MOVIMIENTO UNIFORMEMENTE ACELERADO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MOVIMIENTO UNIFORMEMENTE ACELERADO"

Transcripción

1 MOVIMIENTO UNIFORMEMENTE ACELERADO IES La Magdalena. Avilé. Aturia Si coniderao un cuerpo que e ueve con velocidad variable Cóo podeo calcular el valor de la velocidad en un intante deterinado (por ejeplo para t =5 )? La pregunta no e fácil de contetar i penao cóo calculao la velocidad (en realidad u ódulo): Obervao el óvil durante cierto tiepo y dividio el epacio recorrido entre el tiepo que ha tardado en recorrerlo. Eto iplica que heo de toar un intervalo de tiepo (por ejeplo: 1 ), pero coo u velocidad varía, lo que realente etao calculando erá la velocidad edia entre el intante t = 5,0 y t = 6,0. Eto e, la velocidad contante a la que debe overe el óvil para recorrer el epacio coniderado en el io tiepo v 11 1 Qué ocurrirá i haceo á pequeño el intervalo de tiepo? Seguireo calculando una velocidad edia, pero el reultado e aproxiará á al valor bucado. 5,0 5,00 5, 5 30, 5 30,5 5,00 v 10,50 0,50 Podeo reiterar el procediiento e ir etrechando cada vez á el intervalo de tiepo. De eta anera vao obteniendo el valor de la velocidad edia entre do punto que etán cada vez á próxio y, en conecuencia, el valor obtenido e ira aproxiando á y á al que la velocidad tendría en el intante t = 5. Qué ocurriría i lográeo calcular eta velocidad edia entre do punto infinitaente próxio? Entonce obtendríao la velocidad en el intante t = 5, con un error infinitaente pequeño (infiniteial). Eto e puede lograr ediante un procediiento ateático denoinado pao al líite, que fora parte del llaado cálculo infiniteial. 1

2 5,00 5,00 5, 01 5,10 5,10 5,00 v 10,01 0,01 5,000 5, 001 5,01 5,00 v 10,001 0,001 Velocidad intantánea (ódulo): 5,00 5, 01 v li t0 d t Se lee: líite de increento de, dividido por increento de t, cuando increento de t tiende a cero o (egunda igualdad) derivada de repecto de t. Ueo ahora vectore para poder dar una definición copleta del vector velocidad (edia e intantánea). Cuando un óvil e deplaza, dede un punto1 a otro, el vector de poición toa lo valore r y r (ver figura ). El vector 1 r r r 1 e llaa vector deplazaiento. r 1 r v r r r 1 El vector velocidad edia e define entonce coo: r 1 v r t t 1 El vector velocidad edia viene dado por tanto coo producto de un núero,, por un vector, r. El reultado erá un vector: t r De ódulo. Coo r coincide con el epacio recorrido ( ), podeo decir que u ódulo e t t (rapidez con que e recorre el epacio). Su dirección y entido on lo de r. r 1 r r v r r 1 r e el epacio recorrido edido obre la trayectoria. e el ódulo del vector r Si la trayectoria e una curva, heo de hacer alguna (iportante) conideracione: r r (ver figura). El cociente o rapidez, ya no e el ódulo de la velocidad edia. t Por tanto, v. t

3 Si partiendo de la ituación anterior vao aproxiando cada vez á lo punto, la dirección de la velocidad edia e acerca á y á a la tangente a la curva, e r e aproxia a (ver equea abajo) En el líite (cuando t 0 ), r =, la velocidad edia e convierte en intantánea y u dirección coincidirá con la de la tangente en el punto coniderado. Dirección de la tangente e el epacio edido obre la trayectoria r r r 1 Con trazo continuo e repreenta el vector con punto el vector r v y r dr Se define el vector velocidad intantánea coo: v li ; t 0 v t Lleva la dirección de la tangente. Su ódulo coincide con la rapidez: r v li li u t t dr d v ut t0 t0 t donde u t e un vector unitario en la dirección de la tangente a la trayectoria en el punto coniderado. Reuen: Vector velocidad intantánea Vector velocidad edia dr v d ut Dirección y entido: El de la tangente en el punto coniderado v r 1 r t t Dirección y entido: lo de r Módulo: La derivada de con repecto de t Módulo: r t 3

4 Concepto de aceleración Si etao etudiando el oviiento de un cuerpo que varía u velocidad, neceitao definir una agnitud que no dé la rapidez con la cual varía la velocidad. Eta agnitud e la aceleración. Se define el vector aceleración: v v1 v a t t t 1 Nota Realente la expreión dada anteriorente, define el vector aceleración edia. Si el oviiento coniderado e tal que la aceleración no e contante, deberíao ditinguir entre aceleración edia e intantánea, que e definiría de una anera análoga a lo hecho en el cao de la velocidad: v dv a li t0 t Moviendo uniforeente acelerado Un cuerpo e ueve con oviiento uniforeente acelerado i: a con tan te La contancia del vector aceleración, iplica que e antenga invariable en ódulo, dirección y entido. Cóo e ueve un objeto para el cual a con tan te? La pregunta no e fácil de reponder, ya que la trayectoria eguida depende del vector velocidad inicial. Veao alguno ejeplo: v 0 Y a a v 0 Objeto que e lanza paralelaente al uelo. El vector velocidad inicial e paralelo al uelo. Objeto parado que coienza a acelerar hacia la derecha. El objeto e overá en línea recta alejándoe cada vez a á velocidad. Objeto que e ueve inicialente hacia la izquierda, oetido a una aceleración hacia la derecha. El objeto e ueve en línea recta e irá diinuyendo u velocidad hata que e pare y luego coenzará a overe con velocidad creciente hacia la derecha. El vector aceleración (aceleración de la gravedad) e contante en ódulo (10 / ), dirección (perpendicular al uelo) y entido (hacia abajo). a Y X Objeto que e lanza hacia arriba con un cierto ángulo. El vector velocidad inicial fora un ángulo con la horizontal. El vector aceleración (aceleración de la gravedad) e contante en ódulo (10 / ), dirección (perpendicular al uelo) y entido (hacia abajo). v 0 a X 4

5 Un cuerpo e overá con oviiento rectilíneo y uniforeente acelerado i inicial e nula (v 0 = 0) o tiene la ia dirección que el vector aceleración. a cte. y u velocidad Si e cuplen eta condicione el cuerpo e ueve variando u velocidad de anera unifore (iepre la ia cantidad en la unidad de tiepo) y la trayectoria decrita erá una línea recta. Oberva que en el io intervalo de tiepo (1 ) cada vez recorre á epacio, ya que la velocidad va auentando / 4 / 6 / 8 / 10 / 1 / La velocidad auenta iepre lo io en 1. La aceleración e contante. La velocidad auenta linealente con el tiepo. Ecuacione del oviiento 1 r r v v 0 a t 0 v 0t a t Coo el oviiento tiene lugar egún una línea recta podeo precindir de la notación vectorial y ecribir encillaente: Donde: = 0 + v 0 t + ½ a t v = v 0 + a t v 0 = velocidad cuando t =0 0 = ditancia al origen cuando t =0 = ditancia al origen (puede que no coincida con el epacio recorrido) t = 0, indica cuando epieza a contare el tiepo (cuando e pone en archa el cronóetro). v v v 1 v 0 t= t t 1 v= v v 1 La gráfica v - t e una recta. La inclinación de la recta depende de la aceleración. Para calcular v 0 hay que deterinar el punto de corte de la recta con el eje v v a t Para calcular la aceleración hay que calcular la pendiente de la recta a a 1 t 1 t t a > a 1 La gráfica /t e una parábola. La aceleración e poitiva i la parábola e abre hacia arriba y negativa i lo hace hacia abajo. Cuanto á cerrada ea la parábola, ayor aceleración. El deplazaiento inicial 0 e deterina viendo el punto de corte con el eje. 0 = 0 t 5

6 Para ecribir la ecuacione de un oviiento rectilíneo y uniforeente acelerado: Fija el origen a partir del cual e va a edir la ditancia. Fija el entido al que e le aigna igno poitivo. Deterina el valor de la contante del oviiento: a, 0, v 0. Adapta la ecuacione generale al cao particular utituyendo lo valore de a, 0, v 0 para el cao coniderado. Ten en cuenta que, aunque no ueo notación vectorial, la agnitude que etá uando: ditancia al origen, velocidad, aceleración, on vectore. Por tanto, adeá de un valor (el núero), tienen una dirección y un entido; el igno no indica el entido del vector (hacia adonde apunta la flecha). Ejeplo 1. Ecribe la ecuacione que decriben el oviiento del punto de la figura v= 0 / t = a = 5 / Solución: Ecuacione generale para el oviiento: v = v 0 + a t = 0 + v 0 t + ½ a t Se toa coo origen de ditancia la línea vertical. Sentido poitivo hacia la derecha. Deterinación de 0: A qué ditancia del origen etá el punto cuando t =0? 0 = 100 Deterinación de v 0 : Cuál e la velocidad del punto cuando t =0? v 0 = 0 / Deterinación de la aceleración: a = - 5 / (igno eno, ya que apunta hacia la izquierda). Ecuacione particulare para ete oviiento: v = 0-5 t = t -,5 a t Una vez ecrita la ecuacione e pueden reolver prácticaente toda la cuetione que e quieran plantear. Solaente hay que traducir de nuetro lenguaje al lenguaje de la ecuación que olaente abe de valore de, v ó t. Ejeplo: Cuánto tarda en frenar el punto del ejeplo anterior?. Traducción al lenguaje ecuación: qué valor toa t cuando v =0? Si v = 0 ; 0 = 0 5 t ; 0 t 4 5 Cuál e u velocidad al cabo de 5,3? Traducción al lenguaje ecuación: qué valor toa v cuando t = 5,3? Si t = 5,3 ; v = ,3 = - 6,5 / (el igno eno indica que e deplaza hacia la izquierda; depué de frenar ha dado la vuelta) 6

7 Ejeplo Ejeplo 3 Un cuerpo parte del repoo y coienza a overe. Lo dato toado e recogen en la tabla adjunta. Indicar qué tipo de oviiento tiene y deterinar la ecuacione para el io. Solución: Coo e oberva en la tabla adjunta el epacio recorrido no varía linealente con el tiepo. Eto e: en el intervalo de un egundo recorre cada vez á epacio. Eto indica que u velocidad va auentando. Si e trata de un oviiento uniforeente acelerado el auento de velocidad, o lo que e lo io, u aceleración, erá contante. t( ) ( ) Si el oviiento e uniforeente acelerado deberá cuplir la ecuación: = 0 + v 0 t + ½ a t. Coo en ete cao v 0 = 0, la ecuación quedará: = 0 + ½ a t. Depejando a : 1 a t 0 ; a t 0 Uando la ecuación anterior vao probando con dato correpondiente de t y coprobao i el valor de a e contante: a 6 ; a 6 ; a 6 3 Etao ante un oviiento uniforeente acelerado con a 6 Para obtener la ecuacione deterinao el valor de v 0 y 0 : v 0 = 0, ya que no lo dicen en el enunciado 0 = 10, ya que e el valor de cuando t = 0 (ver tabla). Ecuacione: Una piedra e lanzada verticalente y hacia arriba con una velocidad de 15 /. Deterinar: a) Ecuacione del oviiento. b) Altura áxia alcanzada. c) Valor de la velocidad cuando t = 0,8 y t =,3. Coentar Solución: Equea: g 10 v 15 v = 6 t = t Origen : el uelo (punto de lanzaiento) Sentido poitivo : hacia arriba Deterinación de v 0 : cuál e la velocidad cuando t = 0? El tiepo epieza a contar cuando la piedra ale de la ano. Luego v 0 = 15 / Deterinación de 0 : a qué ditancia del origen etá la piedra cuando t =0? Cuando e lanza la piedra etá en el punto de lanzaiento (origen). Luego 0 = 0 Deterinación del valor de a : a = g = - 10 /.. El igno eno e debe a que la aceleración apunta hacia abajo y heo coniderado entido poitivo hacia arriba. a ) Ecuacione: b) Cuál e la altura áxia alcanzada? v = t = 15 t 5 t Traducción al lenguaje ecuación: para que valor de t, v = 0? (ya que en el punto de altura áxia la piedra e detiene durante un intante) 7

8 Si v= 0 ; 0 = t ; 15 t 1,5. Tiepo que tarda en alcanzar la altura áxia 10 Ejeplo 4. Para calcular la altura áxia alcanzada calculao la ditancia a la que e encuentra del origen cuando t = 1,5 : = h ax = 15. 1,5 5. 1,5 = 11,5. c) Valore de la velocidad: v (t = 0,8) = ,8 = 7 / v (t =,3) = ,3 = - 8 / Coo e puede obervar al cabo de 0,8 del lanzaiento la piedra aún etá en la fae acendente, ya que el igno de la velocidad e poitivo (entido poitivo: hacia arriba). Coo e ve u velocidad va diinuyendo, debido a que durante el trao de aceno la aceleración lleva entido contrario a la velocidad (oviiento decelerado) Al cabo de,3 la piedra e ueve hacia abajo. El igno e negativo: entido hacia abajo. Efectivaente, a lo 1,5 alcanza la altura áxia, y coo la aceleración continúa actuando, coienza u carrera de deceno, pero eta vez al tener el io entido aceleración y velocidad, éta auenta. La gráfica de la izquierda e ha obtenido tra etudiar el oviiento de un cuerpo. a) Qué tipo de oviiento tiene? b) Cuále on u ecuacione? c) Qué ucede para t = 5? v (/) 40 5 t () a) La gráfica v t e una recta con pendiente negativa. Eto no indica que la velocidad diinuye con el tiepo, pero de fora lineal (la ia cantidad en 1 ). Luego el oviiento e uniforeente acelerado (con aceleración negativa; tabién e llaa decelerado). Para calcular la aceleración (deceleración) calculao la pendiente de la recta v t: 0 40 v v1 Pendiente = a 8. t t Oberva lo valore toado: t 1 = 0 v 1 = 40 ; t = 5 v = 0 b) Coo no no dan dato, podeo toar para 0 cualquier valor. Toareo 0 = 0 v 0 = 40 / (leído en la gráfica) a = - 8 / (calculado) Ecuacione: v = 40 8 t = 40 t 4 t c) En la gráfica e puede leer que cuando t = 5, v = 0. Luego al cabo de 5 e detiene (e un oviiento decelerado). Si t e ayor de 5, oberva que la línea en la gráfica v t rebaa el eje horizontal epezando la velocidad (valore del eje Y) a toar valore negativo cóo interpreta éto? 8

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO I.E.S La Magdalena. Avilé. Aturia Vao a coniderar ahora oviiento en lo que u velocidad varíe. Lo priero que neceitao conocer e cóo varía la velocidad con

Más detalles

Incremento de v. Incremento de t

Incremento de v. Incremento de t MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO Vao a coniderar ahora oviieno en lo que u velocidad varíe. Lo priero que neceiao conocer e cóo varía la velocidad con el iepo. De odo lo oviieno variado

Más detalles

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO FQ 4 Eo MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO Vao a coniderar ahora oviieno en lo que u velocidad varíe. Lo priero que neceiao conocer e cóo varía la velocidad con el iepo. De odo lo oviieno

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

MOVIMIENTO UNIFORMEMENTE ACELERADO

MOVIMIENTO UNIFORMEMENTE ACELERADO MOVIMIENTO UNIFORMEMENTE ACELERADO IES La Magdalena. Avilé. Atuia Si conideao un cuepo que e ueve con velocidad vaiable Cóo podeo calcula el valo de la velocidad en un intante deteinado (po ejeplo paa

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

1. En un gráfico velocidad / tiempo, la pendiente y el área entre la recta y el eje horizontal nos permiten conocer, respectivamente,

1. En un gráfico velocidad / tiempo, la pendiente y el área entre la recta y el eje horizontal nos permiten conocer, respectivamente, Ejercicio 1. En un gráfico elocidad / tiepo, la pendiente y el área entre la recta y el eje horizontal no periten conocer, repectiaente, A) la poición y el ódulo de la aceleración. B) la ditancia recorrida

Más detalles

MOVIMIENTO PARABÓLICO = =

MOVIMIENTO PARABÓLICO = = MOVIMIENTO PARABÓLICO Un cuerpo poee oviiento parabólico cuando e lanzado dede la uperficie terretre forando cierto ngulo con la horizontal. El oviiento parabólico e copone de do oviiento: Moviiento de

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras, Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0

Más detalles

Reflexión. Por qué se analizan las gráficas? Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo.

Reflexión. Por qué se analizan las gráficas? Las matemáticas son el alfabeto con el cual Dios ha escrito el Universo. Refleión La ateática on el alfabeto con el cual Dio ha ecrito el Univero. Galileo Galilei Por qué e analizan la gráfica? En Fíica e neceario eplicar el coportaiento de lo objeto. Para eto e utilizan la

Más detalles

Figure 0-1 Con el plano es horizontal, y si la fricción es despreciable, el carrito viaja con velocidad constante

Figure 0-1 Con el plano es horizontal, y si la fricción es despreciable, el carrito viaja con velocidad constante Experiento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivo 1. Medir la ditancia recorrida y la velocidad de un objeto que e ueve con: a. velocidad contante y b. aceleración contante,. Etablecer la relacione

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida

PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida PROBLEMAS VISUALES DE FÍSICA PVF3-**. Contracción de vena líquida Fotografía La fotografía repreenta la trayectoria eguida por el agua que ale en dirección orizontal con una velocidad v o. La regla ituada

Más detalles

DINÁMICA FCA 04 ANDALUCÍA

DINÁMICA FCA 04 ANDALUCÍA 1. Se deja caer un cuerpo de 0,5 kg dede lo alto de una rapa de, inclinada 30º con la horizontal, iendo el valor de la fuerza de rozaiento entre el cuerpo y la rapa de 0,8 N. Deterine: a) El trabajo realizado

Más detalles

TRABAJO Y ENERGÍA. Cuestiones. Trabajo y potencia.

TRABAJO Y ENERGÍA. Cuestiones. Trabajo y potencia. TRABAJO Y ENERGÍA Cuetione..- Enuera lo diferente tipo de energía que conozca y pon algún ejeplo en el que un tipo de energía e tranfore en otro..- Indica i e verdadero o falo: a) Siepre que ejerceo una

Más detalles

FUERZAS DE ROZAMIENTO (deslizamiento) FUERZA DE ROZAMIENTO CINÉTICA

FUERZAS DE ROZAMIENTO (deslizamiento) FUERZA DE ROZAMIENTO CINÉTICA FUEZAS DE OZAMIETO (delizaiento) IES La Magdalena. Ailé. Aturia La fuerza de rozaiento urgen: Cuando a un cuerpo en repoo obre un plano e le aplica una fuerza para intentar ponerlo en oiiento (aunque no

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

En un ciclo completo el cuerpo se mueve de x=a a x= A y regresa en x= A El movimiento armónico simple esta caracterizado por: PERIODO (T): es el

En un ciclo completo el cuerpo se mueve de x=a a x= A y regresa en x= A El movimiento armónico simple esta caracterizado por: PERIODO (T): es el En un ciclo copleto el cuerpo e ueve de A a A y regrea en A El oviiento arónico iple eta caracterizado por: PERIODO (): e el tiepo que tarda un ciclo. En el SI la unidad del periodo e el egundo (). RECUENCIA

Más detalles

156 Ecuaciones diferenciales

156 Ecuaciones diferenciales 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento

Más detalles

M. A. S. Y MOV. ONDULATORIO FCA 05 ANDALUCÍA

M. A. S. Y MOV. ONDULATORIO FCA 05 ANDALUCÍA . Una partícula de 0, kg decribe un oviiento arónico iple a lo largo del eje x, de frecuencia 0 Hz. En el intante inicial la partícula paa por el origen, oviéndoe hacia la derecha, y u velocidad e áxia.

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

[ ] [] s [ ] Velocidad media. v m. m m. 2 s. Cinemática ΔX = X2 X1

[ ] [] s [ ] Velocidad media. v m. m m. 2 s. Cinemática ΔX = X2 X1 Cineática CINEMÁTICA Introducción El fenóeno fíico á coún en la naturaleza e el oviiento y de él, preciaente e encarga la cineática. Pero quiene e ueven? : Evidenteente lo cuerpo. Claro que un cuerpo puede

Más detalles

Ondas periódicas en una dimensión

Ondas periódicas en una dimensión CÍULO 7 84 Capítulo 7 ONDS ERIÓDICS EN UN DIENSIÓN interaccione capo y onda / fíica 1º b.d. Onda periódica en una dienión Ya heo vito coo un pulo puede tranferir energía de un lugar a otro del epacio in

Más detalles

TRABAJO Y ENERGÍA. Ejercicios de la unidad 15

TRABAJO Y ENERGÍA. Ejercicios de la unidad 15 TRABAJO Y ENERGÍA Ejercicio de la unidad 5 Cuetione..- Enuera lo diferente tipo de energía que conozca y pon algún ejeplo en el que un tipo de energía e tranfore en otro..- Indica i e verdadero o falo:

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

Determinación de la cantidad de agua congelable y no congelable presente en un alimento congelado

Determinación de la cantidad de agua congelable y no congelable presente en un alimento congelado Deterinación de la cantidad de agua congelable y no congelable preente en un aliento congelado Apellido, nobre Talen Oliag, Pau (pautalen@tal.upv.e Departaento Centro Tecnología de Aliento Univeritat Politècnica

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

MECANICA DE FLUIDOS. Qué estudia la hidráulica?. Líquidos. Fuidos

MECANICA DE FLUIDOS. Qué estudia la hidráulica?. Líquidos. Fuidos 1 GUIA FISICA GRADO ONCE: MECANICA DE FLUIDOS AUTOR Lic. Fíica, ERICSON SMITH CASTILLO MECANICA DE FLUIDOS La leye de Newton que etudiao para lo ólido on aplicable a lo fluido, pero ante debeo conocer

Más detalles

Avisos para el cálculo y la selección del amortiguador apropiado

Avisos para el cálculo y la selección del amortiguador apropiado Aortiguadore idráulico Avio para el cálculo y la elección del aortiguador apropiado Para deterinar el aortiguador DICTATOR para u aplicación, bata con lo aortiguadore de ipacto y de aceite con ontaje fijo

Más detalles

TEMAS SELECTOS DE FÍSICA I GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO

TEMAS SELECTOS DE FÍSICA I GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES 4/ TEMAS SELECTOS DE FÍSICA I QUINTO SEMESTRE DICIEMBRE 013 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO

Más detalles

MÓDULO DE FÍSICA. 5. En el fenómeno de la refracción, en ambos medios, la onda mantiene constante su

MÓDULO DE FÍSICA. 5. En el fenómeno de la refracción, en ambos medios, la onda mantiene constante su MÓDULO DE FÍICA 5. En el fenóeno de la refracción, en abo edio, la onda antiene contante u La iguiente pregunta de ete Modelo de Prueba correponden a Fíica y debajo de la nueración e indica i pertenecen

Más detalles

Capítulo 11. Suma de momentos angulares Valores propios Funciones propias Ejemplo. Momento angular total de un átomo hidrogenoide

Capítulo 11. Suma de momentos angulares Valores propios Funciones propias Ejemplo. Momento angular total de un átomo hidrogenoide apítulo Sua de oento angulare Valore propio Funcione propia Eeplo Moento angular total de un átoo hidrogenoide Sua de oento angulare La preencia de diferente tipo de oento angular orbital y de epín y á

Más detalles

Movimiento Ondulatorio Ejercicios resueltos

Movimiento Ondulatorio Ejercicios resueltos Moiiento Ondulatorio Ejercicio reuelto 994-09 PAU CyL PM997 Ecuación de la onda y elongación de un punto en un intante Una arilla ujeta por un extreo ibra con una frecuencia de 400 Hz y con una aplitud

Más detalles

CANTIDAD DE MOVIMIENTO LINEAL

CANTIDAD DE MOVIMIENTO LINEAL NOTAS DE FÍSICA GRADO CANTIDAD DE MOIMIENTO LINEAL CONTENIDO. IMPULSO. COLISIONES O CHOQUES 3. PROBLEMAS PROPUESTOS Contanteente ecuchao y veo choque de auto y oto, nootro alguna vece deprevenido chocao

Más detalles

1.- Qué valor ha de tener el parámetro m para que el vector A=3i+mj forme un ángulo de 60 con el eje OX? existe más de un valor?

1.- Qué valor ha de tener el parámetro m para que el vector A=3i+mj forme un ángulo de 60 con el eje OX? existe más de un valor? Nombre: Curo: FYQ 4º ESO Examen II Fecha: 5 de Diciembre de 06 ª Evaluación Opción A.- Qué valor ha de tener el parámetro m para que el vector A=3i+mj forme un ángulo de 60 con el eje OX? exite má de un

Más detalles

1 Fuerzas. 4 Fuerzas y movimiento. Definición de fuerza. Aprende, aplica y avanza. Efectos de las fuerzas y tipos de materiales

1 Fuerzas. 4 Fuerzas y movimiento. Definición de fuerza. Aprende, aplica y avanza. Efectos de las fuerzas y tipos de materiales 4 Fuerza y oviiento 1 Fuerza Definición de fuerza Se define fuerza coo toda caua que puede tener coo efecto, bien cabio en el etado de oviiento de un cuerpo, bien una deforación en él. Su unidad, en el

Más detalles

TIRO OBLICUO

TIRO OBLICUO - 17 - TIRO OBLICUO - 18 - Advertencia. Tiro oblicuo e un tea edio coplicado. Lo concepto no on fácile de entender. Lo ejercicio tienen u vuelta. La ecuacione on larga. Para poder reolver lo problea hay

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

1. Movimiento. Solucionario. BLOQUE I. Las fuerzas y los movimientos. Preparación de la unidad (pág. 11) Actividades (pág. 12) Actividades (pág.

1. Movimiento. Solucionario. BLOQUE I. Las fuerzas y los movimientos. Preparación de la unidad (pág. 11) Actividades (pág. 12) Actividades (pág. BLOQUE I. La fuerza y lo oiiento. Moiiento Solucionario Preparación de la unidad (pág. ) Longitud: etro () Tiepo: egundo () Velocidad: etro por egundo (/) Aceleración: etro por egundo al cuado (/ ) Ángulo:

Más detalles

Ejercicios de Cinemática para 4º de E.S.O.

Ejercicios de Cinemática para 4º de E.S.O. Ejercicios de Cineática para 4º de E.S.O. 1. En la figura se uestra la gráfica posición-tiepo para un deterinado oviiento: a) Deterinar el desplazaiento entre los instantes t = 2 s y t = 8 s; b) Calcular

Más detalles

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.

Más detalles

Instituto Maria Auxiliadora - Bernal. 4 to.. Año Secundaria Física. Movimiento Rectilíneo Uniforme ( MRU )

Instituto Maria Auxiliadora - Bernal. 4 to.. Año Secundaria Física. Movimiento Rectilíneo Uniforme ( MRU ) Moviiento Rectilíneo Unifore ( MRU ) * Expresar en /seg una velocidad de 25 k/h e 25 K 25.000 v = --------- = --------------- = ----------------- = 6,94 /seg = v t 1 h 3.600 seg * Expresar en k / h una

Más detalles

TIRO PARABÓLICO Advertencia.

TIRO PARABÓLICO Advertencia. 61 TIRO PARABÓLICO Advertencia. Tiro parabólico no e un tea fácil. Lo concepto no on fácile de entender. La ecuacione no on iple. Lo problea tienen u vuelta. Encia para poder entender tiro parabólico y

Más detalles

M. A. S. Y MOV. ONDULATORIO FCA 04 ANDALUCÍA

M. A. S. Y MOV. ONDULATORIO FCA 04 ANDALUCÍA 1. a) Cuále on la longitude de onda poible de la onda etacionaria producida en una cuerda tena, de longitud L, ujeta por abo extreo? Razone la repueta. b) En qué lugare de la cuerda e encuentran lo punto

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

Informe de laboratorio Determinación del valor de la aceleración de la gravedad g a través del método del plano inclinado

Informe de laboratorio Determinación del valor de la aceleración de la gravedad g a través del método del plano inclinado Infore de laboratorio Deterinación del valor de la aceleración de la gravedad g a travé del étodo del plano inclinado Cabrera, María Keler, Sofía Solanilla, Juan aruja_997@hotail.co ofiakeler@hotail.co

Más detalles

IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mediterráneo de Málaga Solución Junio Juan Carlo lono Gianonatti g con OX uncione la de corte de Punto g OPCIÓN E.- Calcular el área de la región inita itada por la gráica de la unción () el eje de

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

Energía mecánica.conservación de la energía.

Energía mecánica.conservación de la energía. 30 nergía ecánica.conervación de la energía. NRGÍA POTNCIAL Suponé que otengo una coa a 1 del pio y la uelto. Al principio la coa tiene velocidad inicial cero. Pero reulta que cuando toca el pio tiene

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

FUERZAS. EFECTOS DE LAS FUERZAS

FUERZAS. EFECTOS DE LAS FUERZAS UERZAS. EECTOS DE LAS UERZAS IES La Magdalena. Avilés. Asturias Observa la iagen que se uestra ás abajo, en ella se puede ver un cuerpo que, inicialente, se ueve hacia la derecha con una velocidad de 5

Más detalles

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T 1 Ciencias Básicas Física Prograa Estándar Intensivo Cuaderno Estrategias y Ejercitación Dináica II: ley de gravitación, fuerza de roce CUACES007CB82-A16V1 Estrategias? PSU Pregunta PSU 1. Respecto de

Más detalles

Programa. Intensivo. Pregunta PSU Tip

Programa. Intensivo. Pregunta PSU Tip Prograa Técnico Profeional Intenivo Cuaderno Etrategia y Ejercitación Onda I: onda y u caracterítica Etrategia? PSU Pregunta PSU FÍSICA 1. Repecto de la onda, e afira que I) on perturbacione que tranportan

Más detalles

Rios Esparza Gabriel Armando

Rios Esparza Gabriel Armando 1. Cálculo de lo alario enuale de lo epleado de una eprea, abiendo que éto e calculan con bae en la hora eanale trabajada y de acuerdo a un precio epecificado por hora. Si e paan de cuarenta hora eanale,

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

TEMA 2: EL MOVIMIENTO

TEMA 2: EL MOVIMIENTO TEMA 2: EL MOVIMIENTO 1.- Introducción. 2.- Características del movimiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazamiento. 2.4.- Velocidad. 2.5.- Aceleración. 1.- INTRODUCCIÓN La Cinemática es

Más detalles

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA

Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA Física y Química 4º ESO Apuntes de Cinemática página 1 de 6 CINEMATICA CONCEPTOS BÁSICOS Se dice que un objeto está en movimiento cuando su posición cambia respecto a un sistema de referencia que se considera

Más detalles

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2 PROLEM Nº1. El mecanimo de la figura e compone de un diferencial que tranmite el movimiento a un tren de engranaje epicicloidal mediante un tornillo in fin. El brazo de ete tren de engranaje e el elabón

Más detalles

Problemas propuestos sobre Dinámica

Problemas propuestos sobre Dinámica 1 Universidad de ntioquia Instituto de ísica Probleas propuestos sobre Dináica Nota: Si se encuentra algún error en las respuestas, le agradeceos reportarlo a su profesor de Teoría de ísica I. para ser

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

ONDAS ( ) ( ) La amplitud y la fase inicial se calculan mediante un sistema que se plantea con la posición y velocidad inicial.

ONDAS ( ) ( ) La amplitud y la fase inicial se calculan mediante un sistema que se plantea con la posición y velocidad inicial. ONDAS Septiebre 06. Pregunta B.- Una onda arónica tranveral e deplaza en el entido poitivo del eje X con una velocidad de 5 y con una frecuencia angular de /3 rad. Si en el intante inicial la elongación

Más detalles

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante Física Cinemática La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

MOVIMIENTO UNIFORME. v cte. r r v t

MOVIMIENTO UNIFORME. v cte. r r v t MOVIMIENTO UNIFORME IES La Magdalena. Avilés. Asturias Un cuerpo se mueve con movimiento uniforme si v cons tan te La constancia del vector velocidad, implica que se mantenga invariable en módulo (valor,

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moviiento ociltorio Moviiento rónico iple (MAS) Cineátic IES L Mgdlen. Avilé. Aturi Se dice que un prtícul ocil cundo tiene un oviiento de vivén repecto de u poición de equilibrio, de for tl que el oviiento

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

Energía mecánica.conservación de la energía.

Energía mecánica.conservación de la energía. 57 nergía ecánica.conervación de la energía. NRGÍA POTNCIAL Hay do tipo de energía potencial que tené que conocer. Una e la potencial gravitatoria, que tiene que ver con la altura a la que etá un objeto.

Más detalles

TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA

TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA 1.- La ciencia. 2.- La ateria y u propiedade..- La edida..1.- Magnitud y unidad..2.- El itea internacional de unidade...- Magnitude fundaentale y derivada..4.-

Más detalles

Guía de Ejercicios Resueltos Física General Hidrodinámica

Guía de Ejercicios Resueltos Física General Hidrodinámica Refuerzo: Fíica General Eteban A. Rodríguez M. Guía de Ejercicio Reuelto Fíica General Hidrodináica Lo ejercicio explicado en ete docuento on bae para la prueba, la ayoría de ello on copiado dede el libro.

Más detalles

E k x 24,5 0,15 0,276 J. E kx 24,5 0,075 0,069 J 0,276 J E E E 0,276 0,069 0,207 J

E k x 24,5 0,15 0,276 J. E kx 24,5 0,075 0,069 J 0,276 J E E E 0,276 0,069 0,207 J Moviientos periódicos I 0. Un punto describe una trayectoria circular de de radio con una velocidad de 3 rad/s. Expresar la ecuación del oviiento que resulta al proyectar el punto sobre el diáetro vertical:

Más detalles

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA 1.- Contestar razonadaente a las siguientes preguntas acerca del oviiento arónico siple (MAS): 1A (0.25 p).- Si el periodo de un MAS es

Más detalles

OPCION A OPCION B CURSO 2014-2015

OPCION A OPCION B CURSO 2014-2015 Fíica º Bachillerato. Exaen Selectividad Andalucía. Junio 05 (euelto) -- CUSO 04-05 OPCIO A. a) Defina la caracterítica del potencial eléctrico creado por una carga eléctrica puntual poitiva. b) Puede

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular. ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de

Más detalles

Movimiento rectilíneo uniformemente variado (parte 2)

Movimiento rectilíneo uniformemente variado (parte 2) Semana (parte 1) 9 Semana 8 (parte ) Empecemo! Apreciado participante, neceitamo que tenga una actitud de éxito y dipoición de llegar hata el final, aún en medio de la dificultade, por ello perevera iempre!

Más detalles

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO UNIVERSIDAD CATÓLICA DE VALPARAÍSO INSTITUTO DE FÍSICA OBJETIVO DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO En este experiento se deterinará el coeficiente de viscosidad del aceite de otor. INTRODUCCIÓN

Más detalles

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8.

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8. C.- Una plataforma gira alrededor de un eje vertical a razón de una vuelta por egundo. Colocamo obre ella un cuerpo cuyo coeficiente etático de rozamiento e 0,4. a) Calcular la ditancia máxima al eje de

Más detalles

CAÍDA LIBRE Y TIRO VERTICAL

CAÍDA LIBRE Y TIRO VERTICAL CAÍDA LIBRE Y TIRO VERTICAL ECUACIONES HORA- RIAS PARA CAIDA LI- BRE Y TIRO VERTICAL Poición en función del iepo Velocidad en función del iepo - 4 - CAÍDA LIBRE y TIRO VERTICAL Suponé que un ipo va a la

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

1. Trayectoria y desplazamiento

1. Trayectoria y desplazamiento 1. Trayectoria y desplazaiento A partir de la actividad anterior, pudiste apreciar que la distancia ás corta entre dos lugares es la recta que los separa. Sin ebargo, en la vida diaria y en la ayoría de

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NATURALES FÍSICA -- 1 -- 13. N.S.Q INSTITUCIÓN EDUCATIA ESCUELA NORMAL SUPERIOR DE QUIBDÓ Moviiento en el plano con aceleración constante, es una etensión de caída libre Analiza: El

Más detalles

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA 1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

( ) ( 5. = Velocidad LLENADO. Determinación del Flujo Volumétrico de llenado Esta determinación se la realiza con la ecuación de la continuidad.

( ) ( 5. = Velocidad LLENADO. Determinación del Flujo Volumétrico de llenado Esta determinación se la realiza con la ecuación de la continuidad. RÚBRICA DE CALIFICACIÓN DEL SEGUNDO EXAMEN Materia: FLUJO DE FLUIDOS FIMP08748 Proeor: David E. Mataoro C., Ph.D. Seetre: I Año Acadéico: 011-01 1. En una indutria ebotelladora, e piena llenar botella

Más detalles

A sen t sen3t, yb. a A sen t x, luego a x 0,06ms

A sen t sen3t, yb. a A sen t x, luego a x 0,06ms Moviientos periódicos I 0. Un punto describe una trayectoria circular de de radio con una velocidad de 3 rad/s. Expresar la ecuación del oviiento que resulta al proyectar el punto sobre el diáetro vertical:

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

Ejemplos de problemas resueltos

Ejemplos de problemas resueltos Ejeplo de problea reuelto Ejeplo # otor con volante El volante de un otor tiene un diáetro d = 0.6 La poición angular del volante etá dada por: θ.0 t = En t =.0, la poición angular erá ( ) 60 θ =.0.0 =

Más detalles

FUERZAS DE ROZAMIENTO (deslizamiento) FUERZA DE ROZAMIENTO CINÉTICA

FUERZAS DE ROZAMIENTO (deslizamiento) FUERZA DE ROZAMIENTO CINÉTICA FUEZAS DE OZAMIETO (delizaiento) La fuerza de rozaiento urgen: Cuando a un cuerpo en repoo obre un plano e le aplica una fuerza para intentar ponerlo en oiiento (aunque no llegue a delizar). Fuerza de

Más detalles

r r r Se define el momento lineal, p, como: p = m v

r r r Se define el momento lineal, p, como: p = m v MOMETO LIEAL Fue el propio ewton quien introdujo el concepto de oento lineal (aunque él lo llaaba cantidad de oiiento) con el fin de diponer de una expreión que cobinara la agnitude caracterítica de una

Más detalles

4-. Sean u = (2, 0, -1, 3), v = (5, 4, 7, -2), w = (6, 2, 0, 9). Determine el vector x que satisface a: 2u v + x = 7x + w.

4-. Sean u = (2, 0, -1, 3), v = (5, 4, 7, -2), w = (6, 2, 0, 9). Determine el vector x que satisface a: 2u v + x = 7x + w. EJERCICIOS VECTORES. 1-. Calcule la dirección de los siguientes vectores: a) v = (2, 2) d) v = (-3, -3) b) v = (-2 3, 2) e) v = (6, -6) c) v = (2, 2 3 ) f) v = (0,3) 3-. Para los siguientes vectores encuentre

Más detalles

Solucionario. Cuaderno de Física y Química 3

Solucionario. Cuaderno de Física y Química 3 Solucionario Cuaderno de Fíica y Quíica 3 UNIDAD 7.. El iea de referencia e fundaenal para conocer la poición exaca de un cuerpo y por ano u rayecoria y u velocidad.. Por ejeplo i eao enado en un ren en

Más detalles

F TS. m x. m x 81 = T 2. = 3,413x10 8 m = 341.333 km

F TS. m x. m x 81 = T 2. = 3,413x10 8 m = 341.333 km EECICIO LEYE DE KEPLE Y GAVIACIÓN UNIVEAL olucionario.- A qué ditancia debiera etar un cuerpo de la uperficie terretre para que u peo e anulara? El peo de un cuerpo e anularía en do circuntancia: i) En

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles