Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales"

Transcripción

1 Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales

2 CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones: a) 7 b) / / 8 a) Sacando facor común : 7 soluciones son Inerpreación gráfica: ) Si represenamos la parábola 7 Como a enonces es una parábola abiera hacia abajo 7 ; v Vérice: v 8 luego las Cores con el eje X: resolviendo la ecuación 7 obenemos que las abscisas de core son luego la parábola cora al eje X por ) ) Core con el eje Y: ) La gráfica correspondiene es: b) / /8 8 Luego las soluciones son Inerpreación gráfica: Si represenamos la parábola : 8 a luego es una parábola abiera hacia arriba Vérice: / v /8 v 8 8 8

3 Los cores con el eje X se obienen resolviendo la ecuación inicial por ano son 8 Core con el eje Y La represenación es: scribe dos ecuaciones de segundo grado ales que la suma de sus soluciones sea su produco Sean las soluciones de la ecuación a bc Aplicando las fórmulas de Cardano- Viea enemos: b a c a Por ano si a se verificará que b b c luego una ecuación es Si a se verificará que: b b c c 8 luego ora ecuación posible es 8 CUACIONS POLINÓMICAS D GRADO SUPRIOR A 8 Resuelve las siguienes ecuaciones: a) b) c)

4 a) Sea el cambio enonces la ecuación se ransforma en: Si Si b) Sea el cambio enonces la ecuación se ransforma en: Si Si 7 no eisen valores reales de c) Consideramos el cambio enonces 7 Si Si no eisen valores reales de Resuelve las siguienes ecuaciones polinómicas: a) ) ) ) b) ) ) ) c) d) 7 ) ) ) a) ) ) ) b) c) Uiliando la regla Ruffini para obenemos la descomposición: ) ) volviendo aplicar Ruffini para =- nuevamene obenemos: ) ) ) ) Tenemos por ano que es una raí doble por ano solución de la ecuación Finalmene resolviendo la ecuación / d) Facoriando con Ruffini obenemos ) ) ) ) luego las soluciones son / CUACIONS CON RADICALS Resuelve las siguienes ecuaciones: a) b) c) d)

5 a) luego ; Comprobemos si esos valores son soluciones de la ecuación inicial: : por ano es solución : No es solución Luego la única solución es b) ) luego ; Comprobamos ahora si esos valores son soluciones de la ecuación inicial: 8 : luego es solución 7 : luego no es solución La única solución es c) ) Por ano: ; Comprobamos si esos valores son soluciones de la ecuación inicial: : luego es solución : no es solución La única solución es d) Por ano ; Comprobamos si son soluciones de la ecuación inicial Para : luego es solución para ) ) : ; ambién es solución Las soluciones son: CUACIONS RACIONALS Resuelve las siguienes ecuaciones racionales: a) ) b) a) Como ) ) ) ) ) ) c m m enonces al muliplicar los dos miembros de la ecuación por el m c m enemos: ) ) ) ) ) ) ) Sin embargo ese valor no es solución pues anula el denominador de las dos primeras fracciones algebraicas: ) No eise! Por ano no eise solución

6 b) Como m c m ) )) ) ) Muliplicando los dos miembros de la fracción por dicho valor obenemos: ) ) ) ) ) luego CUACIONS XPONNCIALS Y LOGARÍTMICAS Resuelve las siguienes ecuaciones: a) 8 b) c) d) a) 8 b) fecuando el cambio obenemos la ecuación Al simplificar la epresión obenemos luego ecuación cuas soluciones son / Por ano si si / log /) c) obenemos por ano la ecuación de segundo grado cua solución doble) es d) Tomando logarimos decimales en ambos miembros enemos log log )log log 7 Resuelve las siguienes ecuaciones logarímicas: log ) log ) log log a) b) log ) log log ) log c) log log ) log ) log a) Apliquemos propiedades de los logarimos: log ) log log ) log log log log luego Comprobamos si dichos valores son solución de la ecuación inicial: : log ) log ) No eisen dichos valores por ano no es solución; : log ) log ) log ) log ) por ano sí es solución La única solución es b) Aplicando propiedades de los logarimos: log ) log log ) log ) log log

7 Por ano solución de la ecuación inicial: 7 ; : log ) log ) log log log ) log : log log solución La única solución es Comprobemos si esos valores son luego es solución; ; no eise logarimo de números negaivos luego no es c) Pasando al segundo miembro los dos úlimos érminos aplicando propiedades de los logarimos enemos: log log ) log ) log log log ) log ) log log log ) ) luego ; Comprobamos si esos dos valores son soluciones de la ecuación inicial: : log log log negaivos por lo que ese valor no es solución log No eisen logarimos de números : log log ) log ) log log log log log La única solución es luego sí es solución 7

8 8 SISTMAS D CUACIONS MÉTODO D GAUSS Resuelve clasifica los siguienes sisemas de ecuaciones lineales: a) b) c) d) e) f) a) Aplicamos el méodo de Gauss: con el sisema riangular resulane obenemos: 7 ; susiuendo en la segunda ecuación ; susiuendo finalmene en la primera Solución: se raa de un sisema compaible deerminado b) Aplicamos el méodo de Gauss: sisema riangular equivalene Si consideramos la segunda ecuación despejamos : 7 sea 7 Susiuendo esos valores en la primera ecuación: 7 Se raa por ano de un sisema compaible indeerminado cuas infinias soluciones son de la forma: R 7 c) sisema riangular equivalene Despejando en la segunda ecuación: luego si consideramos susiuendo esos valores en la primera ecuación: luego se raa de un sisema compaible indeerminado cuas infinias soluciones son: R

9 d) las dos úlimas ecuaciones son incompaibles por lo que se raa de un sisema incompaible e) Si consideramos el parámero enonces enemos: Susiuendo en la primera ecuación: 7 8 Por ano se raa de un sisema compaible indeerminado cuas infinias soluciones son: 7 f) Resolviendo la úlima ecuación obenemos Susiuendo ese valor en la segunda ecuación enemos la ecuación / susiuendo ahora en la primera ecuación los valores obenidos para resula: Se raa de un sisema compaible deerminado cua única solución es SISTMAS D CUACIONS NO LINALS Resuelve los sisemas de ecuaciones no lineales: a) b) a) Uiliamos el méodo de susiución; como esá despejada en la primera ecuación susiuendo en la segunda enemos: 7 ) Resolviendo la ecuación de segundo grado obenemos como soluciones / por ano: si luego primer par de soluciones si / luego segundo par de soluciones / / b) Usamos el méodo de igualación para ello despejamos la incógnia en ambas ecuaciones obenemos Igualando ahora los dos segundos miembros enemos la ecuación:

10 Resolviendo la ecuación de segundo grado resulane obenemos como soluciones / Luego si primera solución Si / luego la segunda solución es / / Resuelve e inerprea gráficamene los siguienes sisemas de ecuaciones no lineales: a) c) 7 b) d) 8 8 a) Uiliamos el méodo de susiución como la incógnia esá despejada en la primera ecuación susiuimos su valor en la segunda obenemos: 7 ) 8 resolviendo la ecuación de segundo grado obenemos como soluciones Luego: si si por ano enemos dos pares de soluciones Si represenamos las dos curvas la parábola primera ecuación) la reca segunda ecuación) obenemos como punos de inersección las soluciones del sisema al como se muesra en la siguiene figura: b) Uiliamos el méodo de susiución como la incógnia esá despejada en la primera ecuación susiuimos el valor de en la segunda obenemos la ecuación: 8)

11 Resolviendo la ecuación de segundo grado obenemos como soluciones luego si 8 8 si 8 8 Tenemos por ano dos pares de soluciones Si represenamos la primera ecuación obenemos una parábola represenando la segunda una reca sas gráficas se coran jusamene en los punos ) -) que son las soluciones del sisema al como se muesra en la siguiene figura: c) Uiliando el valor de la incógnia de la segunda ecuación susiuendo en la primera enemos: ) Por ano se obienen dos pares de soluciones Si despejamos en la primera ecuación la incógnia enemos la ecuación de una parábola la segunda ecuación es una reca horional Ambas gráficas se coran en los punos -) --) que son las soluciones del sisema al como se muesra en la siguiene figura:

12 d) Uilicemos el méodo de igualación despejando la incógnia en la segunda ecuación obenemos las ecuaciones: Igualando los primeros miembros de ambas ecuaciones obenemos la ecuación: ) Por ano si si luego enemos dos soluciones para el sisema Las dos ecuaciones son parábolas que al represenarlas observamos que se coran en los punos -) -) al como se muesra en la siguiene figura: INCUACIONS 8 Resuelve las siguienes inecuaciones lineales: 7 a) 7 8 b) a) 7 8 b) c) 7) ) 8) Resuelve las siguienes inecuaciones polinómicas: a) 8 b)

13 a) 8 ) ) Considerando las raíces del polinomio ) dividimos la reca real en res inervalos sobre los cuales analiamos el signo de cada facor: ) ) ) + ) ) ) + Luego la solución es: Obsérvese que al raarse de un enonces debemos incluir los eremos si anulan el polinomio en ese caso) b) ) ) ) Consideremos los punos que anulan el polinomio: / Con esos punos dividimos la reca real en cinco inervalos analiamos el signo de los facores en la siguiene abla: ) ) / ) / ) ) ) ) ) Luego la solución es: ) / ) Resuelve las siguienes inecuaciones racionales: a) 7 b) ) ) ) ) c) a) Considerando ano las raíces del numerador como las del denominador ; dividimos la reca real en cinco inervalos sobre los cuales analiamos el signo de cada facor del numerador del denominador en la siguiene abla: ) ) ) ) ) Numerador Denominador ) ) + + ) ) Tenemos que añadir los punos que anulan el numerador por lo que la solución es:

14 7 ) ) 7 b) Consideramos los números que anulan numerador denominador 7) dividimos la reca real en cuaro inervalos sobre los cuales analiamos el signo de numerador denominador: 7) 7) ) ) Numerador Denominador Consideramos los punos que anulan el numerador únicamene a que para los que anulan 7) el denominador la epresión no es un número real La solución es: 8) ) c) Los valores de que anulan numerador denominador son 8 Con esos valores dividimos la reca real en cuaro inervalos sobre los cuales analiamos en la siguiene abla el signo de los facores numerador denominador aención: el denominador lleva signo negaivo): ) ) 8) 8 ) Numerador Denominador 8) ) ) ) Luego la solución es: ) 8 ) SISTMAS D INCUACIONS Resuelve los siguienes sisemas de inecuaciones: a) b) 8 7 c) a) ) 7) ) ) Resolvemos la primera inecuación: Considerando los valores que anulan el polinomio 7 dividimos la reca real en res inervalos sobre los cuales analiamos el signo de los facores del produco final:

15 7) 7) ) ) 7) + + Solución de esa primera inecuación: 7 Resolvemos la segunda inecuación: Consideramos los valores que anulan numerador denominador: con los que dividimos la reca real en cuaro inervalos sobre los que analiamos los signos de numerador denominador: ) ) ) ) Numerador Denominador ) ) Solución de la segunda inecuación: ) ) La solución del sisema de inecuaciones será: { 7 } { ) ) }= ) b) 8 ) 7) 7) ) Analiamos las soluciones de cada una de las dos inecuaciones por separado Resolución de la primera inecuación: Con las raíces del polinomio: 7 en la siguiene abla dividimos la reca real en res inervalos en los que analiamos el signo de los dos facores: 7) 7) ) ) 7) Solución de la primera inecuación: Resolución de la segunda inecuación: Con los valores que anulan numerador denominador: 7 ¾ dividimos la reca real en cuaro inervalos sobre los cuales analiamos en la siguiene abla los signos: /) / ) 7) 7 ) Numerador Denominador + + ) 7) + +

16 Solución de la segunda inecuación: / ) 7 ) La solución del sisema de inecuaciones se obiene con la inersección de los inervalos solución de ambas inecuaciones: { 7 } { / ) 7 ) } 7 c) 7 ) ) ) Resolvemos cada una de las dos inecuaciones Resolución de la primera inecuación: Como / son los valores que anulan numerador denominador de la primera inecuación consideramos la siguiene abla con la que obenemos los signos que oma la fracción algebraica: ) / ) / ) ) Numerador Denominador + + ) ) + + Solución de la primera inecuación: ) / ) Resolución de la segunda inecuación: Al raarse del cuadrado de una epresión que sólo se anula en = la solución de la segunda inecuación es ) ) Solución del sisema de inecuaciones:{ ) / ) } { ) ) } ) / ) Resuelve los siguienes sisemas de inecuaciones lineales con dos incógnias: a) b) c) 8 d) a)

17 b) 7

18 8 c) 8 d)

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una lera (incógnia o variable). El valor de la variable que

Más detalles

x 1; Soluciones dobles

x 1; Soluciones dobles EJERCICIOS TIPO EXAMEN ECUACIONES INECUACIONES Y SISTEMAS.- Resuelve las ecuaciones siguienes, facorizando previamene en los casos que eso sea posible: a) Solución: Por raarse de una ecuación de grado

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Método de Euler Méodos de Inegración Méodo de Euler Para resolver inegrales de la forma ax + bx + c El maemáico suízo Leonard Euler, ideó unas susiuciones que permien ransformar esas inegrales a inegrales de funciones

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Gauss Ejercicio nº.- Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: compaible deerminado compaible indeerminado c) incompaible Jusifica en cada caso

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

EJERCICIOS RESUELTOS DE NÚMEROS REALES

EJERCICIOS RESUELTOS DE NÚMEROS REALES EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES

UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla

Más detalles

Ejercicios y problemas

Ejercicios y problemas 1. Ecuaciones de 1 er y 2º grado 45. Resuelve las siguientes ecuaciones: + + + = 25 2 3 4 2 3 5 + 1 1 4 6 12 3 1 2 + 5 8 c) = 4 6 8 3 2 5 3 + 7 8 d) + + 2 = 3 5 5 2 /5 c) /2 d) 46. Resuelve las siguientes

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS Maemáicas Problemas resuelos por el Méodo de Gauss PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS ) Resolver el siguiene sisema por Gauss Para resolver el sisema por el méodo de Gauss, hemos de riangulariarlo.

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b, donde a y b son números reales con a. Para resolverla despejamos

Más detalles

1.1 Utilizando sistemas modulares, resolver la ecuación + =.

1.1 Utilizando sistemas modulares, resolver la ecuación + =. 5. 5. 1. Sisemas de la forma: Una ecuación con dos o más variables. 1.1 Uilizando sisemas modulares, resolver la ecuación + =. La ecuación 3 +5 =23 es equivalene a 3 23 ó.5, eso es, planeamos conocer el

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

1º BACH MATEMÁTICAS I

1º BACH MATEMÁTICAS I 1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.

Más detalles

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores). Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

Más detalles

Autómata Finito de 4 Estados y una Variables de Entrada.

Autómata Finito de 4 Estados y una Variables de Entrada. Auómaa Finio de 4 Esados y una Variables de Enrada. Vamos a diseñar un Auómaas Finio (AF) mediane el Procedimieno General de ínesis y a implemenarlo usando bieables D y cuanas pueras lógicas sean necesarias..

Más detalles

ECUACIONES DE 1º GRADO 1. Resuelve las siguientes ecuaciones de 1º grado en función de los parámetros que llevan: ; ( )

ECUACIONES DE 1º GRADO 1. Resuelve las siguientes ecuaciones de 1º grado en función de los parámetros que llevan: ; ( ) ECUACIONES DE º GRADO. Resuelve las siguienes ecuaciones de º grado en función de los parámeros que llevan a) a b ( c) b) b ( a) a( b) c) ( b a) a b b d) a a 7 a e) a b b a a. a b ( c). Para resolver la

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

BLOQUE 2 CÁLCULO INTEGRAL

BLOQUE 2 CÁLCULO INTEGRAL BLOQUE CÁLCULO INTEGRAL INTEGRALES INDEFINIDAS. Primeras deiniciones.propiedades De: Se dice que F es FUNCIÓN PRIMITIVA de si F = EJEMPLO: Es evidene que es una primiiva de ya que ( ) = Pero ambién + es

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N. Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos

Más detalles

PRIMER EXAMEN EJERCICIOS RESUELTOS

PRIMER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G. I. T. I.) PRIMER EXAMEN 03 04 EJERCICIOS RESUELTOS EJERCICIO. Dada la curva cuya ecuación en coordenadas polares es r θ para 0 θ, se pide: () Deermina la ecuación de la reca angene a

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES

EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones y de inecuaciones EJERCICIOS RESUELTOS DE SISTEMAS DE INECUACIONES 1. Resolver el sistema de inecuaciones + 5 4 0 3 4 + 8 < 3( 1) Se

Más detalles

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES

TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES Tema 47. Generación de curvas por envolvenes. TEMA 47. GENERACIÓN DE CURVAS POR ENVOLVENTES. Inroducción. Una curva o supericie es envolvene de un conjuno de curvas o supericies si es angene en cada puno

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

Tema 4: Ecuaciones y sistemas de ecuaciones.

Tema 4: Ecuaciones y sistemas de ecuaciones. Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0

Más detalles

La forma de una ecuación de primer grado puede ser de la siguiente:

La forma de una ecuación de primer grado puede ser de la siguiente: Primer Grado La forma de una ecuación de primer grado puede ser de la siguiente: a b a b a b a b La solución de una inecuación no va a ser un número concreto, sino un intervalo, es por lo que, debemos

Más detalles

ECUACIONES Y SISTEMAS

ECUACIONES Y SISTEMAS http://catedu.es/matryc ECUACIONES Y SISTEMAS ÍNDICE 1.- ECUACIONES Y SOLUCIONES 2.- ECUACIONES POLINÓMICAS 2.1.- Ec. polinómicas de 1º grado 2.2.- Ec. polinómicas de 2º grado 2.3.- Ec. bicuadradas 2.4.-

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades: Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....

Más detalles

Ejercicios de refuerzo y recuperación. Matemáticas 4º ESO. Ecuaciones.

Ejercicios de refuerzo y recuperación. Matemáticas 4º ESO. Ecuaciones. Paseo de los Basilios, Ejercicios de refuerzo y recuperación. Matemáticas º ESO. Ecuaciones. Nombre: curso: Ecuaciones de º grado Concepto. Una ecuación de º grado es una ecuación que se puede epresar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.

Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones. Polinomios Ecuaciones Ecuaciones de primer grado Ecuaciones de segundo grado Ecuaciones polinómicas de grado superior Ecuaciones racionales Ecuaciones

Más detalles

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

ECUACIONES DE 2º GRADO. Se resuelve mediante la siguiente fórmula:

ECUACIONES DE 2º GRADO. Se resuelve mediante la siguiente fórmula: ECUACIONES DE 2º GRADO Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Se resuelve mediante la siguiente fórmula: ( 1). Si es a

Más detalles

Tema 4: Funciones. Límites de funciones

Tema 4: Funciones. Límites de funciones Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S

L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S. L O G A R I T M O S En los cálculos con potencias se pueden dar situaciones en las que se conozcan la base de la potencia y el resultado,

Más detalles

Solución de las inecuaciones

Solución de las inecuaciones Marco Teórico Solución de las inecuaciones Y si tuviera una desigualdad con una variable desconocida cómo? Cómo has podido aislar la variable para encontrar su valor? Después de completar este concepto,

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2

GUÍA DE TRABAJO N 2 FUNCIONES POLINÓMICAS Y RACIONALES. 2) Determine si los números propuestos son ceros de la función polinómica: 4 3 2 GUÍA DE TRABAJO N FUNCIONES POLINÓMICAS Y RACIONALES. 1) Dados los polinomios Halle, si es posible: P( ) + Q( ) Q( ) R( ) R( ) Q( ) d) P( ) Q( ) e) P( ) R( ) f) Q( ) : P( ) g) R( ) : Q( ) P( ) + 1, Q (

Más detalles

Matemáticas II TEMA 10 La integral indefinida

Matemáticas II TEMA 10 La integral indefinida nálisis. Inegral Indefinida Maemáicas II TEM 0 La inegral indefinida. oncepo de inegral indefinida La derivada de una función permie conocer la asa de variación (el cambio insanáneo) de un deerminado fenómeno

Más detalles

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2. LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )

Más detalles

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC

ANEXO A LA PRÁCTICA CARGA Y DESCARGA DE UN CAPACITOR EN UN CIRCUITO RC ANEXO A LA PRÁTIA ARGA Y DESARGA DE UN APAITOR EN UN IUITO Inroducción. En esa prácica se esudia el comporamieno de circuios. En una primera pare se analiza el fenómeno de carga y en la segunda pare la

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

Ecuaciones y sistemas

Ecuaciones y sistemas Ecuaciones y sistemas E S Q U E M A D E L A U N I D A D.. Concepto de polinomio página. Polinomios página.. peraciones con polinomios página.. Teorema del resto página 6.. Descomposición factorial página

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

Proyecto Guao Sistema de Ecuaciones Logarítmicas

Proyecto Guao Sistema de Ecuaciones Logarítmicas Sistema de Ecuaciones Logarítmicas Marco Teórico: Para resolver sistemas de ecuaciones logarítmicas tomaremos en cuenta la definición y las propiedades de los logaritmos. Para la resolución del sistema

Más detalles

CAPÍTULO 6. INTEGRACIÓN DE FUNCIONES IRRACIONALES 6.1. Introducción 6.2. Integrales irracionales simples 6.3. Integrales irracionales lineales 6.4.

CAPÍTULO 6. INTEGRACIÓN DE FUNCIONES IRRACIONALES 6.1. Introducción 6.2. Integrales irracionales simples 6.3. Integrales irracionales lineales 6.4. CAPÍTULO. INTEGRACIÓN DE FUNCIONES IRRACIONALES.. Inroducción.. Inegrales irracionales simples.. Inegrales irracionales lineales.. Inegrales irracionales de polinomios de grado dos no compleos.. Inegrales

Más detalles

( ) ( ) ( ) Reduce a común denominador el siguiente conjunto de fracciones: x 1 2. Solución: Común denominador: 1 =

( ) ( ) ( ) Reduce a común denominador el siguiente conjunto de fracciones: x 1 2. Solución: Común denominador: 1 = Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) ( )( + )( )

Más detalles

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD:

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD: . Resolver la inecuación: Solución: empleando la siguiente propiedad de valor absoluto a a a, tenemos lo siguiente: Resolviendo por el método de puntos críticos, para cada caso tenemos: 0 0 0 Entonces

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

INECUACIONES. Por ejemplo 2 3 x 6.

INECUACIONES. Por ejemplo 2 3 x 6. INECUACIONES 1. Desigualdades Una desigualdad es una expresión en la que interviene uno de los signos: ,. Por ejemplo, 3 + 10, que es una desigualdad cierta. 3+ > 5 es una desigualdad falsa.. de primer

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + =

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + = Funciones Se ha hecho un estudio de mercado en el que la curva de oferta de un determinado producto viene dada por la función,7 8 la curva de demanda por, -. Si el punto de corte de ambas curvas es el

Más detalles

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES hp://elefonica.ne/web/imm EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES.- En las ecuaciones lineales en diferencias, enemos el modelo de la elaraña, que se refiere a la versión discrea

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =.

ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =. ECUACIONES IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Una igualdad algebraica está formada por dos epresiones algebraicas (una de ellas puede ser un número), separadas por el signo. Ejemplos.- ( ) ;

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indefinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la función F( es fácil hallar su derivada F (. El proceso inverso: enconrar F ( a parir de F (

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles