Una familia de elipses *

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una familia de elipses *"

Transcripción

1 Miscelánea Maemáica 38 (003) 33 4 SMM Una familia de elipses * Fernando Garibay B. Faculad de Ingeniería Química Universidad Michoacana de San Nicolás de Hidalgo Edificio M, Cd. Universiaria 5800 Morelia, Mich. México fgaribay@zeus.umich.mx y Rigobero Vera Mendoza Escuela de Ciencias Físico-Maemáicas Universidad Michoacana de San Nicolás de Hidalgo Edificio B, Cd. Universiaria 5800 Morelia, Mich. México rvera@zeus.umich.mx. Inroducción. Suponga que se iene una familia C de elipses confocales (con los mismos dos focos odas) en el plano, se desea mosrar lo siguiene: Si una curva cerrada γ en el plano iene la propiedad de que en cada uno de sus punos es angene a una elipse de la familia C, enonces esa curva es necesariamene una elipse de la familia C (vea la figura ()). Ese resulado se sigue del eorema fundamenal de las ecuaciones diferenciales ordinarias, cuya prueba echa mano de conocimienos especializados ales como el análisis. En el presene arículo damos una * Trabajo apoyado por la Coordinación de la Invesigación Cienífica de la Universidad Michoacana. 33

2 34 Fernando Garibay B. y Rigobero Vera Mendoza solución que usa solamene herramiena maemáica accesible, incluso, a alumnos de preparaoria. Figura : Elipses confocales y una curva angene a ellas. La ecuación diferencial de una familia de elipses confocales Consideremos la ecuación de la familia de elipses en el plano cuyos focos son los punos fijos F = ( c, 0) y F = (c, 0) (por ende cenro en (0, 0) ): x + y =. () b Con eje mayor de longiud a y eje menor de longiud b ; pero sujeos a la igualdad b = c. La familia se obiene haciendo variar el valor de a, ya que enonces b queda obligado a saisfacer b = c. Veamos qué ecuación diferencial saisface esa familia de elipses: Derivando con respeco a x en ambos lados de la ecuación (), obene-

3 Una familia de elipses 35 mos x + yy b = 0. Quiando denominadores obenemos despejando a y b x + yy = 0, y = b x y = (a c )x y Esa es la ecuación diferencial que saisfacen odas las elipses en el plano caresiano con focos fijos F y F. Sin pérdida de generalidad supondremos que c =. Reescribiendo a la ecuación () con c = se obiene () y = ( a )x. (3) y De aquí yy = x x, despejando a : = ambos lados de esa igualdad: = x x + yy = yy x + yy. x, resando a x+yy Por lo ano, regresando a la ecuación () para susiuir a y a en ella, enemos = x + y b = x + Con un poco más de álgebra llegamos a: o, equivalenemene, y = x x = x(x + yy ) y(x + yy ) y + y. yy x+yy x+yy (x y )y yx + xy(y ) = 0, (4) que es una ecuación diferencial (equivalene a la ()) que saisface la familia C de elipses.

4 36 Fernando Garibay B. y Rigobero Vera Mendoza 3. Soluciones a nuesra ecuación diferencial. Probaremos ahora que cualquier curva cerrada del plano que saisfaga a la ecuación diferencial (4) es una elipse. Para resolver la ecuación (4) hagamos el siguiene cambio de variable y = z, y = z, y = z z. Observemos que con el cambio de variable anerior, la ecuación (3) se conviere en ( )x = yy = z. (5) La ecuación (4) con el cambio de variable queda como de donde, (x z ) z z x z + x z(z ) 4z = 0 (x z )z xz + x (z ) = 0. (6) Para coninuar la resolución de la ecuación diferencial hagamos un nuevo cambio de variable: x = o x = en la ecuación (6). Derivemos con respeco a x usando la regla de la cadena y de aquí z = dx = d d dx = d ( ) z d z + x = d, (7) derivando ahora con respeco a nos queda ( ) ( ) d d d + z z d d + d ( ) 4 = 0. d resolviendo parénesis y cancelando érminos llegamos a: d z d d z ( ) d + = 0 d ( z + d ) = 0 (8) Solución proporcionada por el maemáico mexicano Per Zhevandrov de la Universidad Michoacana

5 Una familia de elipses 37 Esa úlima igualdad da lugar, de manera naural, a dos ecuaciones diferenciales en la variable, a saber: d z d = 0 y z + d = 0 (9) Es imporane señalar que las soluciones de las ecuaciones diferenciales (9) no se corresponden uno a uno con las soluciones de la ecuación (4), ya que los cambios de variable uilizados (y = z y y = ) no son uno a uno. Eso ocasiona que aparezcan soluciones exrañas como se verá a coninuación. Procedamos a resolver la primera de las ecuaciones aneriores d z d = 0, es decir, d = k De donde, usando la ecuación (7), k = d = x dx k, consane Susiuyendo eso úlimo en (6) nos queda o dx = xk (0) dividiendo enre x (x z )xk xz + x(xk) = 0 (x z )k z + x k = 0 regresando a y = z reagrupando érminos (x y )k y + x k = 0 x +k + y k k =. () Para que la ecuación anerior sea la de una elipse con focos en los punos de coordenadas (, 0) y (, 0) es necesario que se cumpla que < k < 0. Si k > 0 podemos escribir a la ecuación () así x +k y k +k = ()

6 38 Fernando Garibay B. y Rigobero Vera Mendoza que es la ecuación de una hipérbola con focos en los punos (, 0) y (, 0). Esa solución, dicho sea de paso, no es la de una curva cerrada; pero como veremos en el puno 4, hay razones para descararla. Si k < < 0 podemos escribir a la ecuación () así: x k y k +k = (3) que no es la ecuación de curva alguna en el plano porque el lado izquierdo es, en ese caso, siempre negaivo y por lo ano, esos valores de k no dan una solución a la ecuación diferencial. Resolvamos ahora la segunda ecuación diferencial que aparece en (9) z + d = 0 o d z =. Muliplicamos en ambos lados de la ecuación anerior por para obener ( d z) = ( ). Observemos que el lado izquierdo de la úlima igualdad es la derivada (con respeco a ) de z y por lo ano, la igualdad anerior queda inegrando obenemos D ( z) = ( ) z = + k, de donde, z() = + k Recordemos que x = y por lo ano z(x) = x + k x de donde z = x + k Como z = y, de la primera de las igualdades aneriores se iene que y + x k x =

7 Una familia de elipses 39 compleando el rinomio en el lado izquierdo (x k ) + y = + ( k ) (4) que es la ecuación de una circunferencia, con cenro en el puno ( k, 0) y radio + ( k ). Si, por oro lado, en la ecuación (6) susiuímos a z por z = x + k, obenemos x ( k + k )x + y = (5) comparando las ecuaciones (4) y (5) vemos que k + k = k, de aquí, k + 4 = k, de donde, k = 4 y ya de aquí k = ±, es decir, para k = se raa de una circunferencia con cenro en el puno (, 0) y radio y para k = se raa de una circunferencia con cenro en (, 0) y radio. Ese caso presena circunsancias mas bien raras o un ano paológicas; aclararemos esa siuación en el puno 4. Por lo prono diremos que buena pare de los desarrollos efecuados en la presene sección se podrían haber omiido si nuesro único ineres hubiera sido probar lo enunciado en la inroducción; sin embargo preferimos hacerlo sin suprimir ese análisis (inegablemene ilusraivo) ya que él nos muesra algunos aspecos geoméricos ineresanes por sí mismos, que de ora forma no quedarían resalados. 4. Sólo elipses Recordemos que hasa el momeno se han enconrado las soluciones de las ecuaciones diferenciales en (9), pero como veremos a coninuación no odas esas soluciones son soluciones de la ecuación diferencial (4), eso se debe a los dos cambios de variables realizados. Descaremos soluciones exrañas en la primera ecuación diferencial: Según la ecuación (0) z = xk, si susiuímos a z por su equivalene en la ecuación (5) para obener ( )x = xk

8 40 Fernando Garibay B. y Rigobero Vera Mendoza enendida esa igualdad como una idenidad, es decir, válida para oda x en el inervalo [ a,a]. Por lo ano, el valor de k queda obligado: k = a (es decir, k depende del parámero a. Observemos primero que ese valor de k es siempre mayor que : Supongamos que no fuera así, es decir, supongamos que para algunos valores de a, a, de aquí,, de donde, llegaríamos al absurdo de que 0. Lo anerior nos muesra que no eníamos que considerar la ecuación (3). Es decir, k iene que ser mayor que. Por oro lado, veamos qué necesiamos para que k < 0 : ya que a > 0. < 0 < 0 < < a Lo anerior no es de exrañar ya que al inicio de esa sección supusimos que la longiud del semi-eje focal (c) era igual a uno y por lo ano, la longiud del semi-eje mayor (a) debe ser mayor que uno. Eso nos dice que ampoco eníamos que considerar el caso k > 0, es decir, la ecuación () ampoco iene cabida. Finalmene, aclaremos el miserio de las dos circunferencias obenidas al resolver la segunda de las ecuaciones en (9). Las soluciones de la segunda ecuación diferencial en (9) esán dadas por las circunferencias cuyas ecuaciones esan en (4 ) y (5 ) De la ecuación (3) enemos que z = x+, si susiuímos eso en la ecuación (5) obenemos la siguiene idenidad ( )x = x + k de aquí, k = 0 y a = lo cual implica que = 0. Eso nos dice que, las circunferencias dadas por (4) son solución de la segunda ecuación diferencial en (9), pero no de la ecuación diferencial (4). En resumen: Sólo las elipses x +k + y k k = ( < k < 0) dadas en la ecuación () son soluciones de nuesra ecuación diferencial (4).

9 Una familia de elipses 4 5. Conclusiones. Lo que aparenemene nos esaba llevando a conradecir al Teorema Fundamenal de Exisencia y Unicidad de las ecuaciones diferenciales ([vea Harman]), el puno (4) nos hace ver que sólo era eso, una apariencia, por lo que dicho eorema queda, por lo que a ese rabajo respeca, sano y salvo, es decir, las únicas curvas cerradas en el plano que saisfacen a la ecuación diferencial (4) de una familia de elipses, son ellas mismas. Lo desarrollado en ese arículo muesra que hay concepos que, por una pare, pueden ser resuelos fácilmene con herramiena maemáica avanzada; mas sin embargo, es posible reescribir casos pariculares de esos concepos con herramienas elemenales para hacerlos accesibles a esudianes de preparaoria. Referencias [] Philip Harman, Ordinary Differenial Equaions. Second Ediion. Birkhauser, 98.

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo Solución de un caso paricular del problema de valor de fronera en érminos de la función de Green sobre un inervalo Objeivos. Mosrar que un caso muy especial del problema de valor de fronera: x () = f(),

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables Lección 3 Técnicas analíicas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exacas y Cambios de Variables 3.1. Ecuaciones Exacas Las ecuaciones exacas esán relacionadas con las llamadas

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

PRIMER EXAMEN EJERCICIOS RESUELTOS

PRIMER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G. I. T. I.) PRIMER EXAMEN 03 04 EJERCICIOS RESUELTOS EJERCICIO. Dada la curva cuya ecuación en coordenadas polares es r θ para 0 θ, se pide: () Deermina la ecuación de la reca angene a

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

Relación de ejercicios. Ecuaciones diferenciales

Relación de ejercicios. Ecuaciones diferenciales Relación de ejercicios. Ecuaciones diferenciales Abraham Rueda Zoca Ejercicio 1. [ punos] Resolver la ecuación diferencial: x = 2 + x + x 2 2. Solución. Veamos que se raa de una ecuación homogénea. Si

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN

APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN APLICACIÓN DE LA INTEGRAL PARA RESOLVER LA ECUACIÓN kf Propósio Al finalizar esa sección, quien impare el curso habrá logrado que los esudianes: Reconozcan que para obener la función F que modela el problema,

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

Apuntes de Ecuaciones Diferenciales

Apuntes de Ecuaciones Diferenciales Apunes de Ecuaciones Diferenciales José A. Cañizo 4 de marzo de 2016 Índice 1. Inroducción a las ecuaciones diferenciales ordinarias 1 1.1. Idea general................................. 1 1.2. Problema

Más detalles

Ecuaciones integrales fraccionarias: su solución mediante la transformación de Laplace.

Ecuaciones integrales fraccionarias: su solución mediante la transformación de Laplace. Ecuaciones inegrales fraccionarias: su solución mediane la ransformación de Laplace. Cerui, Rubén A. Deparameno de Maemáica Faculad de Ciencias Exacas y Naurales y Agrimensura Universidad Nacional del

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

La función generatriz para B k. Polinomios de Bernoulli

La función generatriz para B k. Polinomios de Bernoulli La función generariz para B. Polinomios de Bernoulli Alexey Beshenov cadadr@gmail.com 8 de Febrero de 017 La función generariz para B Teorema. Los números de Bernoulli pueden ser definidos por e e 1 =

Más detalles

Ecuaciones de primer orden

Ecuaciones de primer orden Capíulo 1 Ecuaciones de primer orden Problema 1.1 Hallar la solución general de la ecuación + 1 + 2 = 0. Hallar la solución que verifica (0) = 0 y la que verifica (1) = 0. k=-5 k=5 k=-1 Figura 1.1: Soluciones

Más detalles

Movimiento uniformemente acelerado

Movimiento uniformemente acelerado CINEMÁTICA DE LA PARTÍCULA Moimieno recilíneo Como su nombre lo indica, ese moimieno es el que iene lugar cuando una parícula se desplaza a lo largo de un rayeco reco. Describiremos res casos para el moimieno

Más detalles

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES Tema 47. Generación de curvas por envolvenes. TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES. Inroducción. Una curva o supericie es envolvene de un conjuno de curvas o supericies si es angene en cada puno

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-4-M-2-00-2017 CURSO: Maemáica Inermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Examen

Más detalles

Universidad de Sonora Departamento de Químico Biológicas

Universidad de Sonora Departamento de Químico Biológicas Deparameno de Maemáicas. Universidad de Sonora. Universidad de Sonora Deparameno de Químico Biológicas Ejemplo del Formao para la enrega de Problemas de Aplicación. Elemenos de Cálculo Inegral y algebra

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

Sistemas de coordenadas en movimiento relativo

Sistemas de coordenadas en movimiento relativo Capíulo 4 Sisemas de coordenadas en movimieno relaivo 4.1 Sisemas de coordenadas acelerados y Principio de Equivalencia Para complear la descripción de los sisemas de coordenadas no inerciales, consideremos

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan Señales Elemenales Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica Tuxpan Índice 3.1. Señales elemenales en iempo coninuo: impulso uniario, escalón uniario, rampa uniaria y la señal

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

Ecuaciones de Primer Orden e Intervalo Maximal

Ecuaciones de Primer Orden e Intervalo Maximal 2 Ecuaciones de Primer Orden e Inervalo Maximal 2.1 Algunos Méodos de Resolución En general, es muy difícil resolver ecuaciones diferenciales de primer orden. Pero hay cieros ipos canónicos de ésas para

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden . Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra

Más detalles

Modelo de crecimiento con educación (Jones)

Modelo de crecimiento con educación (Jones) César Anúnez. I Noas de Crecimieno Económico UNIVERSIDAD NACIONA MAOR DE SAN MARCOS FACUTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América) Modelo de crecimieno con educación (Jones) Charles

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler Méodos de Inegración Méodo de Euler Para resolver inegrales de la forma ax + bx + c El maemáico suízo Leonard Euler, ideó unas susiuciones que permien ransformar esas inegrales a inegrales de funciones

Más detalles

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x)

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x) Auoevaluación Cálculo Inegral Ejercicio 6. Calcular las siguienes inegrales indefinidas: ln d d ln( + d (a (b (c g cos + e d e + (d (e e + e d (f d cos( sen (g sen ( d (h ( + sen( d (i cos( cos ( + d (j

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC TP3 Cáedra: ESTRUCTURAS NIVEL 1 Taller: VERTICAL III DELALOYE - NICO - CLIVIO Trabajo Prácico Nº 3: Esfuerzos inernos Diagramas

Más detalles

Práctico 1. Macro III. FCEA, UdelaR

Práctico 1. Macro III. FCEA, UdelaR Prácico 1. Macro III. FCEA, UdelaR Ejercicio 1 Suponga una economía que se compora de acuerdo al modelo de crecimieno de Solow-Swan (1956), se pide: 1. Encuenre la ecuación fundamenal del modelo de Solow-Swan.

Más detalles

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez Ejercicios de Economería para el ema 4 Curso 2005-06 Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez 1 1. Considérese el modelo siguiene: Y X + u * = α + β 0 Donde: Y* = gasos deseados

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

Álgebras de Boole. Tema Álgebras de Boole

Álgebras de Boole. Tema Álgebras de Boole Tema 5 Álgebras de Boole 5.1 Álgebras de Boole 5.1.1 Álgebras de Boole Definición 5.1.1. Un álgebra de Boole es una erna (A,, ) donde A es un conjuno y, : A A A son dos operaciones binarias inernas con

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO. Introducción

PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO. Introducción PONENCIA: DEMOSTRACIÓN, SIN CÁLCULO DIFERENCIAL, DE LAS ECUACIONES DE LA POSICIÓN EN EL MOVIMIENTO PARABÓLICO Presenada por: Prof. Yuri Posadas Velázquez Seminario LAC. 24 de ocubre de 2013 Inroducción

Más detalles

Tema 2 Algebra de matrices

Tema 2 Algebra de matrices Tema lgebra de marices. Efecúa odos los posibles producos enre las siguienes marices: 8 8 7 7 7 C D ; C ; D 7 ; 8 C ; 8 8 D C 7 DD hora resolveremos el problema con Wiris:. Lo primero que debemos hacer

Más detalles

Tema 9. Formulación lagrangiana

Tema 9. Formulación lagrangiana Tema 9. Formulación lagrangiana. agrangiano Se define como la diferencia enre la energía cinéica del sisema T y su energía poencial V = T V y será función en general de las coordenadas, de las velocidades

Más detalles

CAPÍTULO 2 SEMIGRUPO DE OPERADORES LINEALES

CAPÍTULO 2 SEMIGRUPO DE OPERADORES LINEALES CAPÍTULO 2 SEMIGRUPO DE OPERADORES LINEALES 1. Moivación En los preliminares fue viso que la función exponencial e A, donde A 2 R y 2 R, es de nida por 1X e A (A) n n! n (2.1) Cuando A 2 R y la exponencial

Más detalles

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc

i = dq dt La relación entre la diferencia de potencial de las armaduras del condensador y su capacidad es V a V b =V ab = q C V c =V bc aleos Física para iencias e ngeniería APÍTUL 1.09-2 UT 1 1.09 2.1 arga de un condensador a ravés de una resisencia La figura muesra un condensador descargado de capacidad, en un circuio formado por una

Más detalles

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción.

Laboratorio N 3, Funciones vectoriales, Curvas. Introducción. Universidad Diego Porales Faculad de Ingeniería Insiuo de Ciencias Básicas Asignaura: Cálculo III Laboraorio N, Funciones vecoriales, Curvas Inroducción En la primera pare de ese laboraorio vamos a esudiar

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

OPTIMIZACIÓN DINÁMICA

OPTIMIZACIÓN DINÁMICA OPIMIZACIÓN DINÁMICA Francisco Alvarez González fralvare@ccee.ucm.es EMA 5 Problemas en iempo coninuo: principio del máximo de Ponryagin 1. Formulación en iempo coninuo. 2. Ejemplos. 3. Función valor.

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

4.- Dualidad. Método Dual del Símplex.

4.- Dualidad. Método Dual del Símplex. Programación Maemáica para Economisas 132 4.- Dualidad. Méodo Dual del Símplex. Como ya vimos en el capíulo primero, dado un problema de programación no lineal, donde su lagrangiana oma la forma: se denomina

Más detalles

Estimaciones en los espacios de Sobolev de la solución del problema de Cauchy periódico lineal para la ecuación de onda amortiguada

Estimaciones en los espacios de Sobolev de la solución del problema de Cauchy periódico lineal para la ecuación de onda amortiguada Vol. XVII, N o, Diciembre 9) Maemáicas: 1 4 Maemáicas: Enseñanza Universiaria c Escuela Regional de Maemáicas Universidad del Valle - Colombia Esimaciones en los espacios de Sobolev de la solución del

Más detalles

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales Lección Inroducción a los sisemas no lineales de ecuaciones diferenciales Un modelo de Gierer-Meinhard para ecuaciones de ipo Acivador-Inhibidor Modelo G-M: con = [A], = [B]. k = k = k = k 4 = A B A +

Más detalles

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C.

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C. EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. Para resolverla planeamos la susiución, de la que se sigue que d. Por ano,. 5 5.986 d d d C C. 5 5.986 Ln 5.986 C.. arcg C.. 5 5. 5 6 5 5 6 5 5 arcg5 C.

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO

CORRIENTE ELÉCTRICA ANÁLISIS GRÁFICO EN EL TIEMPO hp://comunidad.udisrial.edu.co/elecriciyprojecudisrial/ Elecriciy Projec UD 2017 CORRIENTE ELÉCTRICA La corriene es la asa de variación de la carga respeco al iempo [1]. La Unidad de medida es el Ampere

Más detalles

CAPÍTULO 4: MODELIZACIÓN DEL SISTEMA MEDIANTE FUNCIONES DE TRANSFERENCIA. Capítulo 4: Modelización del sistema con funciones de transferencia

CAPÍTULO 4: MODELIZACIÓN DEL SISTEMA MEDIANTE FUNCIONES DE TRANSFERENCIA. Capítulo 4: Modelización del sistema con funciones de transferencia Capíulo 4: Modelización del sisema con funciones de ransferencia 46 . Inroducción En los modelos de función de ransferencia, el objeivo es relacionar dos ó más series emporales en función de una u oras

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

Facultad de Ciencias Exactas. UNLP Página 1

Facultad de Ciencias Exactas. UNLP Página 1 ANÁLISIS MATEMÁTICO I. CIBEX-FÍSICA MÉDICA. Primer cuarimesre 0 UNIDAD I. GUÍA FUNCIONES. DOMINIO. GRÁFICA Comenzaremos nuesro curso repasando el concepo de función. Las funciones represenan el principal

Más detalles

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12

Tema 12. Problemas Métricos. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 12 Tema Problemas Méricos.- Inroducción..- Disancias...- Enre dos punos..- Enre puno y reca...- Enre puno y plano...- Enre dos recas..5.- Enre reca y plano..6.- Enre dos planos..- Ángulos..- Enre dos recas...-

Más detalles

90 km M B M A X F X E 90-Y-2X N MÓVIL A: M A V A

90 km M B M A X F X E 90-Y-2X N MÓVIL A: M A V A PROBLEMAS DE MÓVILES Problema 4: Dos móviles A Y B marchan con velocidad consane; A con velocidad V= km/h y B con velocidad V=5 km/h. Paren simuláneamene de M hacia N y en ese mismo insane pare de N hacia

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una lera (incógnia o variable). El valor de la variable que

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Índice de diapositivas en Tr2009_6_Prog_Din.doc

Índice de diapositivas en Tr2009_6_Prog_Din.doc Deparameno de Economía, Faculad de Ciencias Sociales, Universidad de la República, Uruguay Maesría en Economía Inernacional 29. Macroeconomía. Alvaro Foreza Índice de diaposiivas en Tr29_6_Prog_Din.doc

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2]

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2] UNIVERSIDAD TECNOLÓGICA NACIONAL Faculad Regional Rosario UDB Física Cáedra FÍSICA I CAPITULO : Movimieno en una dirección [S.Z.F.Y. ] Cinemáica: La Cinemáica se ocupa de describir los movimienos de los

Más detalles

5º Año Área Electrónica TEORÍA DE LOS CIRCUITOS II SEÑALES APERIÓDICAS INDICE

5º Año Área Electrónica TEORÍA DE LOS CIRCUITOS II SEÑALES APERIÓDICAS INDICE TEORÍ DE LOS CIRCUITOS II SEÑLES PERIÓDICS INDICE SEÑLES PERIÓDICS ELEMENTLES 2 Señal escalón 2 Señal rampa 3 Señal impulso 4 Relación enre las señales aperiódicas elemenales 5 Página REPRESENTCIÓN DE

Más detalles

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.?

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.? MTRICES Inroducción 1 En un IES hay 107 alumnos en 3ºESO, y 110 alumnas En 4ºESO hay 84 alumnos y 95 alumnas En 1ºBCH hay 69 alumnos y 68 alumnas, y en ºBCH hay 46 alumnos y 48 alumnas a) Represena mediane

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indefinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la función F( es fácil hallar su derivada F (. El proceso inverso: enconrar F ( a parir de F (

Más detalles

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t)

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t) Inroducción a la ísica Paralelos y 3. Profesor RodrigoVergara R RPIDEZ DE CMBIO Rapidez media de cambio Definir el concepo rapidez media de cambio nalizar arianes donde no es el iempo la ariable independiene

Más detalles

MÉTODOS MATEMÁTICOS DE LA INGENIERÍA QUÍMICA. Examen Final de Junio EXAMEN RESUELTO

MÉTODOS MATEMÁTICOS DE LA INGENIERÍA QUÍMICA. Examen Final de Junio EXAMEN RESUELTO MÉTODOS MATEMÁTICOS DE LA INGENIERÍA QUÍMICA Examen Final de Junio 6 9 EXAMEN RESUELTO EJERCICIO a Consideremos el problema de valores iniciales x y x y + xy + 4, y 3 a Enconrar odas las soluciones de

Más detalles

Por lo tanto el polinomio de Newton basado en diferencias divididas será:

Por lo tanto el polinomio de Newton basado en diferencias divididas será: Universidad Nacional de Ingeniería 7--6 Faculad de Ingeniería Mecánica P.A. 5- Área de Ciencias Básicas y Humanidades SE PERMITE UNA HOJA DE FORMULARIO. Problema ARIO - EXAMEN FINAL DE CALCULO NUMERICO

Más detalles

Resolución de Ecuaciones de Primer Orden

Resolución de Ecuaciones de Primer Orden 1 Resolución de Ecuaciones de Primer Orden 1.1 Desinegración Radiaciva Si las moléculas de ciero ipo ienen endencia a desinegrarse en moléculas más pequeñas a un rimo que no se ve afecado por la presencia

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es SECCIÓN.4 Vecores angenes vecores normales 859 En la sección precedene se vio que el vecor velocidad apuna en la dirección del movimieno. Esa observación lleva a la definición siguiene, que es válida para

Más detalles

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática Índice Tema 1: Cinemáica Capíulo 1: Inroducción a la Cinemáica TEMA 1: CINEMÁTICA Capíulo 1: Inroducción a la cinemáica Inroducción Dos nuevas ciencias Galileo Galilei (1564 164) El movimieno en el Renacimieno.

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

2. Independencia del camino. Campos conservativos.

2. Independencia del camino. Campos conservativos. GRADO DE INGENIERÍA AEROESPAIAL. URSO. Lección. álculo vecorial.. Independencia del camino. ampos conservaivos. Ha ocasiones en las que la inegral de un campo vecorial F, definido en una región U, a lo

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles