UNIVERSIDAD DE MANAGUA
|
|
|
- Rubén Tebar Araya
- hace 8 años
- Vistas:
Transcripción
1 UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #2 Pruebas estadísticas para números pseudo aleatorios Prof.: MSc. Julio Rito Vargas A. Grupo: Ingeniería Industrial Objetivos: o Conocer las pruebas estadísticas que deben aplicarse a un conjunto de números de números pseudo aleatorios antes de usarse para un modelo de simulación. o Aplicar las pruebas estadísticas de uniformidad y de independencia a un conjunto ri de números pseudo aleatorios. o Validar que el conjunto ri de números pseudo aleatorios realmente está conformado por números aleatorios o no; a un nivel de confianza alfa (α) usando pruebas estadísticas. I. Introducción: Para realizar una simulación se requiere números aleatorios en el intervalo (0,1), a los cuales se hará referencia como ri, es decir, una secuencia de ri ={ r1, r2 =, r3 =, r4 =,, rn } que contiene n números, todos ellos diferentes; n recibe el nombre de período o ciclo de vida del generador que creo la secuencia ri. Los ri constituyen la parte medular de la simulación de procesos estocásticos y generalmente se usan para generar el comportamiento de variables aleatorias, tanto continuas como discretas. De Debido a que no es posible generar números realmente aleatorios es necesario consideraremos los ri como números pseudo aleatorios, generados por medios de algoritmos determinísticos que requieren parámetros de arranque. Para simular el comportamiento de una o más variables aleatorias es necesario contar con un conjunto suficientemente grande de ri que permita, por ejemplo que la secuencia tenga al menos un periodo de vida de n=2 31 =2, 174, 483, 648. De acuerdo con L Ecuyer una secuencia de ri con período de vida n=2 31 es pequeña; de hecho, incluso una secuencia de ri que contenga un ciclo de vida de n=2 64 se Julio Rito Vargas Pág. 1
2 considera pequeño. En la actualidad contamos con generadores de y procesadores capaces de construir una secuencia ri con periodo de vida de n= Usted se preguntará por que debemos una secuencia grande de números aleatorios ri suficientemente grandes. Lo cual ilustramos con el siguiente ejemplo. Suponga que queremos simular que tiene 5 cajeros en paralelo, cada uno de los cuales atiende aproximadamente 50 clientes diarios. Para simular el tiempo de atención se requiere un generador de variable aleatoria en función de ri por ejemplo Ti=5+2ri, expresado en minutos para toda i=1,2,3,,n. Si simulamos el tiempo de atención de manera aislada, es decir sin considerar el tiempo transcurrido desde la llegada de éstos, serán necesarios 5x50=250 números ri para similar un día; si deseáramos simular 5 días se necesitan 250x5=1250 ri. Ahora bien, si consideramos el tiempo desde la llegada de los clientes, precisaríamos de 250 ri para simular el tiempo transcurrido desde la llegada al banco de los 250 clientes por día y 250x5 = 1250 ri para simular el correspondiente al total atendidos durante 5 días. Por lo tanto se requieren 2500 números pseudo aleatorios ri para simular la operación del banco durante 5 días. Como los resultados no pueden basarse en una sola simulación del sistema; por lo el contrario es necesario realizar varias réplicas de la misma, corriendo cada una de ellas con números pseudo aleatorios diferentes. Retomando el ejemplo del banco, simular 5 días otra vez significa que necesitamos 2500 ri para realizar la simulación del sistema de atención al cliente con dos réplicas. Usted se podrá imaginar cuántos números ri serán necesarios para simular la operación del banco durante 9 réplicas, o cuántos números ri se requieren para simular un sistema productivo durante un año, con varias líneas de producción y cada línea de producción con varias estaciones y cada estación con uno o más procesos. En la guía número 3 aprenderemos a generar números pseudo aleatorios basados en varios algoritmos; por ahora vamos a considerar que esos números ya los hemos obtenidos requerimos si son útiles para ser usados para un modelo de simulación. Pruebas estadísticas para los números pseudo aleatorios Julio Rito Vargas Pág. 2
3 A continuación se analizará las pruebas estadísticas básicas que se emplean generalmente para determinar si un conjunto de números pseudo aleatorios entre 0 y 1 cumplen con las propiedades básicas de independencia y uniformidad. El objetivo, otras palabras, es validar que el conjunto ri realmente está conformado por números aleatorios. Es importante mencionar que las pruebas que se mencionaran no son únicas. Pruebas de Uniformidad: Una de las pruebas de datos más importantes que debe cumplir un conjunto de números ri es de uniformidad. Para comprobar su acatamiento se han desarrollados pruebas estadísticas tale como las pruebas Chi-cuadradas y de Kolmogorov Smirnov. En cualquiera de ambos casos, para probar la uniformidad de los números de un conjunto ri es necesario formular las siguientes hipótesis: H0: ri U(0,1) Los números son uniformes. H1: ri no son uniformes. o Prueba Chi-cuadrada. La prueba Chi-cuadrada busca determinar si los números del conjunto ri se distribuyen uniformemente en el intervalo (0,1). Para llevar a cabo esta prueba es necesario dividir el intervalo (0,1) en m subintervalos, en donde es recomendable m= n. Posteriormente se clasifica cada número pseudo aleatorio del conjunto ri en los m intervalos. A la cantidad de números ri que clasifican en cada intervalo se le denomina frecuencia observada (Oi), y la cantidad de de números ri que se espera encontrar en cada intervalo se le llama frecuencia esperada (Ei); tericamente la ri es igual a n/m. A partir de los valores Oi y Ei se determina el estadístico m X o 2 = (E i O i ) 2 i=1 Si el valor del estadístico X o 2 es menor que el valor de X α,m 1 2, entonces no se puede rechazar que el conjunto de datos ri sigue una distribución uniforme. En caso contrario, se rechaza que ri sigue una distribución uniforme. E i Julio Rito Vargas Pág. 3
4 o Prueba Kolmogorov - Smirnov Propuesta por Kolmogorov y Smirnov, ésta es una prueba estadística que también nos sirve para determinar si un conjunto ri cumple la propiedad de uniformidad. Es recomendable aplicarla en conjuntos ri pequeños, por ejemplo n < 20. El procedimiento es el siguiente. 1. Ordene de menor a mayor los número ri r1 r2 r3 rn 2. Determine los valores D +, D - y D con las siguientes ecuaciones. D + = máx 1<i<n { i n r i} D = máx 1<i<n {r i i 1 n } D = máx {D +, D } 3. Determinar el valor crítico D α,n de acuerdo con la tabla de valores críticos de Kolmogorov-Smirnov para un grado de confianza α y según el tamaño de la muestra n. 1. Si el Valor D es mayor que el valor crítico D α,n se concluye que los números del conjunto ri, no siguen una distribución uniforme; de lo contrario se dice que no se ha detectado diferencia significativa entre la distribución de los números del conjunto ri y la distribución uniforme. (Nota: ver ejemplo de esta prueba en la página 36 del libro de Simulación y análisis de sistemas con Promodel) o Pruebas de Independencia Recuerde que las dos propiedades más importantes que deben satisfacer los números de un conjunto ri son uniformes e independientes. Hemos comentados anteriormente dos pruebas para determinar si los números ri son uniformes. A continuación hablaremos de las pruebas estadísticas que tratan de corroborar si los números en el intervalo (0,1) son independientes o en otras palabras, si parecen aleatorios. H0: los números del conjunto ri son independientes. H1: los números del conjunto ri no son independientes. Julio Rito Vargas Pág. 4
5 Prueba de corridas o Julio Rito Vargas Pág. 5
6 Prueba de Poker Julio Rito Vargas Pág. 6
7 ACTIVIDAD PRÁCTICA II. Cálculos para la prueba estadística Chi-cuadrada. Julio Rito Vargas Pág. 7
8 Intervalos Frecuencia observada (OI) Frecuencia esperada (Ei=n/m) (Oi - Ei) (Oi - Ei) 2 (Oi - Ei) 2 /Ei 2 El Valor teórico de X 0.95,9 = este valor debe compararlo con lo que resulte de la tabla anterior. 9 2 ( oi ei ) x e i 0 i 2 Conclusión; el conjunto de números xi analizados según la prueba estadística Chicuadrada evidencia que III. Prueba de Independencia Realice la prueba de Corrida y Poker. Julio Rito Vargas Pág. 8
9 Julio Rito Vargas Pág. 9
10 PARA ENTREGAR: DETERMINE SI EL CONJUNTO DE NÚMEROS PSEUDO ALEATORIOS SON UNIFORMES E INDEPENDIENTES. USE LA PRUEBAS: CHICUADRADA Y POKER. Julio Rito Vargas Pág. 10
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #3 Generación de números Aleatorios para modelos de simulación Prof.: MSc. Julio Rito Vargas A. Grupo: INGENIERIA INDUSTRIAL
Cabrera Hernández Elizabeth Ramírez Bustos Fabián GENERACION DE NUMEROS ALEATORIOS
Cabrera Hernández Elizabeth Ramírez Bustos Fabián GENERACION DE NUMEROS ALEATORIOS NUMEROS ALEATORIOS Los números random son un elemento básico en la simulación de la mayoría de los sistemas discretos.
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #3 Prof.: MSc. Julio Rito Vargas A. Febrero 2013 Objetivos: Obtener muestras a partir de números aleatorios. Usando muestras
Objetivos: Construir un modelo de Simulación de un Sistema de Servicios Bancarios, con las herramientas de Promodel
UNIVERSIDAD DE MANAGUA Al más alto nivel ASIGNATURA: SIMULACIÓN DE SISTEMAS SIMULACIÓN CON PROMODEL Guía #6: Modelo 5: Simulación de un Sistema de Servicios Bancarios Prof.: MSc. Julio Rito Vargas A. Objetivos:
SECUENCIA DIDÁCTICA. Módulo IV
SECUENCIA DIDÁCTICA Nombre de curso: Simulación de Sistemas Antecedente: Clave de curso: ECOM118 Clave de antecedente: Ninguna. Módulo IV Competencia de Módulo: Desarrollar programas de cómputo utilizando
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial
Contraste de hipótesis paramétricas
Contraste de hipótesis paramétricas Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Proceso de la investigación estadística Etapas PROBLEMA HIPÓTESIS DISEÑO RECOLECCIÓN
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Guía práctica #3 Generación de muestras de distribuciones de probabilidad de variables aleatorias discretas y continuas con Stat::Fit Prof.:
Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14
Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca
Inferencia con una variable Tema 2
Inferencia con una variable Tema 2 1. Contraste sobre una proporción 2. Bondad de ajuste 3. Contraste de hipótesis sobre una media 3.1. Con σ 2 conocida, prueba Z 3.2. Con σ 2 desconocida, prueba T 4.
4. NÚMEROS PSEUDOALEATORIOS.
4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar
Preparación de los datos de entrada
Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:
Universidad Católica de Valparaíso Facultad de Ingeniería Escuela de Ingeniería de Transporte
1. NÚMEROS ALEATORIOS 1.0 INTRODUCCIÓN El papel que desempeñan las variables aleatorias uniformemente distribuidas en la generación de variables aleatorias tomadas de otras distribuciones de probabilidad,
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.
DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo
DISTRIBUCIONES BIDIMENSIONALES
La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento
A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords
A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística [email protected] http://www.fcnym.unlp.edu.ar/catedras/estadistica
Estadística para la toma de decisiones
Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 10 Nombre: Pruebas de Hipótesis. Parte II Objetivo Al término de la sesión el estudiante analizará la prueba
Evaluación económica de proyectos de inversión utilizando simulación
Jiménez Boulanger, Francisco. Evaluación económica de proyectos de inversión utilizando simulación Tecnología en Marcha. Vol. 19-1. Evaluación económica de proyectos de inversión utilizando simulación
Generación de números aleatorios con distribución uniforme
Generadores de Números Aleatorios 1 Existen en la actualidad innumerables métodos para generar números aleatorios En la literatura disponible se pueden encontrar gran cantidad de algoritmos. Generación
UNIVERSIDAD DE MANAGUA Al más alto nivel
Prof.: MSc. Julio Rito Vargas A. UNIVERSIDAD DE MANAGUA Al más alto nivel SIMULACIÓN DE SISTEMAS Problemas para Simular con Promodel (Parte 2) Grupo: Ingenierías/2016 I. Las partes llegan a un sistema
La simulación implica construir una replica de algún sistema real y usarlo bajo condiciones de prueba
Simulación Simulación La simulación implica construir una replica de algún sistema real y usarlo bajo condiciones de prueba Los modelos matemáticos se construyen y utilizan para comprobar los resultados
FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS NÚMEROS ALEATORIOS UNIFORMES
FUNCIONES DE GENERACIÓN DE NÚMEROS ALEATORIOS Hay muchos problemas de ingeniería que requieren números aleatorios para obtener una solución. En algunos casos, esos números sirven para crear una simulación
AGRO Examen Parcial 2. Nombre:
Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la
Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema
Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características
ANÁLISIS DE FRECUENCIA (CURVAS INTENSIDAD DURACIÓN - FRECUENCIA) Y RIESGO HIDROLÓGICO
Facultad de Ingeniería Escuela de Civil Hidrología ANÁLISIS DE FRECUENCIA (CURVAS INTENSIDAD DURACIÓN - FRECUENCIA) Y RIESGO HIDROLÓGICO Prof. Ada Moreno ANÁLISIS DE FRECUENCIA Es un procedimiento para
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA
www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X 2 CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo):
DISTRIBUCIÓN CHI-CUADRADO O JI-CUADRADO X CONCEPTO BÁSICO Frecuencia: es el número de datos que caen en cada celda. Frecuencias Observadas (fo): son aquellas que representan los valores muestrales observados
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática - Curso 2 Pablo Candela Departamento de Matemáticas (despacho 212) Universidad Autónoma de Madrid [email protected] Introducción 1 / 8 Organización
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 5 Simulación
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 5 Simulación ORGANIZACIÓN DEL TEMA Sesiones: Introducción Ejemplos prácticos Procedimiento y evaluación de resultados INTRODUCCIÓN Simulación: Procedimiento
Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )
Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)
PATRONES DE DISTRIBUCIÓN ESPACIAL
PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de
Simulación computacional de cadenas de Markov
Simulación computacional de cadenas de Markov Presentación basada en el capítulo 3 de Finite Markov Chains and Algorithmic Applications (Häggström, 2002) Sebastián Castro Seminario de Probabilidad y Estadística
4. Prueba de Hipótesis
4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los
PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE
PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,
Simulación de eventos discretos.
Simulación de eventos discretos http://humberto-r-alvarez-a.webs.com Qué es simulación? Consiste en diseñar y desarrollar un modelo computarizado de un sistema o proceso y conducir experimentalmente con
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos
Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis
Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero [email protected] http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de
Funciones de Variables Aleatorias. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Funciones de Variables Aleatorias UCR ECCI CI-135 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción En los métodos estadísticos estándar, el resultado de la prueba
Problemas Prueba de significación de la hipótesis nula Vicente Manzano-Arrondo, 2013
Problemas Prueba de significación de la hipótesis nula Vicente Manzano-Arrondo, 2013 Ejercicios resueltos En los dos casos que siguen resuelven cada decisión estadística mediante tres procedimientos: intervalo
El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis:
El primer paso en la realización de una investigación es planear las hipótesis de investigación. Definamos el concepto de hipótesis Definición 1.- Una hipótesis es una afirmación que está sujeta a verificación
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS
Estadísticas Pueden ser
Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más
Nombre de la asignatura : Simulación. Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : SCB-9310
1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Simulación Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : SCB-910 Horas teoría-horas práctica-créditos : -0-8.
Tema 9: Contraste de hipótesis.
Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los
Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS
Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza
MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.
UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía
EJERCICIO PROPUESTO CHI-CUADRADO O BONDAD DE AJUSTE
EJERCICIO PROPUESTO CHI-CUADRADO O BONDAD DE AJUSTE 1. Digamos que 900 estudiantes expresan su voluntad por celebrar el aniversario de la institución organizando uno de dos eventos: una acto solemne en
ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.
ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A. 1 PROBABILIDAD Probabilidad de un evento es la posibilidad relativa de que este ocurra al realizar el experimento Es la frecuencia de que algo ocurra dividido
PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL
1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico
Ejercicios T.5 CONTRASTES PARAMÉTRICOS
Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución
BÚSQUEDA INTELIGENTE BASADA EN METAHEURÍSTICAS
Departamento de Inteligencia Artificial Grupo de Análisis de Decisiones y Estadística BÚSQUEDA INTELIGENTE BASADA EN METAHEURÍSTICAS PRÁCTICAS 1 Existen varias características que pueden causar dificultades
DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO
TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Investigación de Operaciones Encuentro #12 Tema: Teoría de Colas Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Identificar el nivel óptimo
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAD24.500919 HORAS TEORÍA: 4.5 SEMESTRE: CUARTO HORAS PRÁCTICA: 0 REQUISITOS:
matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4
PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área
PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA
PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA Quien hace puede equivocarse, quien no hace ya está equivocado. DANIEL KON Ji CUADRADA Material preparado por: Profesor León Darío Bello Parias Ji CUADRADA-
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.
INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón
Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado
CONTROL ESTADISTICO DE LA CALIDAD
CICLO 2012-I Módulo:2 Unidad:2 Semana: 2 CONTROL ESTADISTICO DE LA CALIDAD ING. ENRIQUE MONTENEGRO MARCELO PRUEBAS DE HIPOTESIS CONTENIDOS TEMÁTICOS 1. DEFINICIÓN DE HIPOTESIS 2. PROCEDIMIENTO DE UNA PRUEBA
Distribución normal estándar. Juan José Hernández Ocaña
Distribución normal estándar Juan José Hernández Ocaña Tipos de variables [email protected] Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.
Nombre de la asignatura: Simulación. Créditos: Aportación al perfil
Nombre de la asignatura: Simulación Créditos: 2-4-6 Aportación al perfil Analizar, diseñar y gestionar sistemas productivos desde la provisión de insumos hasta la entrega de bienes y servicios, integrándolos
Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
Generación de variables aleatorias continuas Método de rechazo
Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa
Test de Kolmogorov-Smirnov
Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar
Tema 8: Introducción a la Teoría sobre Contraste de hipótesis
Tema 8: Introducción a la Teoría sobre Contraste de hipótesis Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Introducción a la Teoría
SIMULACION MANUAL PROFESOR: DR. 1 JORGE ACUÑA A.
SIMULACION MANUAL La simulación de un sistema solía hacerse en forma manual lo que acarreaba mucho tiempo y paciencia. Esto restringía tremendamente su uso. La computadora era aún mas lenta. PROFESOR:
INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS ASIGNATURA
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS SEMESTRE ASIGNATURA 8vo TEORÍA DE DECISIONES CÓDIGO HORAS MAT-31314
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005
Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba
Escribir el modelo. Evaluar los efectos de los factores y la interacción entre ellos.
Ejercicio 1: Se aplican pinturas tapaporos para aeronaves en superficies de aluminio, con dos métodos: inmersión y rociado. La finalidad del tapaporos es mejorar la adhesión de la pintura, y puede aplicarse
Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación
EJERCICIOS DE PRUEBA DE HIPOTESIS
EJERCICIOS DE PRUEBA DE HIPOTESIS Protocolo 1. Identifique la aseveración original que se probará y exprésela en forma simbólica 1. 2. Dar la forma simbólica que debe ser verdad si la aseveración original
Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste.
Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Tema 1 (III) Estadística 2 Curso 08/09 Tema 1 (III) (Estadística 2) Contrastes de bondad de
Distribución Chi (o Ji) cuadrada (χ( 2 )
Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably
Contrastes de hipótesis paramétricos
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,
ENUNCIADO y SOLUCIONES. Problema 1
Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.
MODELOS DE INVESTIGACION DE OPERACIONES
MODELOS DE INVESTIGACION DE OPERACIONES CARACTERÍSTICAS Los modelos se dividen en determinísticos (no probabilisticos) y estocásticos (probilisticos). Hay otros modelos híbridos porque incluyen las dos
Modelación y Simulación de Sistemas Conferencia 3
Modelación y Simulación de Sistemas Conferencia 3 www.norte.uni.edu.ni Maestro Julio Rito Vargas Avilés Metodología de la construcción de modelos de simulación discretos Simulación de sistemas: entendemos
Cuadratura de Newton-Cotes
Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION
Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones
Estabilización Inteligente de Sistemas Eléctricos de Potencia (Parte II)
ANEXO AL INFORME DEL PROYECTO INDIVIDUAL ESTABILIZACIÓN INTELIGENTE DE SISTEMAS ELÉCTRICOS DE POTENCIA (Parte II). CLAVE CGPI: 20071307 DIRECTOR: M. en C. FRANCISCO JAVIER VILLANUEVA MAGAÑA. I. RESUMEN.
Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo
Viernes 7 de octubre de 2005 Mate 3026 Estadística con Programación Prof. José N. Díaz Caraballo Favor de abrir el navegador Mozilla Firefox y escriba la siguiente dirección http://math.uprag.edu/area.mtw
(versión LibreOffice Calc)
Distribución uniforme En otro tema posterior de este curso podrás estudiar la distribución uniforme. Por ahora te basta con la idea de que representa experimentos aleatorios en los que todos los elementos
INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes
Interrogación (25 Ptos.) Conteste verbalmente las siguientes preguntas :
. Universidad Católica de Chile Dpto. de Ingeniería de Sistemas Modelos Estocásticos rofesor Alvaro Alarcón 6 de Noviembre de 009 Interrogación 3.- (5 tos.) Conteste verbalmente las siguientes preguntas
Ideas básicas del diseño experimental
Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,
Elaboró: Luis Casas Vilchis
Correlación de Pearson (r P, r) Una correlación se define como la coincidencia en el patrón de valores altos de una variable con los valores altos en la otra variable, y bajos con bajos y moderados con
