FÍSICA Usando la convención gráfica según la cual una máquina simple que entrega trabajo positivo se representa como en la figura: FÍSICA 4 PRIMER CUARIMESRE DE 05 GUÍA : SEGUNDO PRINCIPIO, MÁUINAS ÉRMICAS. Demostrar que: (a) Los postulados del segundo principio de Clausius y de Kelvin son equivalentes (b) Ninguna máquina cíclica

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

La segunda ley de La termodinámica se puede establecer de tres formas diferentes.

La segunda ley de La termodinámica se puede establecer de tres formas diferentes. La segunda ley de La termodinámica se puede establecer de tres formas diferentes. 1.- La energía calorífica fluye espontáneamente desde un objeto mas caliente a uno más frio, pero no en sentido inverso.

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

CRITERIOS DE ESPONTANEIDAD

CRITERIOS DE ESPONTANEIDAD CRITERIOS DE ESPONTANEIDAD Con ayuda de la Primera Ley de la Termodinámica podemos considerar el equilibrio de la energía y con La Segunda Ley podemos decidir que procesos pueden ocurrir de manera espontanea,

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

1. Probabilidad de que se encuentre en uno de los dos lados del envase depende. Para una partícula. Para dos partículas.

1. Probabilidad de que se encuentre en uno de los dos lados del envase depende. Para una partícula. Para dos partículas. TERCERA LEY DE TERMODINÁMICA, ENERGÍA LIBRE DE GIBBS-HELMHOLTZ Y GIBBS I. Estadística (entropía) - aumento en el desorden de la energía y configuración espacial. A. = configuración B. Ejemplo: 1. Probabilidad

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía.

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 2: Segundo principio de la termodinámica. Entropía. 1. Demostrar que: (a) Los postulados del segundo principio de Clausius

Más detalles

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT.

PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. PRIMER PRINCIPIO DE LA TERMODINÁMICA. Ciclo de CARNOT. Se mantiene un gas a presión constante de 0 atm mientras se expande desde un volumen de 0 005 m 3 hasta uno de 0 009 m 3. Qué cantidad de calor se

Más detalles

3. PROPIEDADES Y ESTADOS

3. PROPIEDADES Y ESTADOS 3. PROPIEDADES Y ESTADOS 3.1 LOS CONCEPTOS DE PROPIEDAD Y ESTADO La propiedad es cualquier característica o atributo que se puede evaluar cuantitativamente El volumen La masa La energía La temperatura

Más detalles

Sistemas termodinámicos

Sistemas termodinámicos Sistemas termodinámicos aredes Sistema Q, W, m Entorno Universo Se denomina sistema a aquella porción del universo que queremos estudiar. El resto del universo (o sea, el universo menos el sistema), es

Más detalles

1. Definición de trabajo

1. Definición de trabajo ermodinámica. ema rimer rincipio de la ermodinámica. Definición de trabajo Energía transmitida por medio de una conexión mecánica entre el sistema y los alrededores. El trabajo siempre se define a partir

Más detalles

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Programa de la asignatura: IEM-211 Termodinámica I Total de Créditos:

Más detalles

Bol. 2: Convección Atmosférica y Nubes

Bol. 2: Convección Atmosférica y Nubes Bol. 2: Convección Atmosférica y Nubes Termodinámica El link entre la circulación y la transferencia de calor latente, sensible y radiación entre la superficie y la atmósfera es termodinámica. Termodinámica

Más detalles

Tema 3: Termoquímica. Termoquímica Conceptos básicos Primer principio Entalpía Ley de Hess Segundo principio

Tema 3: Termoquímica. Termoquímica Conceptos básicos Primer principio Entalpía Ley de Hess Segundo principio Tema 3: Termoquímica Objetivos. Principios y conceptos básicos. Primera ley de la termodinámica. Energía interna y entalpía. Calores de reacción. Ley de Hess. Segunda ley de la termodinámica. Entropía.

Más detalles

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v FÍSICA 4 SEGUNDO CUARIMESRE DE 2009 GUÍA 3: OENCIALES ERMODINÁMICOS, CAMBIOS DE FASE 1. Sean x,, z cantidades que satisfacen una relación funcional f(x,, z) = 0. Sea w una función de cualquier par de variables

Más detalles

Pauta Certamen N o 3

Pauta Certamen N o 3 Pauta Certamen N o 3 2 do Semestre 2014 Termodinámica Universidad Técnica Federico Santa María Datos: R = 0,02 [atm L / mol K] =,31[J/mol K] Problema 1 (2 ptos.) Un cilindro de [cm] de radio y 60 [cm]

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 () Obtener la ecuación de la recta tangente a la curva x 3 +y 3 =9xy en el punto (, ). () La ley adiabática (sin pérdida ni ganancia de

Más detalles

1.- Pricipios Termodinámicos.

1.- Pricipios Termodinámicos. REFRIGERACIÓN INDUSTRIAL. 1.- Pricipios Termodinámicos. Bibliografía: Sears, F.W. & Salinger, G.L.; Thermodynamics, Kinetic Theory, and Statistical Thermodynamics; Adison-Wesley Publishing Company, 1975.

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Teóricas de Análisis Matemático (8) Práctica 0 Ecuaciones Diferenciales Práctica 0 Parte Ecuaciones Diferenciales Si un fenómeno está representado por una función f, la derivada de f representa la variación

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

Calor y Trabajo. Primer Principio de la Termodinámica

Calor y Trabajo. Primer Principio de la Termodinámica alor y Trabajo. Primer Principio de la Termodinámica apacidad calorífica y calor específico El calor es energía y se mide en unidades de energía como el julio, aloría: cantidad de calor necesaria para

Más detalles

Descripción General de los Sistemas Abiertos 30 de abril de 2009

Descripción General de los Sistemas Abiertos 30 de abril de 2009 CELIA GOZÁLEZ ÁGEL JIMÉEZ IGACIO LÓPEZ RAFAEL IETO Descripción General de los Sistemas Abiertos 30 de abril de 2009 Cuestiones y problemas: C5.40, C5.42, C5.44, C5.47, C5.51, C5.52, P3.14, P3.19 subrayados

Más detalles

Energía y primera ley de la termodinámica

Energía y primera ley de la termodinámica Unidad II Energía y primera ley de la termodinámica - Trabajo. Calor En la unidad 1 se hizo una clasificación de los sistemas en función de que si sus paredes son atravesadas por masa o no, aquí ampliamos

Más detalles

Energía Interna (E): Expresa la energía total de un sistema. Es la capacidad que tiene un sistema de desarrollar algún tipo de trabajo.

Energía Interna (E): Expresa la energía total de un sistema. Es la capacidad que tiene un sistema de desarrollar algún tipo de trabajo. Bioenergética Estudia el flujo de energía en los procesos biológicos, fisiológicos y bioquímicos. Se le conoce como la termodinámica aplicada a los sistemas biológicos. Conceptos básicos Energía Interna

Más detalles

Segundo Principio de la Termodinámica

Segundo Principio de la Termodinámica Segundo Principio de la ermodinámica 1. Insuficiencia del Primer Principio. 2. Máquinas érmicas. Rendimiento de una máquina térmica 3. Enunciados clásicos del Segundo Principio de la ermodinámica. 4. Máquina

Más detalles

Ayudantía 9 - Soluciones Teorema del Máximo trabajo

Ayudantía 9 - Soluciones Teorema del Máximo trabajo Ponticia Universidad Católica de Chile Facultad de Física ermodinámica y eoría Cinética: Fiz 011 Ayudantía 9 - Soluciones eorema del Máximo trabajo Profesor: Miguel Kiwi mkiwi@puc.cl Ayudante: Daniel Narrias

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

1. Primer principio de la termodinámica.

1. Primer principio de la termodinámica. 1. Primer principio de la termodinámica. Conceptos previos La termodinámica es la parte de la Física que se encarga de estudiar los cambios en los sistemas físicos en los que interviene el calor. En primer

Más detalles

Motores térmicos o maquinas de calor

Motores térmicos o maquinas de calor Cómo funciona una maquina térmica? Motores térmicos o maquinas de calor conversión energía mecánica a eléctrica En nuestra sociedad tecnológica la energía muscular para desarrollar un trabajo mecánico

Más detalles

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta:

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta: Guía de Trabajo Procesos Termodinámicos Nombre: No. Cuenta: Resolver cada uno de los ejercicios de manera clara y ordenada en hojas blancas para entregar. 1._a) Determine el trabajo realizado por un fluido

Más detalles

Termodinámica. Calor y Temperatura

Termodinámica. Calor y Temperatura Termodinámica Calor y Temperatura 1 Temas 1. TEMPERATURA Y LEY CERO. 1.1 Equilibrio Térmico y ley cero de la termodinámica. 1.2 Concepto de temperatura. 1.3 Tipos de termómetros. 1.4 Escalas de temperatura.

Más detalles

SEGUNDA LEY DE LA TERMODINAMICA

SEGUNDA LEY DE LA TERMODINAMICA U n i v e r s i d a d C a t ó l i c a d e l N o r t e E s c u e l a d e I n g e n i e r í a Unidad 4 SEGUNDA EY DE A ERMODINAMICA Segunda ey a 2 ey de la ermodinámica nos permite establecer la direc ción

Más detalles

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar 242 6. Propiedades termodinámicas de los fluidos La energía interna es 34 10 bar 32 J Estos resultados concuerdan mucho más con los valores experimentales que los del supuesto caso del vapor de l-buteno

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Clase 2. Calorimetría 1º Ley de la termodinámica

Clase 2. Calorimetría 1º Ley de la termodinámica Clase 2 Calorimetría 1º Ley de la termodinámica Definiciones SISTEMA Cualquier parte del universo que se desea estudiar. La posición exacta de las fronteras del sistema se fija de acuerdo al problema que

Más detalles

El Equilibrio Termodinámico. Tipos de Equilibrios.

El Equilibrio Termodinámico. Tipos de Equilibrios. TEMA 1.) CONCEPTOS BASICOS Sistema Termodinámico. Paredes. Tipos de Sistemas. Criterio de Signos. Estado Termodinámico. El Equilibrio Termodinámico. Tipos de Equilibrios. Variables Termodinámicas. Procesos

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario?

Electricidad y calor. Una introducción... Temas. 5. Segunda ley de la Termodinámica. Por qué unos procesos ocurren en un sentido y no en el contrario? Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 Temas 5. Segunda ley de la Termodinámica. i. Máquinas térmicas y su eficiencia. ii. Segunda

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Responsable : Dr. Mario Enrique Alvarez Ramos Colaboradores: Dra. María Betsabe Manzanares Martínez

Más detalles

Física de Sistemas Fuera del Equilibrio Gas de Knudsen

Física de Sistemas Fuera del Equilibrio Gas de Knudsen Física de Sistemas Fuera del Equilibrio Gas de Knudsen Iñigo Romero Arandia 9 de mayo de. Ejercicio 6: Efusión en el gas de Knudsen El gas de Knudsen es una configuración experimental en la que dos gases

Más detalles

Δ E=Q W. Balance de Energía. Mediante el balance de energía junto con el balance de masa, se puede obtener el estado termodinámico del sistema.

Δ E=Q W. Balance de Energía. Mediante el balance de energía junto con el balance de masa, se puede obtener el estado termodinámico del sistema. Mediante el balance de energía junto con el balance de masa, se puede obtener el estado termodinámico del sistema. Primera ley de la termodinámica Δ E=Q W Propiedades extensivas: Repaso de Termodinámica

Más detalles

FENÓMENOS COLECTIVOS SEMESTRE Prof. Víctor Romero Rochín Cub. 246 Instituto de Física

FENÓMENOS COLECTIVOS SEMESTRE Prof. Víctor Romero Rochín Cub. 246 Instituto de Física FENÓMENOS COLECTIVOS SEMESTRE 2013-1 Prof. Víctor Romero Rochín Cub. 246 Instituto de Física romero@fisica.unam.mx Este curso es el primer encuentro de los estudiantes de las carreras de Física y de Ciencias

Más detalles

Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes)

Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes) Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes) 1. Objetivo general: Determinar experimentalmente el índice adiabático, utilizando el método de Clement- Desormes.

Más detalles

2. Termodinámica macroscópica de gases

2. Termodinámica macroscópica de gases . Termodinámica macroscópica de gases Sugerencias para el trabajo en clase: Los siguientes problemas están pensados para abordar algunos aspectos particulares de la termodinámica de gases ideales y reales.

Más detalles

TERMODINÁMICA CICLOS III. CICLO DE CARNOT

TERMODINÁMICA CICLOS III. CICLO DE CARNOT TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo

Más detalles

TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS

TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS TEMA IV: ENERGÍA DE LAS REACCIONES QUÍMICAS 1.- INTRODUCCIÓN A LA TERMODINÁMICA 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA 3.- ENTALPIAS DE REACCIÓN Y DE FORMACIÓN 4.- ECUACIONES TERMOQUÍMICAS.REACCIONES

Más detalles

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M.

MATERIAL DE APOYO DE USO ESCLUSIVO DEL CENTRO DE ESTUDIOS MATEMÁTICOS. C.E.M. 1-. Una cubeta con hielo recibe constantemente calor de un B. mechero como se aprecia en la figura. C. D. De la gráfica de temperatura como función del tiempo, para la muestra, se concluye que entre A.

Más detalles

Concepto de trabajo, Primera Ley. energía, y calor.

Concepto de trabajo, Primera Ley. energía, y calor. Concepto de trabajo, Primera Ley energía, y calor. Trabajo micro 1 2 En general: W= F. dr = m( v2 2 1 Si hay una parte de fuerzas conservativa: W= 1-2 F.dr=φ 2 -φ 1 De manera que: W total =W=W nc -φ 2

Más detalles

PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO. Tema 2 Primera ley de la termodinámica

PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO. Tema 2 Primera ley de la termodinámica PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO Tema 2 Primera ley de la termodinámica Objetivo: El alumno realizará balances de energía en sistemas termodinámicos, mediante la aplicación de la primera

Más detalles

FyQ Rev 01. IES de Castuera. 1 Introducción. 2 Clasificación de los Sistemas Materiales. 3 Las Variables Termodinámicas

FyQ Rev 01. IES de Castuera. 1 Introducción. 2 Clasificación de los Sistemas Materiales. 3 Las Variables Termodinámicas Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 6 Termoquímica FyQ 1 2015 2016 Rev 01 1 Introducción 2 Clasificación de los Sistemas Materiales 3 Las Variables Termodinámicas 4 Primer Principio

Más detalles

6. ESPONTANEIDAD DE LAS REACCIONES QUÍMICAS

6. ESPONTANEIDAD DE LAS REACCIONES QUÍMICAS - 107-6. ESPONTANEIDAD DE LAS REACCIONES QUÍMICAS Algunas cosas ocurren libremente; otras no. El deterioro sucede libremente; la reconstrucción requiere trabajo. Una chispa es suficiente para ocasionar

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

Definimos un proceso cíclico, como aquel cuya secuencia de estados regresa el sistema a las condiciones iniciales: se cumple un ciclo.

Definimos un proceso cíclico, como aquel cuya secuencia de estados regresa el sistema a las condiciones iniciales: se cumple un ciclo. Procesos Cíclicos Definimos un proceso cíclico, como aquel cuya secuencia de estados regresa el sistema a las condiciones iniciales: se cumple un ciclo. Los proceso cíclico constan, al menos, de una etapa

Más detalles

Máquinas térmicas y segunda ley de la termodinámica. Física II Comisión 2k1/2S1 Prof. López Avila

Máquinas térmicas y segunda ley de la termodinámica. Física II Comisión 2k1/2S1 Prof. López Avila Máquinas térmicas y segunda ley de la termodinámica Física II Comisión 2k1/2S1 Prof. López Avila 1 Procesos Espontáneos 2 Procesos Espontáneos 3 Procesos Espontáneos Vacío Espontáneo No Espontáneo 4 Procesos

Más detalles

Ecuaciones Claves. Conservación de la Energía

Ecuaciones Claves. Conservación de la Energía Ecuaciones Claves Conservación de la Energía La ley de conservación de la energía establece que dentro de un sistema cerrado, la energía puede cambiar de forma, pero la cantidad total de energía es constante.

Más detalles

SISTEMA TERMODINÁMICO.

SISTEMA TERMODINÁMICO. TERMODINAMICA La Termodinámica es la rama de la Física que trata del estudio de las propiedades materiales de los sistemas macroscópicos y de la interconversión de las distintas formas de energía, en particular

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO

ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO ORGANIZACIÓN DE LA MATERIA DE FLUIDOS Y CALOR TEMARIO A. FLUIDOS. I. Fluidos en Reposo. 1 Estados de agregación de la materia y concepto de fluido 2 Características de un fluido en reposo. 3 Densidad de

Más detalles

COEFICIENTES DE DILATACIÓN

COEFICIENTES DE DILATACIÓN PRÁCTICA 3 COEFICIENTES DE DILATACIÓN OBJETIVO Determinación del coeficiente de dilatación del agua a temperatura ambiente utilizando un picnómetro. Determinación del coeficiente de dilatación lineal de

Más detalles

Titular: Daniel Valdivia

Titular: Daniel Valdivia UNIERSIDAD NACIONAL DE TRES DE FEBRERO ROBLEMAS DE LA CÁTEDRA FÍSICA Titular: Daniel aldivia Adjunto: María Inés Auliel 9 de septiembre de 016 Transformaciones Justificar cada una de sus respuestas. Realizar

Más detalles

FISICOQUÍMICA MÓDULO I: TERMODINÁMICA SEMINARIO 1

FISICOQUÍMICA MÓDULO I: TERMODINÁMICA SEMINARIO 1 FISICOQUÍMICA - 008 MÓDULO I: TERMODINÁMICA SEMINARIO 1 Conceptos Importantes Sistema, alrededores y paredes. Relación entre el tipo de paredes y los procesos que puede sufrir un sistema. Estados de equilibrio

Más detalles

Cómo Planck introdujo la constante h: una interpretación.

Cómo Planck introdujo la constante h: una interpretación. Cómo Planck introdujo la constante h: una interpretación. Víctor Romero Rochín Instituto de Física, UNAM Clase de Termodinámica 19 de mayo de 2014 MAX PLANCK (1858 1947) Nació en Kiel, Alemania. Estudio

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA Térmica PRÁCTICA 7: Capacidad térmica específica de metales OBJETIVO: Identificar algunos metales de trabajo. Determinar cualitativamente el valor de la capacidad térmica específica de algunos metales

Más detalles

Limitaciones de la 1ra. ley de la termodinámica

Limitaciones de la 1ra. ley de la termodinámica Termodinámica Tema 9 (segunda parte) Química General e Inorgánica A Limitaciones de la 1ra. ley de la termodinámica Procesos espontáneos o irreversibles Una cascada corre cuesta abajo Un terrón de azúcar

Más detalles

Departamento de Fisicoquímica. Lenguaje Termodinámico

Departamento de Fisicoquímica. Lenguaje Termodinámico SEMINARIO DE INTEGRACIÓN DE DOCENCIA Departamento de Fisicoquímica Lenguaje Termodinámico Q. Leticia O. Cervantes Espinosa Septiembre de 2006 Dr. Luis Miguel Trejo Candelas Q. Aidee Vega Rodríguez La Termodinámica

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

Aplicación de los criterios de espontaneidad a una reacción química completa

Aplicación de los criterios de espontaneidad a una reacción química completa Algunas reflexiones sobre el equilibrio químico a partir de consideraciones termodinámicas Prof. Marisa García Dra. María Antonia Grompone 1 Introducción En los programas de Química del Bachillerato Diversificado

Más detalles

Segunda Ley de la Termodinámica

Segunda Ley de la Termodinámica Segunda Ley de la Termodinámica Gonzalo Abal -- abril 2004 versión corregida abril 2005: Agradezco a Leonardo Rosés la revisión de éste material -- G.A. 1.Formulación Histórica a) Necesidad de la Segunda

Más detalles

FENÓMENOS DE TRANSPORTE

FENÓMENOS DE TRANSPORTE FENÓMENOS DE TRANSPORTE UNIDAD I CONTENIDO LEY CERO DE LA TERMODINÁMICA LEY CERO DE LA TERMODINÁMICA Cuando tocamos un objeto, el sentido del tacto nos proporciona la sensación que calificamos como caliente

Más detalles

Ley de enfriamiento de Newton considerando reservorios finitos

Ley de enfriamiento de Newton considerando reservorios finitos Ley de enfriamiento de Newton considerando reservorios finitos María ecilia Molas, Florencia Rodriguez Riou y Débora Leibovich Facultad de Ingeniería, iencias Exactas y Naturales Universidad Favaloro,.

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA

SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA ""El motor cero en lugar de trabajo nos entregará entropía, aproximando, si confiamos en Clausius, el fin del mundo" V.M.Brodianski, sobre el motor

Más detalles

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios:

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios: ASIGNATURA: TERMOTECNIA Código: 128212010 Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º Profesor(es) responsable(s): - JOAQUÍN ZUECO JORDÁN (TEORÍA Y PRÁCTICAS) - FERNANDO ILLÁN GÓMEZ (TEORÍA) - JOSÉ

Más detalles

Introducción a la Termodinámica

Introducción a la Termodinámica Introducción a la Termodinámica Consulte nuestra página web: www.sintesis.com En ella encontrará el catálogo completo y comentado Introducción a la Termodinámica Cristóbal Fernández Pineda y Santiago Velasco

Más detalles

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D.

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D. TEMPERATURA Y CALOR Tomás Rada Crespo Ph.D. Temperatura y Calor Tengo Calor!!!! Tengo Frio!!!! Este café esta frío!!!! Uff qué temperatura!!!! Esta gaseosa esta caliente!!!! En el lenguaje cotidiano, es

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA TÉRMICA. PRÁCTICA NÚMERO 1 TEMPERATURA OBJETIVO: 1. Comprender el fundamento termodinámico de la medición de la temperatura. 2. Construirla curva de calentamiento del agua. 3. Obtener mediciones de temperatura

Más detalles

mecánica estadística Principios Fundamentales Capítulo 1

mecánica estadística Principios Fundamentales Capítulo 1 mecánica estadística Principios Fundamentales Capítulo 1 2013 Objetivo de la mecánica estadística Predecir el comportamiento macroscópico de un sistema, en base de las propiedades microscópicas de las

Más detalles

ANALIZAS EL CALOR CEDIDO Y ABSORBIDO POR LOS CUERPOS

ANALIZAS EL CALOR CEDIDO Y ABSORBIDO POR LOS CUERPOS ANALIZAS EL CALOR CEDIDO Y ABSORBIDO POR LOS CUERPOS Nombre del alumno: Profesor: Fecha: 2. Espacio sugerido: Laboratorio polifuncional. 3. Desempeños y habilidades Demuestra de forma práctica que el calor

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles