Algoritmos de búsqueda exhaustiva
|
|
|
- Sergio Romero Cruz
- hace 8 años
- Vistas:
Transcripción
1 Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 31 de enero de 2018 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
2 1 Algoritmos de búsqueda exhaustiva Introducción Comentarios sobre búsqueda exhaustiva Tarea 5 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
3 Introducción 1 Algoritmos de búsqueda exhaustiva Introducción Comentarios sobre búsqueda exhaustiva Tarea 5 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
4 Introducción Algoritmos de búsqueda exhaustiva Introducción Se trata de un tipo particular de algoritmos de fuerza bruta que se emplean para problemas donde se busca un elemento con una propiedad especial, usualmente entre objetos combinatorios como permutaciones, combinaciones, o subconjuntos El método general consiste en: 1 Generar una lista de todas las soluciones potenciales del problema en una forma sistemática 2 Evaluar las soluciones potenciales una a una, descalificando las no factibles y manteniendo un registro de la mejor encontrada hasta el momento (en problemas de optimización) 3 Cuando la búsqueda finalice, regresar la mejor solución encontrada Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
5 1 Algoritmos de búsqueda exhaustiva Introducción Comentarios sobre búsqueda exhaustiva Tarea 5 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
6 (TSP) Dada una lista de n ciudades y las distancias entre cada par de ellas, encontrar el recorrido (ruta) más corto posible que visita cada ciudad exactamente una vez y regresa a la ciudad origen. Es equivalente a resolver el problema de encontrar el ciclo hamiltoniano más corto en un grafo ponderado conexo. Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
7 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
8 Para n ciudades, por lo tanto hay n! soluciones potenciales (número de permutaciones de n elementos) En varias de ellas sólo cambia el sentido del recorrido, por lo que existen n! 2 posibles soluciones distintas El algoritmo de búsqueda exhaustiva pertenece entonces a la clase O(n!) Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
9 1 Algoritmos de búsqueda exhaustiva Introducción Comentarios sobre búsqueda exhaustiva Tarea 5 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
10 (knapsack) Dados n distintos tipos de objetos, de los cuales se tienen q i disponibles para cada tipo (1 q i ). Cada tipo de objeto i tiene un beneficio asociado v i y un peso (o volumen) w i (v i, w i > 0). Por otro lado se tiene una mochila, donde se pueden introducir los objetos, que soporta un peso máximo (o volumen máximo) W. El problema consiste en meter en la mochila objetos de tal forma que se maximice el valor de los objetos que contiene y siempre que no se supere el peso máximo que puede soportar la misma. La solución al problema vendrá dada por la secuencia de variables x 1, x 2,..., x n donde el valor de x i indica cuantas copias se meterán en la mochila del objeto de tipo i. Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
11 Imagen tomada de Wikipedia Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
12 El problema se pude resolver con búsqueda exhaustiva generando todos los subconjuntos del conjunto de n objetos (2 n ), y evaluando cada uno de ellos para encontrar el mejor Por lo tanto la búsqueda exhaustiva nos conduce a una algoritmo con complejidad Ω(2 n ) Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
13 1 Algoritmos de búsqueda exhaustiva Introducción Comentarios sobre búsqueda exhaustiva Tarea 5 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
14 Problema de la multiplicación en secuencia de matrices Sólo es posible multiplicar dos matrices A y B si son compatibles Si A p q y B q r entonces la matriz resultante es C p r La complejidad de calcular C está dominada por las multiplicaciones escalares (línea 8): pqr Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
15 Problema de la multiplicación en secuencia de matrices Dada una secuencia de n matrices A 1, A 2,..., A n, donde para 1 i n la matriz A i tiene dimensión p i 1 p i, encontrar el agrupamiento con paréntesis del producto A 1, A 2,..., A n que minimice el número de multiplicaciones escalares. 10 veces más rápido Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
16 Problema de la multiplicación en secuencia de matrices Dada una secuencia de n matrices A 1, A 2,..., A n, donde para 1 i n la matriz A i tiene dimensión p i 1 p i, encontrar el agrupamiento con paréntesis del producto A 1, A 2,..., A n que minimice el número de multiplicaciones escalares. Considere por ejemplo la secuencia de matrices A 1, A 2, A 3 con dimensiones , y 5 50, respectivamente. 10 veces más rápido Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
