Tema 2: Números decimales.
|
|
|
- Jorge Torres Poblete
- hace 7 años
- Vistas:
Transcripción
1 Tema : Números decimales. Ejercicio 1. Dar una cota del error absoluto en las siguientes valoraciones. a Visitantes de un museo: Primera cifra suprimida La primera cifra no utilizada es del orden de los millares. Por tanto, el error absoluto es inferior a 5 millares: b Manifestantes: ERROR < 5000 Primera cifra suprimida ERROR < c Granos de arroz: millones ERROR < medio millón 0,5 millones 1. Escribimos ambos valores para calcular la diferencia entre ellos y así hallar el error. Para insertar el signo de restar escribimos un guión con el teclado: Figura 1
2 º ESO A [EDUCANDO CON WIRIS]. Para no obtener resultados negativos, la diferencia debemos calcularla en valor absoluto. Para hacerlo seleccionamos ambos datos y pinchamos en el icono Valor absoluto dentro de la pestaña Operaciones : Figura 3. Para obtener el resultado, pinchamos en : Figura 3. Repetimos el proceso para calcular el error del apartado b: Figura 5. Por último, volvemos a realizar el mismo proceso con el apartado c:
3 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA. Números decimales. Figura 5 Ejercicio. Dar una cota del error relativo en las valoraciones del anterior ejercicio resuelto: a Visitantes de un museo: ERROR Valoración ABSOLUTO < E. RELATIVO < 5000/10000 < 0,0 b Manifestantes: Valoración ERROR ABSOLUTO < E. RELATIVO < 50000/00000 < 0,5 c Granos de arroz: millones Valoración millones E. RELATIVO < 0,5/ < 0,0 ERROR ABSOLUTO < 0,5 millones 3
4 º ESO A [EDUCANDO CON WIRIS] 1. Partiendo del ejercicio anterior, dividimos la diferencia en valor absoluto entre el valor redondeado. Para insertar la fracción pinchamos en Operaciones y después en Fracción : Figura. Rellenamos el denominador con el valor redondeado y pinchamos en el símbolo de igual : Figura 3. Repetimos el proceso con el apartado b: Figura. Por último, volvemos a realizar el mismo proceso con el apartado c:
5 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA. Números decimales. Figura 9 Ejercicio 3. Calcular. 9,5 3, 1, 9,5 3, 1, 0,95 3, 1, ( 0,95 3, 1,,5 1, ( 1 (,5 :1, 1,5 1. Escribimos la operación de la misma manera que podemos ver en el ejercicio. Debemos recordar que para insertar la fracción y la potencia, debemos pinchar en sus respectivos iconos, dentro de la pestaña Operaciones : Figura 5
6 º ESO A [EDUCANDO CON WIRIS]. Cuando tengamos la operación planteada, pulsaremos el icono igual para obtener nuestro resultado: Figura 11 Ejercicio. Expresa con todas sus cifras. a b, , Para expresar ambos números con notación científica debemos transformarlos en números enteros. Por lo que restamos tantas unidades a la potencia como decimales tenga el número que queremos calcular: Figura. Para el segundo número sólo puedo elevarlo a menos cuatro.
7 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA. Números decimales. Figura 13 Ejercicio 5. Expresa en notación científica, con tres cifras significativas. a ,3 1 b ,3 c 0, , ,59-9 d 0,5-0,5,5-11 Ejercicio. Calcular manualmente. (,5 (,1 1,3 9, 11 (,5 (,1 9,5 11 ( 1,3 9, 11, 11 9,5 :,,5 1. Escribimos la operación recordando que las fracciones y las potencias las podemos insertar pinchando en sus respectivos iconos, dentro de la pestaña Operaciones. Después pinchamos en el icono y obtenemos nuestro resultado:
8 º ESO A [EDUCANDO CON WIRIS] Figura 1 Ejercicio. Calcula. 5 a ( 1,5 ( 3 b ( 3 : ( c ( : ( (+ 5 ( 1,5 3 ( ( 3 ( 3 : 1,5 ( : ( + 9 d (3 3 3 e ( 3 3 ( ( f ( 3 1. Escribimos la operación que queremos resolver, recordando que para insertar las potencias de la notación científica pinchamos en Operaciones y después en el icono Potencia. Posteriormente, pulsamos y obtendremos el resultado: Figura 15
9 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA. Números decimales.. Repetimos el proceso con el apartado b, teniendo en cuenta que para dividir ambos términos debemos utilizar la barra ( / : Figura 1 3. El apartado c lo calcularemos de la misma manera que los dos anteriores: Figura 1. Para resolver el apartado d, debemos calcular una raíz cuadrada, por lo que pinchamos en el icono raíz cuadrada dentro de la pestaña Operaciones y rellenamos la base:, Figura 1 5. Resolveremos el ejercicio del apartado e de manera análoga a los anteriores, porque sólo tenemos que escribir la operación que queremos calcular: Figura 19 9
10 º ESO A [EDUCANDO CON WIRIS]. Para este último apartado, calcularemos la raíz como en el del d sólo que esta vez debemos tener en cuenta que la raíz es cúbica y no cuadrada, por lo que no sólo tenemos que rellenar la base de la raíz, después de pulsar en el icono de Raíz dentro de la pestaña Operaciones : Figura 0 Ejercicio. Calcula con lápiz y papel, expresa el resultado en notación científica y compruébalo con la calculadora. a ( 3,5 ( 5 b ( 5 (,5 c ( 1, : ( 5 (+ 15 ( 3,5 1 1, (5,5 ( + 5,5 ( ( ( 1, : 5, 3 1 1,5 d ( ( 3 1 3, 13 e ( ,1 5 f ( 3 3 ( , Escribimos la operación que queremos calcular introduciendo los números y los signos con el teclado (la división la pondremos con la barra y las potencias con el icono Potencia, dentro de la pestaña Operaciones. Después, pinchamos en igual para obtener el resultado:
11 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA. Números decimales. Figura 1. De la misma manera, planteamos el segundo apartado y pulsamos para obtener el resultado: Figura 3. En el apartado c repetiremos el procedimiento, sólo que en vez de insertar un signo de multiplicación entre ambos valores, será uno de división (para el que usaremos la barra que encontramos en el teclado: / : Figura 3. En este apartado seguiremos los mismos pasos que en los anteriores: Figura 11
12 º ESO A [EDUCANDO CON WIRIS] 5. En el apartado e calcularemos una raíz cuadrada. Para ello pinchamos en Operaciones, luego en el icono Raíz cuadrada y por último, rellenamos la raíz y pinchamos en para obtener el resultado: Figura 5. En el último apartado, seguiremos los mismos pasos que en los apartados anteriores. Cuando tengamos la operación planteada pincharemos en el botón : Figura Ejercicio 9. Efectúa a mano utilizando la notación científica y comprueba, después, con la calculadora. a 5,3 3 0,053 3 (0,053 3,9 b 3 +, 3 + 0, (3 + 0, 3, c 3,1 + 3,1 + 0,0 (3,1 + 0,0 3, d 9 5 0, 5 (0, 5,
13 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA. Números decimales. 1. Escribiremos la operación insertando las potencias pinchando en el icono Potencia dentro de la pestaña Operaciones ; a continuación pinchamos en el icono de igual para obtener un resultado: Figura. Resolveremos el apartado b de la misma manera que el primero: Figura 3. Escribimos la operación siguiendo el procedimiento de los otros dos apartados: Figura 9. De nuevo repetimos el proceso, esta vez, para el apartado d: Figura 30 13
14 º ESO A [EDUCANDO CON WIRIS] Ejercicio. Expresa en notación científica y calcula. : 000 * * 500 (,5 : ( 1, (,5 : (1, 1 11 (,5 :1, 9,9 a ( ( b 0, ,0030,5 3,59 5,1 1,5 (5,5 :, (3 3 1, ,0 1,1 ( + ( 5,1 1,031 ( 3 ( 1,5 3,0 c , , ,03 5 (, 1,3 3 1,5 0, 1, ( ( ( 1,03 : ( 0,05,5 1. Escribimos la operación que queremos resolver con notación científica, recordando que como signo de división usaremos la barra que encontramos en el teclado (/: Figura 31. Para el apartado b repetiremos el proceso anterior, teniendo en cuenta que para insertar una fracción pinchamos en el icono Fracción, dentro de la pestaña Operaciones: 1
15 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA. Números decimales. Figura 3 3. Este último apartado se resuelve de la misma manera que los anteriores: Figura 33 15
Tema 8: Funciones lineales.
Tema 8: Funciones lineales. Ejercicio 1. Decir la pendiente de cada recta: Figura 1. Solución: y = 2x. Pasa por el (0, 0) y (1, 2). Su pendiente es 2. 1 y = x. Pasa por el (0, 0) y (2, -1). Su pendiente
Tema 5: Ecuaciones. Ejercicio x. x x 4x + = = + + = + 2 = 2. x = x. Resuelve las siguientes ecuaciones: Solución:
Tema : Ecuaciones Ejercicio. Resuelve las siguientes ecuaciones: a) 9 h) 9 b) 9 9 i) ( ) c) 8 9 j) 8 8 d) 0 0 0 k) ( ) 9 9 e) l) ( )( ) ( ) f) g) ( ) m) ( )( ) n) ( ) ( ) ( ) Solución: 9 a) 0 0 9 9 b)
Tema 7: Trigonometría.
Tema 7: Trigonometría. Ejercicio 1. Sabiendo que cos α = 0, 63, calcular s = sen α y t = tg α. Mediante la igualdad I, conocido sen α obtenemos cos α, y viceversa. s + 0,63 = 1 s = 1 0,63 = 0,6031 s =
Tema 7: Funciones y gráficas.
Tema 7: Funciones y gráficas. Ejercicio 1. En la gráfica siguiente viene representado el porcentaje de fumadores en España en los últimos años (parte roja), así como la previsión de cómo se supone que
Tema 1 Sistemas de Ecuaciones. Método de Gauss
Tema Sistemas de Ecuaciones. Método de Gauss. Sistemas con más incógnitas que ecuaciones. Resuelve los sistemas: a b w w Para convertir cada sistema en otro con el mismo numero de ecuaciones que de incógnitas,
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
Aritmética para 6.º grado (con QuickTables)
Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Tema 13 La integral definida. Aplicaciones
Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción
Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
TEMA 1: NÚMEROS REALES
. Numeros racionales Ejemplo: TEMA : NÚMEROS REALES 4.............................................. Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible.
Prueba de evaluación. Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y.
Números racionales Prueba de evaluación Nombre: Apellidos: Curso: Fecha: Calificación: Sean los números racionales representados por las fracciones,,, y. Ordénalos 0 0 de menor a mayor y escribe sus fracciones
Tema 4: Ángulos. Razones trigonométricas de un ángulo agudo.
Tema 4: Ángulos. Razones trigonométricas de un ángulo agudo. Bajo licencia de creative commons Unos investigadores británicos afirman que el penalti perfecto existe. Después de muchas investigaciones y
Potencias (1) Nombre Curso: Fecha: 1. Concepto de potencia.
Potencias (1) Nombre Curso: Fecha: 1. Concepto de potencia. Observando el dibujo nos preguntamos: cuántos remeros participan en las regatas? Son 4 remeros en cada una de las 4 traineras, luego en total
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
1. Números naturales y sistema de numeración decimal
1. Números naturales y sistema de numeración decimal Conocer el sistema de numeración decimal y relacionarlo con los números naturales. Representación en la recta real de los mismos. Realizar operaciones
TEMA 2: POTENCIAS Y RAÍCES. Matemáticas 3º de la E.S.O.
TEMA 2: POTENCIAS Y RAÍCES Matemáticas 3º de la E.S.O. 1. Potencias con exponente entero Potencias de exponente negativo a n = 1 a n Las potencias de exponente negativo cumplen las mismas propiedades que
Matemáticas Orientadas a las Enseñanzas Aplicadas IES
Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones
LA CALCULADORA CIENTIFICA CASIO fx-82ms
LA CALCULADORA CIENTIFICA CASIO fx-82ms 1.- Antes de comenzar con las operaciones. Antes de realizar cualquier cálculo debes ingresar el modo correcto. Para realizar cálculos aritméticos debes ingresar
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
Introducción. Desarrollo. Palabras clave. Matemáticas Unidad 1 Significado y uso de los números. Números enteros
Matemáticas Unidad 1 Significado y uso de los números Convertir fracciones a su escritura decimal y viceversa. Definir y utilizar los números negativos. Ubicar y representar números enteros, fraccionarios
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
open green road Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo .cl
Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo.cl . Introducción Hemos escuchado muchas veces que una potencia es la multiplicación abreviada de un término por sí mismo un
TRABAJO CON NÚMEROS EN EXCEL 2007
Trabajar con números (Formato numérico y fórmulas) Hemos acabado ya de trabajar con palabras y vamos a comenzar a trabajar con números, aplicarles formatos y hacer operaciones matemáticas sencillas. Para
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
TEMA 3 POTENCIAS Y RAÍCES
TEMA 3 POTENCIAS Y RAÍCES Criterios De Evaluación de la Unidad 1. Operar con potencias y expresar el resultado en forma de potencia. 2. Expresar cantidades como producto de un número por una potencia de
UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS
UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.
INTRODUCCIÓN DE DATOS EN LA HOJA DE CÁLCULO
UNIDAD DIDÁCTICA INTRODUCCIÓN DE DATOS EN LA HOJA DE CÁLCULO Los objetivos de este tema son: 1. Aprender a introducir datos en la hoja de cálculo. 2. Diferenciar los tipos de datos con los que se puede
IES LA ASUNCIÓN w w.ieslaasuncion.org. Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA
MATEMÁTICAS º ESO Bloque I. Números y medidas. Tema : Potencias y raíces. Uso de la calculadora TEORÍA 1. POTENCIAS * Una potencia es una multiplicación de factores iguales. Se escribe a n e indica que
CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios
Polinomios Contenidos 1. Expresiones algebraicas De expresiones a ecuaciones Valor numérico Expresión en coeficientes. División de polinomios División División con coeficientes Regla de Ruffini Teorema
OPENOFFICE CALC. Manejo básico de hojas de cálculo
OPENOFFICE CALC Manejo básico de hojas de cálculo Qué es una hoja de cálculo? Podemos verla como una gran tabla para mostrar información y realizar operaciones con esa información Cada una de las casillas
7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.
21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente
Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador
Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador La adición de fracciones con diferente denominador la podemos definir como: Sean, entonces, donde es
Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales
1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro
Potencias y raíces con números enteros
IES Potencias y raíces con números enteros Contenidos 1. Potencias de un número entero Qué es una potencia? Signo de una potencia. Operaciones con potencias Potencia de productos y cocientes Producto y
POTENCIAS Y RAÍZ CUADRADA
POTENCIAS Y RAÍZ CUADRADA 1. POTENCIAS. 1.1. CONCEPTO DE POTENCIA. ELEMENTOS. Una potencia es un producto de factores iguales. Las potencias están formadas por: Base: factor que se repite. Exponente: número
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
2 Números racionales
008 _ 0-000.qxd 9//08 9:06 Página Números racionales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,
Materia: Matemática de Séptimo Tema: Las Fracciones y los Decimales
Materia: Matemática de Séptimo Tema: Las Fracciones y los Decimales Alguna vez has completado una encuesta? Después del sexto grado, los estudiantes recibieron una encuesta acerca de lo que pensaban sobre
COMPETENCIA S Y OBJETIVOS DE M A T E M ÁTICAS DE SEXTO
1 CONSEJERÍA DE EDUCACIÓN CEIP EL ZARGAL C/ Zargal s/n; 18190 CENES DE LA VEGA Telfs. 958893177-78 ; FAX 958893179 [email protected] COMPETENCIA S Y DE M A T E M ÁTICAS DE SEXTO ÍNDICE
1.6 NOTACIÓN CIENTÍFICA.
1.6 NOTACIÓN CIENTÍFICA. 1.6.1 POTENCIAS DE DIEZ. Emplear múltiplos y submúltiplos de las unidades permite manejar números más sencillos y con los que es más difícil equivocarse. Pero puede ocurrir que
Los Conjuntos de Números
Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número.
8966 _ 049-008.qxd /6/08 09: Página 49 Números reales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,
RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar.
RADICALES Un radical es una expresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Se puede expresar un radical en forma de potencia: Radicales equivalentes Utilizando
Bloque 1. Aritmética y Álgebra
Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese
Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.
Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde
Operaciones con números enteros. Calculadora
P RACTICA Operaciones con números enteros Calculadora Calcula paso a paso y comprueba el resultado con la calculadora utilizando las teclas de paréntesis ) ) ) : ) : e) [ )] : f) [ ) ] ) ) : : ) : : e)
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
. De R (Reales) a C (Complejos)
INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo
Lección 1: Números reales
GUÍA DE MATEMÁTICAS III Lección 1: Números reales Los números irracionales En los grados anteriores estudiamos distintas clases de números: Vimos en primer lugar: los naturales, que son aquellos que sirven
Formato de celdas. Excel 2007
Formato de celdas Excel 2007 Formato de Celdas Para modificar el formato de las celdas, seleccionamos la celda o el rango a formatear y luego recurrimos a la pestaña Inicio, grupos Fuente, Alineación y
Apuntes de matemáticas 2º ESO Curso
Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde a un número menor
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado
lasmatemáticaseu Pedro Castro Ortega Epresiones algebraicas Ecuaciones de primer grado 1 Epresiones algebraicas 11 Definición de epresión algebraica Una epresión algebraica es un conjunto de números letras
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
1. Definir e identificar números primos y números compuestos.
1. Divisibilidad 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/ divisor de b, a es divisible por b, a divide
Números. 1. Definir e identificar números primos y números compuestos.
MINIMOS DE MATEMÁTICAS DE 2º DE E.S.O. 1. Divisibilidad Números 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/divisor
Operatoria con Potencias y Raíces
PreUnAB Clase # 3 Junio 2014 Definición Se llama potencia a una expresiń de la forma, donde a es la base y n es el exponente. Potencia de Exponente Entero a n = a a a... a Cuando el exponente es un número
Los números enteros y racionales
Los números enteros y racionales Objetivos En esta quincena aprenderás a: Representar y ordenar números enteros Operar con números enteros Aplicar los conceptos relativos a los números enteros en problemas
Los números naturales
I.E.S. Los números naturales Contenidos 1. Números naturales Sistema de numeración decimal Escritura Orden y redondeo 2. Operaciones Suma y resta Multiplicación y división Jerarquía de las operaciones
REPASO DE Nºs REALES y RADICALES
REPASO DE Nºs REALES y RADICALES 1º.- Introducción. Números Reales. Números Naturales Los números naturales son el 0, 1,,,. Hay infinitos naturales, es decir, podemos encontrar un natural tan grande como
Tema 1 Los números reales Índice
Tema 1 Los números reales Índice 1. Números reales. La recta real... 2 1.1. Números naturales... 2 1.1.1. Representación de los números naturales... 2 1.2. Números enteros... 2 1.2.1. Valor absoluto de
Potencias. Potencias con exponente entero. Con exponente racional o fraccionario
Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente
LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.
ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones
Potencias de exponente entero I
Matemáticas 2.º ESO Unidad 3 Ficha 1 Potencias de exponente entero I Una potencia es un producto de factores iguales. Exponente: n n Base: a an = a a a La base, a, es el factor que se repite, y el exponente,
EJERCICIOS RESUELTOS DE NÚMEROS REALES
EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
Curso Excel Básico 2003 Unidad 1
Formatos Formatos FORMATO DE CELDAS... 6 Descripción... 6 NÚMERO... 6 Tipo Número... 6 Tipo Moneda... 7 Tipo Fecha... 8 Tipo Hora... 8 Tipo Porcentaje... 8 Tipo Personalizada... 9 ALINEACIÓN... 9 Alineación
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura
Tema 8 Medida de ángulos. Trigonometría
Tema 8 Medida de ángulos. Trigonometría Grados sexagesimales, centesimales y radianes Operaciones con grados Conversión entre unidades Funciones trigonométricas Actividades GRADOS SEXAGESIMALES Y RADIANES
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS El Sistema de numeración decimal
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre
IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales
Números decimales Contenidos 1. Números decimales Elementos de un número decimal Redondeo y truncamiento de un decimal 2. Operaciones con decimales Suma de números decimales Resta de números decimales
LA HOJA DE CÁLCULO DE OPENOFFICE
LA HOJA DE CÁLCULO DE OPENOFFICE 1.- Cómo crear la tabla de frecuencias En la tabla adjunta se muestran los datos de una variable aleatoria discreta que representa el número de hijos que tienen una muestra.
1.- NÚMEROS NATURALES Y DECIMALES
1.- NÚMEROS NATURALES Y DECIMALES 1.1 Posición de las cifras de un número natural. Los números naturales son los números que conocemos (0, 1, 2, 3 ). Los números naturales están ordenados, lo que nos permite
Laboratorio N 3, Funciones y Gráficos.
Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo I Introducción. Laboratorio N 3, Funciones y Gráficos. Sea D un conjunto dado de números reales. Una
Tema 2 Potencias, radicales, logaritmos y notación científica
Tema 2 Potencias, radicales, logaritmos y notación científica Potencias Cálculos básicos con raíces. Operaciones con radicales cuadráticos. Suma y resta de radicales. Racionalización de radicales cuadráticos.
UNIDAD 1: NÚMEROS NATURALES OBJETIVOS
UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,
PASAPALABRA BLOQUE NÚMEROS
EMPIEZA POR A 1) Rama de las Matemáticas que se encarga del estudio de los números y sus propiedades: ARITMÉTICA 2) Valor de una cifra, independientemente del lugar que ocupe o del signo que la precede:
Fracciones decimales: expresiones decimales exactas. Expresiones decimales periódicas. como fracción decimal? como fracción decimal?
CAPÍTULO N 4: NÚMEROS DECIMALES Fracciones decimales: expresiones decimales exactas. Expresiones decimales periódicas. ) Resolvemos juntos: Encontrar las expresiones equivalentes de 4 =6 8 = 6 =5 0 = 75
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
1Soluciones a las actividades de cada epígrafe PÁGINA 20
Soluciones a las actividades de cada epígrafe PÁGINA 0 RACIONALES Q ENTEROS Z NO RACIONALES 8,, 8,, NATURALES N ENTEROS NEGATIVOS FRACCIONARIOS (racionales no enteros) 8 0, 7,,, 8, 8,, 7 8 8,9;,8; ) 7
2.4. Notación científica. Operaciones.
Potencias de números reales 17 E. Zamora, C. Barrilero, M. Álvarez 2.. Notación científica. Operaciones. El Sol es una estrella cuyo diámetro mide 9 veces el diámetro de la Tierra. Cuánto mide el diámetro
Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma
Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
TEMA 3 NÚMEROS DECIMALES
TEMA 3 NÚMEROS DECIMALES Criterios De Evaluación de la Unidad 1. Identificar el significado de número decimal. 2. Ordenar y representar números decimales. 3. Pasar correctamente de fracción a decimal y
PROGRAMACIÓN DE AULA MATEMÁTICAS 4º EP CENTRO EDUCATIVO LA AMISTAD. PLAN DE TRABAJO TRIMESTRAL MATEMÁTICAS 4º EP TRIMESTRE 1º REG0801 Pág.
GRUPO: 4ºEP PLAN DE TRABAJO Y ACTIVIDADES PROGRAMADAS 1 er TRIMESTRE CURSO 2016-17 Temas: 1, 2, 3, 4 Y 5 ÁREA: MATEMATICAS CONTENIDOS CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE COMPETENCIAS TEMA
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.
. G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura
TEMA 3: LAS FRACCIONES
. Fracciones equivalentes TEMA : LAS FRACCIONES Determina si los siguientes pares de fracciones son equivalentes:. y 0 Calculamos como los productos son iguales, si son fracciones equivalentes. 0. 0 y
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
