LA CALCULADORA CIENTIFICA CASIO fx-82ms
|
|
|
- Alberto Belmonte Ruiz
- hace 9 años
- Vistas:
Transcripción
1 LA CALCULADORA CIENTIFICA CASIO fx-82ms 1.- Antes de comenzar con las operaciones. Antes de realizar cualquier cálculo debes ingresar el modo correcto. Para realizar cálculos aritméticos debes ingresar el modo COMP, se realiza pulsando dos teclas: Mode, 1. Cuidado con el punto y la coma. En este modo COMP el punto decimal es el punto y no la coma. Esta última se utiliza para marcar los miles, millones, etc. Es decir: es cinco unidades y 23 milésimas. No es cinco mil veintitrés. Atención la tecla SHIFT La encontrarás en la primera esquina superior izquierda, en color marrón. Esta tecla activa todas las segundas funciones que encontrarás sobre cada tecla escritas en color marrón. Por ejemplo: la tecla ln es el logaritmo neperiano, y su segunda función es la exponencial e x. 2.- Operaciones con números enteros o decimales y paréntesis. a) b) Se teclea todo seguido sin necesidad de poner paréntesis y se finaliza pulsando la tecla =, obtendrás el resultado 17,98 Se teclea todo seguido y se finaliza pulsando la tecla =, obtendrás el resultado 17,88233 Las teclas del paréntesis aparecen por el centro de la calculadora, encuéntralas. Cuidado con la división, necesita paréntesis. resultado será erróneo. si intentas realizar esta operación sin escribir paréntesis el ahora hemos protegido las sumas y restas en los numeradores o denominadores. Inténtalo, el resultado de la operación es 2,42406
2 3.- Operaciones con fracciones. La mayoría de las veces que trabajamos con fracciones nos interesa el resultado final como número decimal, por eso utilizamos la tecla de dividir : para escribir la operación en la calculadora. Otras veces nos interesa que el resultado final sea una fracción. Para ello disponemos de una tecla. Está en la primera columna y tercera fila, a) Se teclea: = y se obtiene A veces se obtiene como resultado una fracción impropia, cuando la parte entera es mayor de uno, que es lo habitual, y el resultado te puede parecer extraño. Se teclea: = y se obtiene Si tu calculadora no está preparada para las fracciones impropias aparecerán en pantalla tres números 3, 1, 9. Para convertirlo en fracción debes teclear las dos teclas Shift y obtendrás la fracción. Si deseas la expresión en número decimal, pulsa otra vez la tecla. Se obtiene 3, Fracción mixta, fracción impropia Se puede seleccionar el formato de fracción impropia, que es el más utilizado. Debes darle a la tecla MODE cuatro veces hasta que aparezca en pantalla DISP 1, tecleas el número 1 y eliges la opción 2 Nota: los resultados que mezclan números decimales y fracciones son siempre decimales. Ejemplo número - 1, en la calculadora el resultado no es una fracción sino el 4.- Simplificar fracciones La calculadora simplifica cualquier fracción que escribamos en la pantalla. Ejemplo: Para simplificar, tecleamos = y en la pantalla aparece la fracción simplificada (después de transformarla con SHIFT )
3 5.- Operaciones con potencias Para elevar se utiliza la tecla acento circunflejo ^, la encontrarás en la tercera fila y cuarta columna (a la derecha de x 2 ). 3 4 se calcula tecleando 3 ^ 4 = y se obtiene 81 No es necesario encerrar un exponente negativo entre paréntesis 3-4 se calcula tecleando 3 ^ - 4 = y se obtiene 0, Podemos elevar a números decimales sin más problemas 3 0,5 lo tecleamos 3 ^ 0,5 y el resultado es 1,732 Podemos elevar a una fracción. Ejemplo: tecleamos 3 ^ 2 3 = y en la pantalla aparece 3. CUIDADO, este resultado no es correcto. Debemos utilizar paréntesis 3 ^ ( 2 correcto. 3 ) = y en la pantalla aparece 2,08008 que es el resultado Si la base es negativa, la potencia a veces no está definida y puede dar error en la calculadora. En cualquier caso debes proteger a la base con paréntesis pero el exponente no es necesario: se teclearía así: ( - 3 ) ^ - 2 = y se obtendría 0, Potencias del número e Para calcular e 3 debemos teclear SHIFT e x 3= y obtendrás 20,0855 Para obtener el número e deberías teclear SHIFT e x 1 = 2,71828 La tecla e x derecha. la encontrarás como segunda función de la tecla ln, en la columna de la 6.- Operaciones con raíces Encontramos una tecla para la raíz cuadrada como primera función pero la raíz cúbica aparece como segunda función y necesita la tecla SHIFT para activarla. se teclea y se obtiene 9. Para calcular y se obtiene 4,3267 Para realizar una raíz de índice superior debemos utilizar la tecla como segunda función y necesita la tecla SHIFT para activarla. que aparece
4 Ejemplo: Para calcular y se obtiene 3. Recuerda que las raíces de números negativos existen sólo cuando el índice de la raíz es impar y no es necesario que escribas paréntesis. Si quieres calcular una raíz de una fracción debes introducir paréntesis de forma obligatoria. Ejemplo: se teclea y se obtiene 0.5. O bien se teclea y se obtiene 7.- Logaritmos Hay dos teclas para calcular logaritmos: log ln. Con la tecla log se calculan los logaritmos en base 10, logaritmos decimales. Con la tecla ln se calculan los logaritmos en base e, logaritmos neperianos. Las dos teclas se utilizan también para calcular cualquier logaritmo. Ejemplo:, tecleamos log 8 : log 2 = y obtenemos 3., tecleamos ln 8 : ln 2 = y obtenemos 3. ln 5 tecleamos ln 5 = y obtenemos 1, log 100 tecleamos log 100 = y obtenemos Cálculo de porcentajes Ejemplo 1.- Calcular el 12% de X 12 SHIFT % y se obtiene 180. Ejemplo 2.- Calcular qué porcentaje de 880 es : 880 SHIFT % y obtenemos el resultado es una parte de 880, qué parte? En cursos anteriores aprendiste a resolverlo utilizando una regla de tres, pero la calculadora lo puede calcular directamente de la forma mostrada arriba, la solución es el 75%.
5 Ejemplo 3.- Agregarle a 2500 el 15%. y obtenemos Ejemplo 4.- Descontarle a 3500 el 25% X 15 SHIFT % X 25 SHIFT % - y obtenemos Ejemplo 5.- Si se agregan 300 gramos a una muestra de prueba de 500 gramos, cuál es el porcentaje de aumento de peso? Respuesta 160% pues tecleamos: SHIFT % (Al agregar a 500 gramos que es el 100% una cantidad, aumenta, y resulta ser el 160%. Este problema se resuelve con regla de tres, pero también con la calculadora) Ejemplo 6.- Cuál es el porcentaje de cambio cuando una cantidad pasa de 40 a 46? Respuesta: el 15% pues tecleamos SHIFT % Nota: En todos estos ejemplos vemos como la calculadora resuelve las reglas de tres sin plantearlas, pero tú puedes realizar estos ejercicios con la regla de tres. 9.- Ángulos en grados, minutos y segundos Ejemplo 1.- Convertir 2,35 grados en grados, minutos y segundos, y después poder revertir la operación. Tecleamos 2.35 = SHIFT º ººº y obtenemos 2º21º0. Si queremos revertir al valor inicial pulsamos la tecla ºººº y obtenemos 2,35. Ejemplo 2:- Multiplicar el ángulo 25º23º21º por 3,5. Tecleamos 25 ººº,, 23 ººº,, 21 ººº,, x 3.5 = y obtenemos el resultado 88º51º43º 10.- Razones trigonométricas En la calculadora aparecen las tres razones trigonométricas principales: seno (sin), coseno (cos) y tangente (tan). Encima de ellas encuentras las funciones arco: arcoseno (sin -1 ), arcocoseno (cos -1 ) y arcotangente (tan -1 ).
6 Podemos trabajar en grados o radianes. Para operar en grados, debe aparecer en la parte superior de la pantalla la sigla D (degree) y para radianes, la sigla R. Si no aparece, conseguimos la D tecleando: MODE MODE 1. Conseguimos la R tecleando: MODE MODE 2. Atención el valor de π lo encuentras como segunda función de la tecla EXP, en el centro de la fila inferior. Tecleamos: sin 330 = y obtenemos el valor - 0,5 (En radianes) tecleamos: cos ( SHIFT EXP : 3) = y obtenemos 0,5 Tecleamos: tan 120 = y obtenemos el valor -1,73205 Las funciones arco nos permiten averiguar ángulos y resolver ecuaciones trigonométricas. Ejemplo: Halla el ángulo en grados cuyo seno vale 0,5. Se plantea así y se resuelve tecleando: SHIFT sin 0,5 = y se obtiene 30 grados.
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA
OPERAR CON POTENCIAS: MULTIPLICACIÓN, DIVISIÓN Y POTENCIA DE POTENCIA OBJETIVO MULTIPLICACIÓN DE POTENCIAS Como las potencias son multiplicaciones, se va a trabajar con ellas cuando multiplicamos o dividimos:
Estamos acostumbrados a medir los ángulos en grados pero existen otras formas de hacerlo, entre ellas están los radianes.
Trigonometría Radián Estamos acostumbrados a medir los ángulos en grados pero existen otras formas de hacerlo, entre ellas están los radianes. El radián es la medida del ángulo central de una cirunferencia
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Tema 3 POTENCIAS Y NOTACIÓN CIENTÍFICA 1. Notación científica. Mr: Gonzalo Flores C
POTENCIAS Y NOTACIÓN CIENTÍFICA 1 Notación científica Mr: Gonzalo Flores C POTENCIAS Y NOTACIÓN CIENTÍFICA 2 ESQUEMA DE LA UNIDAD 0. Potencias de exponente natural. Propiedades. 1. Potencias de exponente
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos
Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log
Para empezar a tratar el tema de los logaritmos tenemos que tener en muy en cuenta, la definición de logaritmo, así como las tres propiedades más importantes de los logaritmos. Definición de logaritmo:
Unidad 1 LA CALCULADORA ELECTRONICA
Unidad 1 LA CALCULADORA ELECTRONICA OPERACIONES ARITMETICAS La calculadora electrónica es actualmente, junto con la computadora, una herramienta básica de cálculo en la vida cotidiana y es una herramienta
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
Chapter Audio Summary for McDougal Littell Pre-Algebra
Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar
Preparación matemática para la física universitaria
Preparación matemática para la física universitaria Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan
Tema 2 Potencias, radicales, logaritmos y notación científica
Tema 2 Potencias, radicales, logaritmos y notación científica Potencias Cálculos básicos con raíces. Operaciones con radicales cuadráticos. Suma y resta de radicales. Racionalización de radicales cuadráticos.
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
ECUACIONES EN Q (NÚMEROS RACIONALES)
Echa un vistazo a esta situación. ECUACIONES EN Q (NÚMEROS RACIONALES) El domingo, Leonardo caminó 4 unidades. El lunes, Leonardo caminó un tercio de lo que caminó el martes. El caminó un total de 12 unidades
RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a
UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página 8. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos radianes corresponden
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
Tema 8 Medida de ángulos. Trigonometría
Tema 8 Medida de ángulos. Trigonometría Grados sexagesimales, centesimales y radianes Operaciones con grados Conversión entre unidades Funciones trigonométricas Actividades GRADOS SEXAGESIMALES Y RADIANES
Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico
Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
DERIVADAS (1) (para los próximos días)
DERIVADAS (1) (para los próimos días) Derivada de una constante K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. Ejercicio nº 1) Ejercicio nº 2) Ejercicio nº 3) Ejercicio nº 4) Ejercicio nº 5) Ejercicio
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe
DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a
DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.
DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1
NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28
Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa
IES LA ASUNCIÓN w w.ieslaasuncion.org. Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA
MATEMÁTICAS º ESO Bloque I. Números y medidas. Tema : Potencias y raíces. Uso de la calculadora TEORÍA 1. POTENCIAS * Una potencia es una multiplicación de factores iguales. Se escribe a n e indica que
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
El siguiente paso es aislar el término con la variable ecuación. Dado que resta a, se debe sumar en los dos lados de la ecuación.
Materia: Matemática de Octavo Tema: Ecuaciones en Q Alguna vez has tratado de resolver un problema relacionado con el millaje? Echa un vistazo a esta situación. El domingo, Leah caminó 4 millas. El lunes,
Alumno/a:... Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente fraccionario.
Hoja Cálculos con radicales Calificación Alumno/a:... Curso: º E.S.O. A Definición de radical Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
ACTIVIDADES PEDAGÓGICAS: lee el material que se te presenta a continuación y responde estas preguntas en tu cuaderno:
ACTIVIDADES PEDAGÓGICAS: lee el material que se te presenta a continuación y responde estas preguntas en tu cuaderno: 1. Qué son los accesorios de Windows? 2. Dónde encuentro los accesorios de Windows?
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Unidad 1: Números reales.
Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales
matemáticas 4º ESO exponenciales y logaritmos
coleio martín códa departamento de matemáticas matemáticas º ESO eponenciales logaritmos eponenciales una eponencial es cualquier epresión de la forma: a donde a (que se denomina base) es un número distinto
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
Potencias y raíces Matemáticas 1º ESO
Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores
Potencias de exponente entero I
Matemáticas 2.º ESO Unidad 3 Ficha 1 Potencias de exponente entero I Una potencia es un producto de factores iguales. Exponente: n n Base: a an = a a a La base, a, es el factor que se repite, y el exponente,
REPASO ALGEBRA ELEMENTAL
REPASO ALGEBRA ELEMENTAL OPERACIONES MATEMÁTICAS POR: DRA. KARILUZ DÁVILA DÍAZ Operaciones matemáticas comunes Operaciones matemáticas comunes que se utilizan en el curso de Química General son: Operación
UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS
UNIDAD 2 Sucesiones y número e. Logaritmos ÍNDICE DE CONTENIDOS 1. Sucesiones de números reales............................... 35 1.1. Progresiones aritméticas y geométricas....................... 36 1.2.
3º ESO PMAR NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES
º ESO PMAR NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- NÚMEROS RACIONALES Los números racionales son lo que habitualmente conocemos como fracciones. Un número racional o fracción está
FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS
FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS Objetivo general: Brindar algunas herramientas matemáticas que los estudiantes de física necesitan para su buen desempeño en el curso de
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN El dominio de la función f(x) x / x es: a) + b) c) [0, ) 9 El período de la función f(x) cos (x + π) es: a) π b) π c) π/ Una sustancia radiactiva
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
Tema 1 Los números reales Índice
Tema 1 Los números reales Índice 1. Números reales. La recta real... 2 1.1. Números naturales... 2 1.1.1. Representación de los números naturales... 2 1.2. Números enteros... 2 1.2.1. Valor absoluto de
CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS
Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.
Bloque 1. Aritmética y Álgebra
Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese
Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q.
Matemáticas B º E.S.O. Tema 1 Los números Reales 1 TEMA 1 LOS NÚMEROS REALES 1.1 CLASIFICACIÓN DE LOS NÚMEROS REALES º 1.1.1 TIPOS DE NÚMEROS º Los números naturales son : 1, 2,,..., 10, 11,..., 102, 10,....
MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel
GUIA DE TEORIA NO. 1 LO QUE DEBO SABER Regla de Cramer Un sistema de ecuaciones lineales se dice de Cramer cuando cumple las siguientes condiciones: Es un sistema cuadrado, con igual número de ecuaciones
AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS
AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto
Ofimega - Logaritmos 1
Ofimega - Logaritmos Logaritmos Definición: Si: Importante aprender (abre el grifo desde la base El logaritmo se convierte en una función eponencial. Ejemplo de multiplicación en forma eponencial: a b
FÓRMULAS Y FUNCIONES
Centro de Estudios Empresariales 1 FÓRMULAS Y FUNCIONES Una fórmula nos permite calculas rápidamente valores directos introducidos en una celda y operar con valores previamente introducidos en otras celdas,
REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I
REPÚBLICA BOLIVARIANA DE VENEZUELA NÚCLEO COSTA ORIENTAL DEL LAGO PROGRAMA DE INGENIERÍA UNIDAD CURRICULAR: CÁLCULO I FUNCIONES Instructivo de trabajo Autor: Ing. Roger J. Chirinos S., MSc. Ciudad Ojeda,
1 CÁLCULO CON RADICALES. Nota: Para m = 2, es l raíz cuadrada y el 2 no se escribe.
DEFINICIÓN : 1 CÁLCULO CON RADICALES ( m 2, 3, 4,.. ) Ejemplo: Nota: Para m 2, es l raíz cuadrada y el 2 no se escribe. SIMPLIFICACIÓN DE RADICALES: Se escribe el radical en forma de potencia, se simplifica
Código/Título de la Unidad Didáctica: CALCULADORA CIENTÍFICA.
Código/Título de la Unidad Didáctica: CALCULADORA CIENTÍFICA. Actividad nº/título: A1.Calculadora científica, Operaciones con π, Introducción de Números Decimales y Cambio de Signo Positivo-Negativo y
Ejercicios Tema 1 El número real Matemáticas I 1º Bach. 1
Ejercicios Tema El número real Matemáticas I º Bach. TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN GRÁFICA DE NÚMEROS REALES EJERCICIO : Clasifica los siguientes números como 0 π ; ;,...; ; 6; ; ;,
Utilizando la derivada de la función potencial = 2 +5
Ejemplos +5 5 Utilizando la derivada de la función potencial 2 +5 Atención que esta función podemos derivarla como si fuese una potencial. Pero primero tendremos que convertir la raíz en una potencia.
Calculo de límites vol.1
Calculo de límites vol.1 Propiedades de los límites Teoría Ejemplos f (x)= p g( x)=q f (x)=2 g( x)= (f (x)+ g(x))= p+q (f (x) g(x))= p q (f (x) g(x))= p q ( f (x) g(x) )= p q si q 0 (k f (x))=k p k R (f
Preparación para cálculo
Preparación para cálculo Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (406 temas)
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
LA DERIVADA DE UNA CONSTANTE
DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL
Potencias y radicales
Potencias y radicales Contenidos 1. Radicales Potencias de exponente fraccionario Radicales equivalentes Introducir y extraer factores Cálculo de raíces Reducir a índice común Radicales semejantes. Propiedades
Aritmética para 6.º grado (con QuickTables)
Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
CALC: HOJA DE CÁLCULO DE LIBREOFFICE
CALC: HOJA DE CÁLCULO DE LIBREOFFICE 1. ABRIR LA HOJA DE CÁLCULO DE OPENOFFICE Desde inicio rápido de LibreOffice > Hoja de cálculo o ir a menú Aplicaciones > Oficina > LibreOffice Calc. En la pantalla
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que
INTRODUCCIÓN a DERIVE 6. PANTALLA DE EXPRESIONES ALGEBRAICAS
INTRODUCCIÓN a DERIVE 6. Existen tres clases de pantallas: La pantalla de Álgebra (para expresiones algebraicas) y las pantallas gráficas que permiten representar gráficas en dos dimensiones (ventana 2D)
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia
Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función
Sobre la pantalla principal de DERIVE distinguimos: 1) La barra del menú 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función UNIDAD DOCENTE DE MATEMÁTICAS
CONJUTOS NÚMERICOS NÚMEROS NATURALES
CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El
TEMA 5 SEMEJANZA Y TRIGONOMETRÍA
TEMA 5 SEMEJANZA Y TRIGONOMETRÍA. Objetivos / Criterios de evaluación O.5.1 Triángulos semejantes, criterios para la semejanza de triángulos O.5.2 Teorema de Tales. Aplicaciones. O.5.3 Teoremas de Pitágoras,
Práctica 1. Ecuaciones de 2º grado.
Práctica 1. Ecuaciones de 2º grado. 1. Introducción a las hojas de cálculo. Una hoja de cálculo es una aplicación informática diseñada para el tratamiento matemático de la información. El área de trabajo
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
IES CUADERNO Nº 3 NOMBRE: FECHA: / / Números decimales
Números decimales Contenidos 1. Números decimales Elementos de un número decimal Redondeo y truncamiento de un decimal 2. Operaciones con decimales Suma de números decimales Resta de números decimales
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES
Los números naturales
I.E.S. Los números naturales Contenidos 1. Números naturales Sistema de numeración decimal Escritura Orden y redondeo 2. Operaciones Suma y resta Multiplicación y división Jerarquía de las operaciones
1º BACH MATEMÁTICAS I
1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.
1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1
Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 05 Lic. Manuel
Matemáticas Orientadas a las Enseñanzas Aplicadas IES
Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
2.4. Notación científica. Operaciones.
Potencias de números reales 17 E. Zamora, C. Barrilero, M. Álvarez 2.. Notación científica. Operaciones. El Sol es una estrella cuyo diámetro mide 9 veces el diámetro de la Tierra. Cuánto mide el diámetro
Código/Título de la Unidad Didáctica: CALCULADORA CIENTÍFICA.
Código/Título de la Unidad Didáctica: CALCULADORA CIENTÍFICA. Actividad nº/título: A4.Calculadora científica, Operaciones de Introducir y Obtener un Número de la Memoria de la Calculadora. Introducción
RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar.
RADICALES Un radical es una expresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Se puede expresar un radical en forma de potencia: Radicales equivalentes Utilizando
6º PRIMARIA. Números decimales.
6º PRIMARIA Números decimales. Qué son los números decimales? Los números decimales son los que vienen después de la coma ejemplo: 2, 8. El número 2 es un entero, el número que viene después de la coma,
Sabes lo que significa racionalizar o racionalización?, a qué te suena?
FAL-0_MAAL_Racionalización Versión:Septiembre0 Revisor:SandraElviaPérez Racionalización Sabesloquesignificaracionalizaroracionalización?, aquétesuena? Por:SandraElviaPérez Supón que después de realizar
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales
