MATEMÁTICAS CON PAPEL
|
|
|
- María Rosario Vidal Vázquez
- hace 8 años
- Vistas:
Transcripción
1 MATEMÁTICAS CON PAPEL AUTORÍA ANA ISABEL ACIÉN CRIADO TEMÁTICA MATEMÁTICAS ETAPA ESO Y BACHILLERATO Resumen En el siguiente artículo vamos a mostrar cómo se pueden trabajar distintos contenidos matemáticos con la ayuda de la papiroflexia. Mostraremos cómo usar el papel para la construcción de distintos elementos geométricos. Palabras clave - Matemáticas. - Papiroflexia. - Poliedro. - Fractal. C/ Recogidas Nº 45-6ºA Granada [email protected] 1
2 1. MATEMÁTICAS CON PAPEL En el proceso de aprendizaje es fundamental despertar el interés y la motivación de nuestros alumnos. Es necesario que éstos deseen aprender y se sientan interesados por los conceptos que vamos a tratar en el aula. Es esencial usar y disponer de todos aquellos recursos que despierten la atención y la curiosidad. Es importante trabajar procesos de pensamiento matemático y enseñar estrategias para la resolución de problemas. En el campo de las matemáticas necesitaremos descubrir si los alumnos disfrutan con ellas o si creen que les serán útiles para aplicarlas a lo largo de su vida o en su futuro laboral. Necesitaremos aquellas herramientas que nos ayuden a que los alumnos se sientan cómodos con el área y que hagan que confíen en sus capacidades para alcanzar los objetivos propios de la materia. Un recurso muy llamativo a la hora de trabajar las matemáticas, sobre todo el campo de la geometría es la papiroflexia, que constituye una forma muy atractiva de acercarse a las matemáticas y de despertar en los alumnos el interés y la curiosidad necesarios para que deseen aprender. Todos hemos usado en multitud de ocasiones la papiroflexia como medio de entretenimiento o diversión. Seguro que hemos intentado hacer un barquito o una pajarita de papel como un juego, y de esta forma sin saberlo hemos usado conceptos matemáticos básicos como: punto, recta o ángulo Se puede definir la papiroflexia como el arte de realizar figuras plegando hojas de papel. Desde el punto de vista didáctico y matemático podemos usarla para favorecer actitudes en nuestros alumnos y conseguir distintos objetivos pues: Ayuda a desarrollar la destreza visual y manual de nuestros alumnos. Fomenta el trabajo en equipo y el compañerismo. Desarrolla el gusto por la estética de las matemáticas. Favorece la interdisciplinaridad. Estimula la imaginación y la creatividad Desarrolla la orientación espacial de nuestros alumnos. Ayuda a conocer la relación de las matemáticas con otras áreas. C/ Recogidas Nº 45-6ºA Granada [email protected] 2
3 Nos permite descubrir la presencia de las matemáticas en otros ámbitos de la vida cotidiana. Hace valorar la relación entre la geometría y el arte. Permite interpretar objetos del medio físico empleando los métodos de la geometría del espacio. Nos hace aplicar con soltura y adecuadamente las herramientas matemáticas adquiridas a situaciones de la vida diaria. Posibilita aplicar los conocimientos geométricos para comprender y analizar el mundo físico que nos rodea. Hace que desarrollemos técnicas y métodos relacionados con los hábitos de trabajo, la curiosidad y el interés para investigar y resolver problemas, la responsabilidad y colaboración en el trabajo en equipo con la flexibilidad suficiente para cambiar el propio punto de vista en la búsqueda de soluciones. Nos deja diseñar y manipular objetos que favorezcan la comprensión y resolución de problemas, valorando la interrelación que hay entre la actividad manual y la intelectual. Desarrolla la capacidad de descubrir los componentes estéticos de objetos y situaciones, disfrutando con los aspectos creativos y manipulativos de las matemáticas. Nos permite utilizar los conocimientos matemáticos en un ambiente próximo a la vida cotidiana para resolver situaciones y problemas. La papiroflexia es además una herramienta de gran utilidad en el trabajo del profesor pues le permite desarrollar diferentes contenidos de una forma más amena, así como mostrar la presencia de las matemáticas en otras áreas. C/ Recogidas Nº 45-6ºA Granada [email protected] 3
4 Utilizar la papiroflexia ayuda a desarrollar: Habilidad manual. Psicomotricidad fina. Atención. Desarrollo manipulativo. Creatividad. Orientación espacial. Memoria. Cuidado. Perfección. Precisión. Compañerismo. La utilidad de la papiroflexia en las matemáticas se ve reflejada en su uso para realizar geométricamente demostraciones de fórmulas o teoremas: Es el caso del Teorema de Pitágoras, uno de los teoremas matemáticos más conocidos y del cual existen más de 1000 demostraciones. Podemos encontrar varias de estas demostraciones que usan la papiroflexia para probar este teorema. Del mismo modo se puede usar la papiroflexia también para demostrar la fórmula que proporciona el área de un triángulo. Nosotros vamos a ver cómo podemos manejar esta herramienta para: En primer lugar para construir los poliedros regulares. Esta actividad nos servirá para introducir a los alumnos en el mundo de la geometría de una forma manipulativa y más lúdica para ellos. Intentaremos que jugando con ellos, los alumnos aprendan los distintos elementos de los poliedros y puedan identificar cada uno de los poliedros regulares. En segundo lugar los usaremos para construir el triángulo de Sierpinski. De esta manera podremos introducir un concepto nuevo y desconocido para ellos, el de los fractales, y podremos estudiar algunas de sus propiedades, así como los fractales más famosos y su presencia en la naturaleza. C/ Recogidas Nº 45-6ºA Granada [email protected] 4
5 Un poliedro es un cuerpo geométrico cuyas caras son planas y encierran un volumen finito. En un poliedro cualquiera podemos distinguir los siguientes tres elementos notables principales: Sus caras, que son las porciones de plano que limitan el cuerpo, tienen forma de polígonos. Sus aristas, que son los segmentos en los que se encuentran dos caras. Son la intersección de dos y sólo dos caras del poliedro. Sus vértices, que son los puntos del poliedro en los que se reúnen tres o más aristas. El orden de un vértice es el número de caras (o aristas) que concurren en él. Sus diagonales, que son los segmentos que unen vértices no consecutivos del poliedro (aquellos que no están unidos entre sí por una arista). Se dice que un poliedro convexo es regular si sus caras son polígonos regulares idénticos y si en cada vértice concurre el mismo número de aristas. Tan solo existen cinco poliedros regulares: el tetraedro, el cubo, el octaedro, el icosaedro y el dodecaedro. C/ Recogidas Nº 45-6ºA Granada [email protected] 5
6 Platón atribuye a cada uno de estos sólidos uno de los cuatro elementos en el pasaje en el que describe la creación del universo. Así, el tetraedro es el fuego, el octaedro, el aire, el cubo es la tierra y el icosaedro, las moléculas de agua y el dodecaedro el universo. Por este motivo se les conoce con el nombre de sólidos platónicos. La papiroflexia nos va a ayudar a mostrar a nuestros alumnos cómo son estos poliedros y en qué ámbitos podemos encontrarlos. Usaremos para ello las siguientes plantillas con las que podremos construir cada uno de los poliedros anteriores: Tetraedro Cubo Octaedro C/ Recogidas Nº 45-6ºA Granada [email protected] 6
7 Icosaedro Dodecaedro C/ Recogidas Nº 45-6ºA Granada 7
8 Mediante esta actividad pretendemos conseguir los siguientes objetivos: Saber qué es un poliedro y en particular un paralelepípedo, un ortoedro, un cubo, un prisma y una pirámide. Conocer la terminología propia para describir los poliedros. Saber utilizar los instrumentos de medida y de dibujo para trazar el desarrollo de poliedros regulares, prismas y pirámides. Utilizar las unidades de medida adecuadas para indicar las medidas de las dimensiones de los poliedros. Reconocer la diferencia entre poliedros convexos y cóncavos. Resolver situaciones problemáticas de la vida cotidiana aplicando las propiedades de los poliedros. Los fractales son elementos matemáticos que se usan para designar ciertos objetos geométricos de estructura irregular. En la geometría fractal aparecen contornos irregulares como puede ser el caso del contorno de las costas. Para introducir a los alumnos en este nuevo mundo de la geometría de relativamente reciente descubrimiento, usaremos los fractales de papel. Veremos cómo podemos construir uno de los fractales más famosos con la ayuda de la papiroflexia: el Triángulo de Sierpinski. El triángulo de Sierpinski se puede construir a partir de cualquier triángulo equilátero mediante un proceso iterativo. Para construir el triángulo de Sierpinski mediante papiroflexia usaremos una hoja de papel que doblaremos por la mitad. A continuación se divide en dos partes iguales a lo largo del doblez y haremos un corte cuya longitud será la mitad de lo que queda hasta el otro lado. Doblamos una de las mitades para marcar el doblez y una vez marcado, lo metemos hacia dentro. A continuación repetiremos la operación de forma sucesiva, obteniendo el siguiente resultado: C/ Recogidas Nº 45-6ºA Granada [email protected] 8
9 El objetivo que perseguimos es que nuestros alumnos conozcan lo que es un fractal y se familiaricen con los conjuntos fractales empezando con uno de los más famosos y atractivos. Mediante esta actividad pretendemos conseguir los siguientes objetivos: Saber qué es un fractal. Identificar las diferencias existentes entre la geometría clásica y la geometría fractal. Reconocer los modelos de fractales presentes en la naturaleza. C/ Recogidas Nº 45-6ºA Granada [email protected] 9
10 BIBLIOGRAFIA Mandelbrot, Benoit B. (1997). La Geometría Fractal de la Naturaleza, Barcelona. Tusquets Editores. Figueiras, L. y cols. (2000): Una propuesta metodológica para la enseñanza de la geometría a través de los fractales, Madrid. Suma, nº35, Autoría ANA ISABEL ACIÉN CRIADO IES LA PUEBLA, LA PUEBLA DE VÍCAR, ALMERÍA. [email protected] C/ Recogidas Nº 45-6ºA Granada [email protected] 10
MATEMÁTICAS (GEOMETRÍA)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
MATEMÁTICAS 2º DE ESO LOE
MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y
Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.
Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las
Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS
UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos
10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.
Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1
DE PRISMAS Y POLIEDROS. A LA BÚSQUEDA DEL CUBOIDE PERFECTO
DE PRISMAS Y POLIEDROS. A LA BÚSQUEDA DEL CUBOIDE PERFECTO De poliedros En el espacio euclídeo tridimensional podemos resumir algunas nociones básicas de geometría clásica Un poliedro es la zona espacial
UNIDAD 6: ECUACIONES OBJETIVOS
UNIDAD 6: ECUACIONES Conocer los conceptos de ecuación, así como la terminología asociada. Identificar y clasificar los distintos tipos de ecuaciones polinómicas en función de su grado y número de incógnitas.
POLIEDROS. Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
REGULARES.
Diédrico Poliedros REGULARES http://www.edu.xunta.es/contidos/premios/p2004/b/poliedros/poliedros.html POLIEDROS Los poliedros son los cuerpos geométricos limitados por polígonos. Poliedros regulares son
Se dice que un poliedro es regular cuando sus caras son polígonos regulares iguales y sus ángulos poliedros tienen el mismo número de caras.
LOS POLIEDROS: El cubo, la pirámide, la esfera, el cilindro... son figuras sólidas. Observando tales figuras, vemos que algunos sólidos, como el cubo y la pirámide, tienen su superficie exterior formada
FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES
POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
UNIDAD 7. SISTEMA MÉTRICO DECIMAL
UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,
ORIGAMI. Herramienta didáctica para la enseñanza de la Geometría. Carmen Alexandra Reyes P. I Foro Internacional de Matemáticas
ORIGAMI Herramienta didáctica para la enseñanza de la Geometría Carmen Alexandra Reyes P. I Foro Internacional de Matemáticas Universidad SurUnUniversidad Sur Colombiana. Neiva Pensamiento espacial y sistemas
TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales
TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano
CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.
CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1
GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
POLIEDROS. ÁREAS Y VOLÚMENES.
7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.
Taller 6 La fórmula de Euler y los Sólidos Platónicos Profesor: Maximiliano Leyton
Taller 6 La fórmula de Euler y los Sólidos Platónicos Profesor: Maximiliano Leyton I. Fórmula de Euler Ejercicio 1. Considere un cuadrado y escoja arbitrariamente 10 puntos en su interior. Utilizando estos
GEOMETRÍA POLIEDROS. Los ángulos diedros y los ángulos poliedros determinados por las caras son los ángulos diedros y ángulos poliedros del poliedro.
GEOMETRÍA POLIEDROS Poliedro. Un poliedro es la unión de cuatro o más regiones poligonales tales que cada uno de sus lados pertenecen precisamente a dos regiones adyacentes no coplanares. Las regiones
UNIDAD DIDÁCTICA: Unidad 08: Metros, Gramos y Litros De Matemáticas. (T.9) Criterios de Evaluación / Desempeños. Identificar magnitudes.
UNIDAD DIDÁCTICA: Unidad 08: Metros, Gramos y Litros De Matemáticas. (T.9) Identificar magnitudes. Conocer las unidades de las principales magnitudes. Elegir la unidad adecuada para expresar una cantidad.
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
http://www.matesymas.es/ MATERIAL PLOT El material PLOT está formado por láminas de cartulina troquelada y gomas elásticas de colores para realizar las uniones. De las láminas de cartulina se obtienen
Geometría en el espacio. Poliedros
Geometría en el espacio. Gemma Hermida Granado Trinidad Gómez Ramírez 28 de junio de 2006 Geometría en el espacio. 1 Programación de la unidad Objetivos didácticos Conceptos Procedimientos Actitudes Criterios
ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES
OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos
Documento: Resumen de programación Nº de documento: Revisión:031111
IES Diego de Guzmán y Quesada Documento: Resumen de programación Nº de documento: Revisión:031111 CURSO 2º /B DEPARTAMENTO DE DIBUJO ASIGNATURA DIBUJO TÉCNICO II OBJETIVOS CURSO 2º BACHILLERATO 1. Expresar
GEOMETRÍA. Convexos Llano (Plano) Cóncavo Giro. Consecutivos Adyacentes Diedro Complementario Suplementario
GEOMETRÍA Angulo.- Es la abertura comprendida entre dos rectas que se encuentran en un punto. Estas rectas se llaman lados del ángulo, y el punto de encuentro se denomina vértice. Un ángulo suele designarse
Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.
CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina
CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.
CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo
SISTEMASS DE REPRESENTACIÓNN Geometría Básica
SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,
IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos
Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN
MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de
TEMA 9 CUERPOS GEOMÉTRICOS
Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas
GEOMETRÍA DEL ESPACIO
GEOMETRÍA DEL ESPACIO Lic. Saúl Villamizar Valencia 33 1 GEOMETRÍA DEL ESPACIO Definición: Es la parte de la geometría que estudia las propiedades de las figuras y sólidos geométricos cuyos elementos
Ámbito científico tecnológico
Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica
CUERPOS EN EL ESPACIO
CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.
UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10)
UNIDAD DIDÁCTICA: Unidades 06: Metros, Gramos y Litros De Matemáticas. (T.9 y T.10) Utilizar el metro como la unidad principal de medida de longitud. Utilizar el litro y el gramo unidades de principal
SUPERFICIES POLIÉDRICAS CONVEXAS
SUPERFICIES POLIÉDRICAS CONVEXAS OBJETIVOS Conocer las características y relaciones métricas del te tra - edro, hexaedro o cubo y octaedro, para su represen tación en el sistema diédrico en sus múltiples
CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.
CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y
Polígonos y poliedros
Polígonos y poliedros Rojo central (1980). El científico se ocupa de demostrar hechos, para comprobarlos, las mentes más estrictas utilizan ecuaciones matemáticas, luego vienen otros hombres, que aplican
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12
Figura plana Área Ejemplo Cuadrado. Área =
ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
Cuerpos geométricos. Volúmenes
4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:
Área del rectángulo y del cuadrado
59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:
SISTEMA DIÉDRICO POLIEDROS REGULARES DIBUJO TÉCNICO 2º BACH.
SISTEMA DIÉDRICO POLIEDROS REGULARES DIBUJO TÉCNICO. ANA BALLESTER JIMÉNEZ 0 SISTEMA DIÉDRICO: REPRESENTACIÓN DE POLIEDROS REGULARES DEFINICIÓN DE POLIEDRO: Sólido geométrico limitado por caras planas.
Qué son los cuerpos geométricos?
Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre
IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.
IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional
Introducción. Este trabajo será realizado con los siguientes fines :
Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro
UNIDAD 11 Figuras en el espacio
Pág. 1 de 5 I. Conoces de cursos anteriores los poliedros regulares y algunas de sus características. Has reforzado ese conocimiento y lo has ampliado a los poliedros semirregulares? 1 Dibuja, a partir
SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL
G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización
GEOMETRÍA CON PAPEL: POLIEDROS
1 GEOMETRÍA CON PAPEL: POLIEDROS Covadonga Blanco García, Fernando Lazo Pérez, María Teresa Otero Suárez e José Ignacio Royo Prieto LA PAPIROFLEXIA EN LA EDUCACIÓN MATEMATICA ALGUNOS BENEFICIOS Y CUALIDADES
ÁREA: MATEMÁTICAS UNIDAD : 6 TEMPORALIZACIÓN: ENERO 3ª y 4ª SEMANAS OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN
ÁREA: MATEMÁTICAS UNIDAD : 6 TEMPORALIZACIÓN: ENERO 3ª y 4ª SEMANAS Reconocer las unidades decimales: décima, centésima y milésima y utilizar las equivalencias entre ellas. Escribir las unidades decimales
Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.
CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS
Geometría. Cuerpos Geométricos. Trabajo
Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
Dibujo y geometría descriptiva II 2014
` CONTENIDO 1. Conceptos básicos Cuerpos geométricos Intersección 2. Intersección entre planos y sólidos. 3. Intersección de plano con prisma 4. Intersección de plano con cilindro. 5. Intersección de sólido
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
Sistema Diédrico (II). Superficies poliédricas y radiadas: Representación
Sistema Diédrico (II). Superficies poliédricas y radiadas: Representación Comenzamos una nueva unidad didáctica en la que desarrollaremos los conceptos y procedimientos sobre superficies poliédricas y
Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014
E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede
Dossier Volumen II. Índice
Índice Introducción 1 Sólidos platónicos 4 Bocetos y estudios preliminares 6 El módulo 8 Antecedentes 10 Estudio 11 Planta, alzado y perfil 13 Perspectivas Axonométrica 14 Caballera 15 Cónica Central 16
Adaptación Curricular del Área de Matemáticas 1º ESO
IES Guadarrama Curso 13/14 Adaptación Curricular del Área de Matemáticas 1º ESO Ed. Compensatoria.NOMBRE DEL ALUMNO/A:... GRUPO: TUTOR/A:.. PROFESOR ÁREA:.. APOYO:. CARACTERÍSTICAS: ESTILO DE APRENDIZAJE,
OPTATIVA DE REFUERZO DE MATEMÁTICAS SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA REFUERZO DE 1º DE ESO BLOQUE 1: NÚMEROS Y ÁLGEBRA
OPTATIVA DE REFUERZO DE MATEMÁTICAS SELECCIÓN Y SECUENCIACIÓN DE CONTENIDOS PARA REFUERZO DE 1º DE ESO BLOQUE 1: NÚMEROS Y ÁLGEBRA Unidad 1: Números naturales. Potencias Unidad 2: Divisibilidad Unidad
Sala de Talleres y Seminarios Matemáticas Discretas. Taller de Gráficas, Poliedros y Papiroflexia. Festival Matemático
QUÉ SON MATEMÁTICAS DISCRETAS Y CÓMO SE CULTIVAN EN LA FACULTAD DE CIENCIAS DE LA UAEMEX. CON MOTIVO DE LA APERTURA DE LA SALA DE TALLERES Y SEMINARIOS DE MATEMÁTICAS DISCRETAS Ernesto Olvera Sotres Cronista
Diferencias entre Figuras y
10 Lección Refuerzo Matemáticas Diferencias entre Figuras y Cuerpos Geométricos APRENDO JUGANDO Competencia Aplica conocimientos acerca de las principales características de polígonos y cuerpos geométricos.
Alicia Pedreira Mengotti. IES Monelos A Coruña
Alicia Pedreira Mengotti. IES Monelos A Coruña Dedicado a mis alumnos de 4º de diversificación Gabriel, Patricia, Dani,Cristian, Sara, Sandra, Xurxo, Sara, Isabel, y Carlota El dodecaedro rómbico es un
unidad 10 Cuerpos geométricos
unidad 10 Cuerpos geométricos Poliedros. Características Página 1 Poliedro es un cuerpo cerrado limitado por caras planas que son polígonos. Aristas son los lados de las caras. Cada dos caras contiguas
CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS
CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las
Autor: 2º ciclo de E.P.
1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.
A mi muy querida profesora que con ansias debe estar esperando mi trabajo. I. Introducción pag. 4
MONOGRAFÍA NOMBRE : COLEGIO : GRADO : IVº B TEMA : Geometría del Espacio PROFESORA : FECHA : 30 de Noviembre DEDICATORIA A mi muy querida profesora que con ansias debe estar esperando mi trabajo índice
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
Papiroflexia y Matemáticas
Papiroflexia y Matemáticas Cualquier persona interesada en la educación matemática en los niveles obligatorios, reconoce que para aprender Matemáticas hay que hacer Matemáticas. En estas etapas es muy
5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples
5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:
JUEGOS. Quién tiene? Yo tengo. febrero 2003, pp Grupo Alquerque* Reglas del juego. Puntualización
42? febrero 2003, pp. 105-110 Grupo Alquerque* ESTE JUEGO consta de 40 tarjetas, que en una de sus caras tienen una pregunta y en la otra una respuesta que no corresponde a la pregunta que le acompaña.
5º de E. Primaria LOS CUERPOS GEOMÉTRICOS -TEMA 15
LOS POLIEDROS Los poliedros son cuerpos geométricos que tienen todas sus caras formadas por polígonos. Muchos objetos de nuestro alrededor tienen forma de poliedro: Los elementos de un poliedro son caras,
(El producto de una rotación y una reflexión no es conmutativo!!!)
HOMOTECIS (H) l numero (µ) se llama razón de la homotecia: d (O,P) / d (O, P ) = µ Si (m)>0 (es positivo), los puntos P y P están del mismo lado respecto al punto O. Si (m)
RECUPERACIÓN DE MATEMÁTICAS DE SEGUNDO DE E.S.O.
RECUPERACIÓN DE MATEMÁTICAS DE SEGUNDO DE E.S.O. Se considera necesario, que el alumno al término de la enseñanza secundaria, obtenga una formación matemática básica, que le permita comprender, analizar
ÁREA DE MATEMÁTICAS 2º CURSO DE LA E.S.O.
2. Reconocer y plantear situaciones susceptibles de ser formuladas en términos matemáticos, elaborar y utilizar diferentes estrategias para abordarlas y analizar los resultados utilizando los recursos
OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA:
OJETIVO 1 CONOCER LOS POLIEDROS Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS
IES SAN BENITO PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS MATEMÁTICAS 1º ESO *SISTEMA DE NUMERACIÓN DECIMAL. N OS NATURALES. POTENCIAS Y RAICES Ordenación de los números
UNA FORMA ALTERNATIVA DE ENSEÑAR LAS CARACTERÍSTICAS DE LOS CUADRILÁTEROS: EL TANGRAMA
UNA FORMA ALTERNATIVA DE ENSEÑAR LAS CARACTERÍSTICAS DE LOS CUADRILÁTEROS: EL TANGRAMA Introducción Laura Sáenz Fernández Podríamos iniciar nuestra reflexión diciendo que el mejor material didáctico para
Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas
Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:
ACTIVIDADES PARA LA SESIÓN SEXTA
ACTIVIDADES PARA LA SESIÓN SEXTA AUTOR: Begoña Soler de Dios 1 Máster en Profesor de Educación Secundaria Esp. Matemáticas 1 [email protected] Sesión 6 POLIEDROS ARQUIMEDIANOS 1. Qué se ve en la imagen?
Curso: GeoGebra como herramienta para aprender y enseñar matemática en forma dinámica Profesor Tutor: Laura del Río y Fabiana Pauletich.
Módulo 5 GEOMETRÍA 3D CONTENIDOS Durante el desarrollo de este módulo podrás utilizar las herramientas disponibles en GeoGebra para: Construir sólidos y explorar sus propiedades. Profundizar acerca del
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Elementos del cilindro
Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor
UP I Universidad de Palermo
Poliedros Cuerpos tridimensionales formados por caras planas. Sus caras son siempre figuras geométricas de aristas rectas. En forma de polígonos Sus aristas, segmento que une a las caras, deben tener igual
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática
Universidad Central Del Este U C E Facultad de Ciencias y Humanidades Escuela de Pedagogía Mención Ciencias Físicas y Matemática Programa de la asignatura: MAT-402 Geometría del Espacio. Total de Créditos:
UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10
UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso 2013-14 NIVEL: 3º DE PRIMARIA TEMAS: 5-10 OBJETIVOS DIDÁCTICOS CONTENIDOS Reconocer líneas rectas, líneas curvas abiertas y cerradas,