17 Problema de la multiplicación en secuencia de matrices Dada una secuencia de n matrices A 1, A 2,..., A n, donde para 1 i n la matriz A i tiene dimensión p i 1 p i, encontrar el agrupamiento con paréntesis del producto A 1, A 2,..., A n que minimice el número de multiplicaciones escalares. Considere por ejemplo la secuencia de matrices A 1, A 2, A 3 con dimensiones , y 5 50, respectivamente. Con el agrupamiento (A 1 (A 2 A 3 )) se requieren 75,000 operaciones: = 25, = 50, veces más rápido Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
18 Problema de la multiplicación en secuencia de matrices Dada una secuencia de n matrices A 1, A 2,..., A n, donde para 1 i n la matriz A i tiene dimensión p i 1 p i, encontrar el agrupamiento con paréntesis del producto A 1, A 2,..., A n que minimice el número de multiplicaciones escalares. Considere por ejemplo la secuencia de matrices A 1, A 2, A 3 con dimensiones , y 5 50, respectivamente. Con el agrupamiento (A 1 (A 2 A 3 )) se requieren 75,000 operaciones: = 25, = 50, 000 Con el agrupamiento ((A 1 A 2 )A 3 ) se requieren 7,500 operaciones: = 5, = 2, veces más rápido Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
19 Problema de la multiplicación en secuencia de matrices El problema se pude resolver con búsqueda exhaustiva generando todos los posibles agrupamientos para una secuencia de n matrices, y evaluando cada uno de ellos para encontrar el mejor Cuántos posibles agrupamientos existen? Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
20 Problema de la multiplicación en secuencia de matrices Para n = 1 hay sólo un agrupamiento Para n 2 un agrupamiento es el producto del agrupamiento de dos subconjuntos con punto de corte entre k y (k + 1) para 1 k (n 1) Por lo tanto se obtiene la siguiente relación de recurrencia: n 1 P (n) = P (k)p (n k) para n 2, P (1) = 1 k=1 La búsqueda exhaustiva nos conduce entonces a un algoritmo con complejidad Ω(2 n ) Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
21 Problema de la multiplicación en secuencia de matrices Ejercicio para traer resuelto la siguiente clase. Resolver la relación de recurrencia: 1 si n = 1, P (n) = n 1 P (k)p (n k) si n 2. k=1 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
22 Comentarios sobre búsqueda exhaustiva 1 Algoritmos de búsqueda exhaustiva Introducción Comentarios sobre búsqueda exhaustiva Tarea 5 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
23 Comentarios sobre búsqueda exhaustiva Comentarios sobre búsqueda exhaustiva Los algoritmos de búsqueda exhaustiva corren en tiempo razonable solamente para instancias muy pequeñas En algunos casos, existen mejores alternativas Circuitos eulerianos Caminos más cortos Árbol de expansión mínima Problema de asignación En muchos casos, la búsqueda exhaustiva (o alguna de sus variantes) es la única forma conocida de obtener una solución exacta Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
24 Tarea 5 1 Algoritmos de búsqueda exhaustiva Introducción Comentarios sobre búsqueda exhaustiva Tarea 5 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
25 Tarea 5 Tarea 5 En la carpeta de Dropbox del curso encontrarán un archivo con las especificaciones de esta tarea. Genere un reporte en Latex donde presente los detalles del trabajo realizado, así como sus conclusiones personales. Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos de búsqueda exhaustiva 31 de enero de / 22
Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013
Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer
Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios
9..En un problema de backtracking estamos interesados en almacenar de forma explícita el árbol recorrido por el algoritmo. De cada nodo del árbol sólo necesitamos saber un número, que indica el orden en
Tema: Los Grafos y su importancia para la optimización de redes.
Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto
PROGRAMACION CONCURRENTE Y DISTRIBUIDA
PROGRAMACION CONCURRENTE Y DISTRIBUIDA V.2 Redes de Petri: Análisis y validación. J.M. Drake 1 Capacidad de modelado y capacidad de análisis El éxito de un método de modelado es consecuencia de su capacidad
IN34A - Optimización
IN34A - Optimización Modelos de Programación Lineal Leonardo López H. [email protected] Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización
Análisis y síntesis de circuitos con elementos de memoria. Proceso de Análisis y síntesis de circuitos con elementos de memoria
Proceso de Reducción de tablas de estado Obtención de pares compatibles mediante la carta de implicación Obtención del conjunto compatible máximo Reducción de tablas de estado en circuitos con inespecificaciones.
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)
Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria
T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes
Números reales Conceptos básicos Algunas propiedades
Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que
Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango
Algebra ducción Des el punto vista l Algebra Lineal, las funciones más importantes son las que preservan las combinaciones lineales. Estas funciones se llamarán. Es esta presentación se tratan con los
PREPARACION OLIMPIADA MATEMATICA CURSO
Comenzaremos recordando algunos conocimientos matemáticos que nos son necesarios. Para ello veamos el concepto de factorial de un número natural. Es decir, es un producto decreciente desde el número que
Capítulo 6. Relaciones. Continuar
Capítulo 6. Relaciones Continuar Introducción Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones se utilizan en base de datos,
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.
LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado
TEORÍA DE GRAFOS Ingeniería de Sistemas
TEORÍA DE GRAFOS Ingeniería de Sistemas Código: MAT-31114 AUTORES Ing. Daniel Zambrano Ing. Viviana Semprún UNIDADES DE LA ASIGNATURA» UNIDAD I. Relaciones» UNIDAD II. Estructuras Algebraicas» UNIDAD III.
Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal
Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial
Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007
Caminos y Flujos optimales Introducción a la Investigación de Operaciones 2007 Contenido Definiciones básicas. Conexidad. Clausura transitiva. Esqueletos y caminos optimales. Redes. Flujos. Algoritmo de
A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un
ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
Acuerdo 286 Matemáticas
Acuerdo 286 Matemáticas Habilidad Matemática Fausto Zarate Melchor Habilidad Matemática. La habilidad matemática se compone de dos tipos de habilidad: la espacial y la numérica. a) Representación del espacio.
PROGRAMACIÓN NO LINEAL INTRODUCCIÓN
PROGRAMACIÓN NO LINEAL Conceptos generales INTRODUCCIÓN Una suposición importante de programación lineal es que todas sus funciones Función objetivo y funciones de restricción son lineales. Aunque, en
Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.
Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
Tema 3: Multiplicación y división.
Tema 3: Multiplicación y división. SELECCIÓN DE EJERCICIOS RESUELTOS 2. Determina el menor número natural que multiplicado por 7 nos da un número natural que se escribe usando únicamente la cifra 1. Y
TRA NSFORMACIO N ES LIN EA LES
TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican
Titulo: SISTEMAS DE INECUACIONES (INECUACIONES SIMULTANEAS) Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
PROCEDIMIENTO GENERAL. Gestión de Incidencias y Acciones Correctivas RAZÓN SOCIAL DE LA EMPRESA. Código PG-12 Edición 0. Índice:
Índice: 1. TABLA RESUMEN... 2 2. OBJETO... 2 3. ALCANCE... 2 4. RESPONSABILIDADES... 3 5. ENTRADAS... 4 6. SALIDAS... 4 7. PROCESOS RELACIONADOS... 4 8. DIAGRAMA DE FLUJO... 5 9. DESARROLLO... 6 9.1. DETECCIÓN
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
1.3.- V A L O R A B S O L U T O
1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen
Límites de funciones de varias variables.
Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas
LAS CIENCIAS DE LA PLANIFICACIÓN
LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):
Práctica N 6 Modelos de Programación Lineal Entera
Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
TEMA 11. VECTORES EN EL ESPACIO
TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales
Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 3: Números racionales Parte I: Fracciones y razones Números racionales 1 Situación introductoria ANÁLISIS DE CONOCIMIENTOS PUESTOS EN JUEGO
PROGRAMACIÓN DINÁMICA. Idalia Flores
PROGRAMACIÓN DINÁMICA Idalia Flores CONCEPTOS La programación dinámica es una técnica matemática que se utiliza para la solución de problemas matemáticos seleccionados, en los cuales se toma un serie de
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación
UNIDAD 1: NÚMEROS NATURALES OBJETIVOS
UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,
distancia entre las ciudades: d =x (incógnita) x = 450 + 300 x = 750 km
Este problema se presenta con dos variantes; en la primera, la más sencilla, dos vehículos parten simultáneamente para encontrarse desde dos ciudades, A y B. En el problema se manejan las siguientes magnitudes:
Sistemas de ecuaciones lineales
Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,
Juega con los números Página 11
Página 11 Pág. 1 14 Busca el menor número de seis cifras cuya división entre 7 es exacta. Busca también el mayor. El menor número de seis cifras es 100 000. 100 000 : 7 = 14 285, El menor número de seis
PROGRAMACIÓN LINEAL ENTERA
PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
Tema 5: Análisis de Sensibilidad y Paramétrico
Tema 5: Análisis de Sensibilidad y Paramétrico 5.1 Introducción 5.2 Cambios en los coeficientes de la función objetivo 5.3 Cambios en el rhs 5.4 Análisis de Sensibilidad y Dualidad 5.4.1 Cambios en el
001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).
3.2.4 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.
METAHEURISTICAS Ideas, Mitos, Soluciones
METAHEURISTICAS Ideas, Mitos, Soluciones OPTIMIZACION COMBINATORIA Qué es un problema de optimización combinatoria? Cómo se modela matemáticamente un problema de optimización combinatoria? Minimizar (o
Tema: Excel Formulas, Funciones y Macros
1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Excel Formulas, Funciones y Macros Objetivos Específicos Conocer los conceptos básicos en relación a la
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
Álgebra Lineal Ma1010
Álgebra Ma1010 Departamento de Matemáticas ITESM Álgebra - p. 1/31 En este apartado se introduce uno de los conceptos más importantes del curso: el de combinación lineal entre vectores. Se establece la
Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.
Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente
Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez [email protected] 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que
Líneas y Planos en el Espacio
Líneas y Planos en el Espacio Departamento de Matemáticas, CCIR/ITESM de enero de Índice..Introducción.................................................Ecuación paramétrica de la recta.....................................ecuación
TABLA 8.1 Energías de explosión de las sustancias explosivas. Hidrocarburo He (Kj/mol) He (kj/kg)
8.2 Manuales de Usuario 8.2.1 Instrucciones para operar Excel. Método TNT. El primer paso es poner en forma de lista y en orden alfabético los tipos de hidrocarburos con los que se va a trabajar, con sus
5to. ESTANDARES MATEMATICOS COMUNES FUNDAMENTALS
Primeras Nueve Semanas Entienda el sistema de valor posicional 5.NBT.2 Explique patrones del numero cero del producto cuando se multiplica un numero por una potencia de 10 y explique patrones en el lugar
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
1. Conceptos básicos sobre el problema en cuestión y cuestiones afines. 2. Formulación de los correspondientes algoritmos y su pseudocódigo.
Análisis de Algoritmos Ingeniería Informática, EPS-UAM Información general Organización del curso: 13-15 (mínimo-máximo) semanas docentes: 30-33 clases teóricas. 9-12 clases de problemas 26-30 clases prácticas
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
Algoritmos sobre Grafos
Sexta Sesión 27 de febrero de 2010 Contenido Deniciones 1 Deniciones 2 3 4 Deniciones sobre Grafos Par de una lista de nodos y una lista de enlaces, denidos a su vez como pares del conjunto de nodos.
ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República
ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto
Método de Hennig. Método alternativo. 1) Definir la raíz (escogiendo grupo externo) 1) Identificar caracteres informativos
urso de Evolución 06 Facultad de iencias Montevideo, Uruguay http://evolucion.fcien.edu.uy/ http://eva.universidad.edu.uy/ Tema. Las filogenias como contexto de análisis de la evolución. Métodos de inferencia
evaluables Productos Resolución y explicación de los cálculos
Recursos didácticos Agrupamiento Sesiones Instrumento Evaluación Productos evaluables 2 sesiones por estrategia + 5minutos de práctica en distintas ocasiones SECUENCIA DIDÁCTICA Estrategia para los primeros
TECNICO SUPERIOR EN INFORMÁTICA EMPRESARIAL MÓDULO INTRUCCIONAL
1 TECNICO SUPERIOR EN INFORMÁTICA EMPRESARIAL MÓDULO INTRUCCIONAL TECNOLOGÍA DE LA COMPUTADORA FACILITADOR: PARTICIPANTE: DAVID, CHIRIQUÍ 2015 2 Qué es un programa? Un programa informático es un conjunto
FUNCIONES REALES DE VARIABLE REAL.
FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A
Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I
Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:
Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra
Herramientas de Programación. M.C. Juan Carlos Olivares Rojas
Herramientas de Programación M.C. Juan Carlos Olivares Rojas Febrero 2011 Temario Simbología Reglas para la construcción de Diagramas Pseudocódigo Temario Tipos de Datos y Expresiones Estructuras lógicas
UNIDAD 6: SISTEMAS DE ECUACIONES
UNIDAD 6: SISTEMAS DE ECUACIONES Continuamos con el estudio de la asignatura; ya hemos abordado cinco capítulos del programa de estudio: Los números reales, ecuaciones, desigualdades y algunas de las funciones
DISEÑO CURRICULAR ALGEBRA LINEAL
DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO
Ecuaciones de primer grado
Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando
ESTRUCTURAS ALGORITMICAS
ESTRUCTURAS ALGORITMICAS El proceso de resolución de problemas en un ordenador conduce a la escritura de un programa y su ejecución. Las fases en el desarrollo de un programa pueden resumirse de la siguiente
Método Simplex: Encontrado una SBF
Método Simplex: Encontrado una SBF CCIR / Matemáticas [email protected] CCIR / Matemáticas () Método Simplex: Encontrado una SBF [email protected] 1 / 31 Determinación de SBF Determinación de SBF El método
41 EJERCICIOS de MATRICES y GRAFOS 2º BACH. 3 ; k) B )
41 EJERCICIOS de MTRICES y GRFOS 2º BCH. 1 2 x 3 0 1 2 7 3 0 1. Hallar x e y para que ambas matrices sean iguales: = 3 2 1 0 3 y 2 1 0 3 2. Indicar tres ejemplos de matriz simétrica de orden 3 Operaciones
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
Tema 4. Operadores y Expresiones
Tema 4 Operadores y Expresiones Contenidos 1. Conceptos Básicos. 2. Operadores Aritméticos. 3. Operadores de Relación, de Igualdad y Lógicos. 4. Operadores de Incremento y Decremento. 5. Operadores y Expresiones
Lección 1. Algoritmos y conceptos básicos.
Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
BLOQUE 1. LOS NÚMEROS
BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números
Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. En otras palabras:
ENCUENTRO # 43 TEMA: Permutaciones y Combinatoria Ejercicio Reto Resolver las ecuaciones: a) b) DEFINICION: Permutación y Combinaciones Qué diferencia hay? Normalmente usamos la palabra "combinación" descuidadamente,
Sistem as de ecuaciones lineales
Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a
El TAD Grafo. El TAD Grafo
! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices
1 Acceso al Sistema de Gestión
1 Acceso al Sistema de Gestión El acceso al Sistema Web de Gestión se realiza pulsando sobre el icono del escritorio Sistema Gestión, desde aquí se accede a la pantalla de identificación. Usuario: el mismo
Planaridad. Algoritmos y Estructuras de Datos III
Planaridad Algoritmos y Estructuras de Datos III Por qué planares? Por qué planares? Por qué planares? Grafos planares Definiciones: Una representación planar de un grafo G es un conjunto de puntos en
Guía 1: PATRONES DE REPETICIÓN
Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
CAPÍTULO 4 TÉCNICA PERT
54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con
Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos
12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las
Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico
Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección
NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo.
NOTACIÓN O GRANDE El análisis de algoritmos estima el consumo de recursos de un algoritmo. Esto nos permite comparar los costos relativos de dos o más algoritmos para resolver el mismo problema. El análisis
Aprendizaje Automatizado
Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD
METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes
MICROSOFT EXCEL 2016 Avanzado
MICROSOFT EXCEL 2016 Avanzado METODOLOGÍA DE LOS CURSOS Cursos interactivos sobre materias especializadas en los que el alumno avanza de forma guiada bajo una concepción learning by doing (aprender haciendo).
