BOLETÍN DE EJERCICIOS PROBABILIDAD
|
|
|
- Inmaculada Luna Farías
- hace 7 años
- Vistas:
Transcripción
1 BOLETÍN DE EJERCICIOS PROBABILIDAD 1. Un estudiante cuenta, para un examen con la ayuda de un despertador, el cual consigue despertarlo en un 80 % de los casos. Si oye el despertador, la probabilidad de que realiza el examen es 0.9 y, en caso contrario, de 0.. (hacemos un diagrama de arbol) a) Si va a realizar el examen, cuál es la probabilidad de que haya oído el despertador? P (oye despertador realiza examen) P (oye despertador realiza examen) = P ( realiza examen) 0,8 0,9 = 0,8 0,9 + 0,2 0, = b) Si no realiza el examen, cuál es la probabilidad de que no haya oído el despertador? P (no oye despertador no realiza examen) P (no oye despertador no realiza examen) = P ( no realiza examen) 0,2 0, = 0,8 0,1 + 0,2 0, = 9 2. Se extrae una bola de urna que tiene 4 bolas verdes, blancas y negras; halla la probabilidad de que al sacar una bola: a) Sea verde o blanca. b) No sea blanca. P (V B) = P (V ) + P (B) = = 9 14 P ( B) = 1 P (B) = 1 14 = Ana y Miguel, dos alumnos de 3 o de la ESO, tienen respectivamente 1/2 y 1/ de probabilidades de suspender un examen de Lengua. La probabilidad de que ambos suspendan simultáneamente el examen es de un 1/10. Cuál es la probabilidad de que al menos uno de ellos suspenda el examen? P (Ana Miguel) = P (Ana) + P (Miguel) P (Ana Miguel) = = En un partido de fútbol, a un equipo le pitan 2 penaltis en contra. Los va a tirar el mismo delantero del equipo contrario, cuya probabilidad de meter gol es 0,8 (es decir, mete 8 de cada 10 que tira). a) Halla la probabilidad de que meta, al menos, un gol. P (1 er gol 2 ndo gol) = P (1 er gol)+2 ndo gol P (1 er gol 2 ndo gol) = 0,8+0,8 0,8 0,8 = 0,96 b) Cuál es la probabilidad de que falle los dos penaltis? P (1 er gol 2 ndo gol) = 1 0,96 = 0,04 Otra forma: P (falle 1 er gol falle 2 ndo gol) = 0,2 0,2 = 0,04
2 . En una asignatura universitaria de primero asisten a clase 100 de los 10 alumnos matriculados. Se sabe que aprueban el 90 % de los alumnos que asisten a clase y el 30 % de los que no asisten. Se elige un alumno al azar. Calcular: (haz un diagrama de árbol) a) La probabilidad de que haya aprobado. P (aprobar) = ,9 + 0,3 = 0, b) Si se sabe que el alumno ha suspendido, la probabilidad de que hay asistido a clase. 6. Acuden a una cena 28 hombres y 32 mujeres; de postre, han comido flan 16 hombres y 20 mujeres; el resto han comido tarta. Si elegimos al azar uno de los comensales, calcula la probabilidad de que: (hacer tabla de contingencia) FLAN TARTA TOTAL HOMBRE MUJER TOTAL a) sea hombre. b) haya comido tarta. c) sea hombre y haya comido flan. P (hombre) = = 0,46 P (hombre) = = 0,4 P (hombre) = = 0,27 7. Ante un examen, un alumno sólo ha estudiado 1 de los 2 temas correspondientes a la materia del mismo. Éste se realiza extrayendo al azar dos temas y dejando que el alumno escoja uno de los dos para ser examinado del mismo. Hallar la probabilidad de que el alumno pueda elegir en el examen uno de los temas estudiados. P (al menos un tema) = 1 P (ningun tema) = = 0,8 8. Una caja contiene tres monedas. Una moneda es corriente, otra tiene dos caras y la otra está cargada de modo que la probabilidad de obtener cara es de 1/3. Se selecciona una moneda lanzar y se lanza al aire. Hallar la probabilidad de que salga cara. (haz un diagrama de árbol) P (salga cara) = = 0,611
3 9. En una ciudad, el 40 % de la población tiene cabellos castaños, el 2 % tiene ojos castaños y el 1 % tiene cabellos y ojos castaños. Se escoge una persona al azar: (ayúdate de una tabla de contingencia) Pelo C Pelo NO C TOTAL Ojos C Ojos NO C TOTAL a) Si tiene los cabellos castaños, cuál es la probabilidad de que tenga también ojos castaños? P (ojos castaos pelo castao) = 1 40 = 0,37 b) Si tiene ojos castaños, cuál es la probabilidad de que no tenga cabellos castaños? P (pelo NO castaos ojos castao) = 10 2 = 0,4 c) Cuál es la probabilidad de que no tenga cabellos ni ojos castaños? P (No pelo castalos no ojos castaos) = = 0, 10. El 30 % de los estudiantes de un Instituto practica fútbol, el 40 % baloncesto y el 10 % ambos deportes. se elige un estudiante al azar. Calcula: ( Ayúdate de una tabla de contingencia.) FÚTBOL NO FÚTBOL TOTAL BALONCESTO NO BALONCESTO TOTAL a) La probabilidad de que no juegue al fútbol ni al baloncesto. P (NF NB) = = 0,4 b) Si juega al fútbol, cuál es la probabilidad de que juegue al baloncesto? P (B F ) = P (F B) P (F ) = = 1 3
4 11. Un aparato está compuesto por cuatro piezas. la probabilidad de que la primera pieza sea defectuosa es 2 de cada 1000, que lo sea la segunda, 4 de cada 1000, la tercera, 7 de cada mil y la cuarta 1 de cada mil. Calcula la probabilidad de que al menos una pieza sea defectuosa. 12. La probabilidad de aprobar lengua es del 80 %, de aprobar matemáticas el 7 %, y de aprobar inglés, el 70 %. Calcula: Sean los sucesos: L = Aprobar Lengua M= Aprobar Matemáticas I = Aprobar Inglés S1 = Suspender sólo una a) La probabilidad de aprobar las tres. b) La probabilidad de aprobar sólo una. P (L M I) = 0,8 0,7 0,7 = 0,42 P (S1) = P ( L M I)+P (L M I)+P (L M I) = 0,2 0,7 0,7+0,8 0,2 0,7+0,8 0,7 0,3 = 0, 42 c) Si sólo se suspende una, la probabilidad de que sea matemáticas. P ( M S1) = P ( M S1) P (S1) = P (L M I) P (S1) = 0,8 0,2 0,7 0,42 = 0, El volumen de una empresa es de 8000 y unidades al día. El porcentaje de unidades defectuosas es de 0, % en la primera y de 0.8 % en la segunda. Calcula la probabilidad de que eligiendo una pieza al azar sea defectuosa. Sean los sucesos: P1 = producto de la planta 1 P2 = producto de la planta 2 D = pieza defectuosa P (D) = P (D P 1) + P (D P 2) = 0, , = En un centro escolar los alumnos pueden optar por cursar como lengua extranjera inglés o francés. En un determinado curso, el 90 % de los alumnos estudia inglés y el resto francés. El 30 % de los que estudian inglés son chicos y de los que estudian francés son chicos el 40 %. Elegido un alumno al azar, cuál es la probabilidad de que sea chica? P (chica) = 0,9 0,7 + 0,1 0,6 = 0,69 1. Una clase está formada por 10 chicos y 10 chicas; la mitad de las chicas y la mitad de los chicos han elegido francés como asignatura optativa. (Te puedes ayudar de unna tabla de contingencia) a) Cuál es la probabilidad de que una persona elegida al azar sea chico o estudie francés? P (chico frances) = = 1 20
5 Chico Chica TOTAL Frances 10 Otra asignatura 10 TOTAL b) Y la probabilidad de que sea chica y no estudie francés? P (chica no frances) = Un taller sabe que por término medio acuden: por la mañana tres automóviles con problemas eléctricos, ocho con problemas mecánicos y tres con problemas de chapa, y por la tarde dos con problemas eléctricos, tres con problemas mecánicos y uno con problemas de chapa. a) Hacer una tabla ordenando los datos anteriores. Electricidad Mecánica Chapa Total Mañana Tarde TOTAL b) Calcular el porcentaje de los que acuden por la tarde. P (tarde) = 6 20 = 0,30 30 % c) Calcular el porcentaje de los que acuden por problemas mecánicos. P (mecanicos) = 11 = 0, % 20 d) Calcular la probabilidad de que un automóvil con problemas eléctricos acuda por la mañana. P (maana electricos) = P (maana electricos) P (electricos) = 3 = 0,6 17. Una clase consta de seis niñas y 10 niños. Si se escoge un comité de tres al azar, hallar la probabilidad de: (ayúdate de un diagrama de árbol) a) Seleccionar tres niños. P (nios) = = 0,214
6 b) Seleccionar exactamente dos niños y una niña. P (2 nios y 1 nia) = P (OOA)+P (OAO)+P (AOO) = = 0,482 c) Seleccionar por lo menos un niño. P (al menos un nio) = 1 P (nias) = d) Seleccionar exactamente dos niñas y un niño. P (2 nias y 1 nio) = = 0, = 0,268
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
6
6 PROBLEMAS DE M1BP201 EJERCICIOS DE 1 DE 5 1. En el experimento que consiste en lanzar un dado cúbico y anotar el resultado de la cara superior, calcular la probabilidad de: a) Salir par. b) Salir impar.
EJERCICIOS PROPUESTOS CON SOLUCION PARA LA SERIE DE PROBABILIDAD Y ESTADISTICA 1ª. PARTE
EJERCICIOS DE ESTADISTICA CON SOLUCION PROPUESTOS POR PROFR. FRANCISCO J. PATIÑO D. ENERO 2013 EJERCICIOS PROPUESTOS CON SOLUCION PARA LA SERIE DE PROBABILIDAD Y ESTADISTICA 1ª. PARTE 1. Indica que variables
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
RELACIÓN DE EJERCICIOS DE PROBABILIDAD
RELACIÓN DE EJERCICIOS DE PROBABILIDAD 1. A una reunión llegan Carmen, Lola, Mercedes, Juan, Fernando y Luis. Se eligen dos personas al azar sin importar el orden: a) Obtén el espacio muestral de este
Unidad 8: Probabilidad
SOLUCIONES A LOS EJERCICIOS COMPLEMENTARIOS DE PROBABILIDAD 1. En un colegio hay 60 alumnos de bachillerato. De ellos 40 estudian inglés, 24 estudian francés y 12 los dos idiomas. Se elige un alumno al
UNIDAD X Reglas básicas de probabilidad
UNIDAD X Reglas básicas de probabilidad UNIDAD 10 REGLAS BÁSICAS DE PROBABILIDAD Sucesos mutuamente excluyentes. Dos o más eventos son mutuamente excluyentes o disjuntos, si no pueden ocurrir simultáneamente.
Probabilidad. 2. Hallar la probabilidad de obtener 12 al multiplicar los resultados de dos dados correctos.
Probabilidad 1. Lanzamos un dado chapucero 1000 veces. Obtenemos f(1) = 117, f(2) = 302, f(3) = 38, f(4) = 234, f(5) 196, f(6) = 113. a. Hallar la probabilidad de las distintas caras. b. Probabilidad de
Pendientes 1ºMACS y CyT. Probabilidad PROBABILIDAD
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
3. Los 300 alumnos de un centro de bachillerato se distribuyen de acuerdo con la tabla:
CAPÍTULO 2. PROBABILIDAD 33 2.10. EJERCICIOS 1. A una reunión llegan Carmen, Lola, Mercedes, Juan, Fernando y Luis. Se eligen dos personas al azar sin importar el orden: a) Obtén el espacio muestral de
PROBABILIDAD. 1.- Justifica gráficamente las siguientes igualdades:
PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con 2 bolas negras, 1 roja y 1 verde. La experiencia
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA : PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva, Ejercicio
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
R E S O L U C I Ó N. Hacemos un diagrama de árbol. 5 B 3 N 2 R 4 B 4 B 6 N = =
Dos urnas A y B, que contienen bolas de colores, tienen la siguiente composición: A : blancas, 3 negras y rojas; B : blancas y negras También tenemos un dado que tiene caras marcadas con la letra A y las
Ejercicios y problemas resueltos de probabilidad condicionada
Ejercicios y problemas resueltos de probabilidad condicionada 1.- Sean A y B dos sucesos aleatorios con p(a) = 1/2, p(b) = 1/3, p(a B)= 1/4. Determinar: 1 2 3 4 5 2.- Sean A y B dos sucesos aleatorios
PROBABILIDAD. 8. En una bolsa hay 7 bolas blancas y 3 negras. Cuál es la probabilidad de que al extraer
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
Tipos de sucesos. Suceso elemental
Definición de probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar
Probabilidad. Probabilidad
Espacio muestral y Operaciones con sucesos 1) Di cuál es el espacio muestral correspondiente a las siguientes experiencias aleatorias. Si es finito y tiene pocos elementos, dilos todos, y si tiene muchos,
Nombre y Apellidos:...
BLOQUE 2: ESTADÍSTICA Y PROBABILIDAD Tema 5: Distribuciones de Probabilidad EJERCICIOS Nombre y Apellidos:... 1. PROBABILIDAD SIMPLE 1.- Una urna tiene ocho bolas rojas, 5 amarilla y siete verdes. Si se
NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7.
(espacios muestrales, sucesos compatibles e incompatibles) 1 1. Consideremos el experimento que consiste en la extracción de tres bombillas de una caja que contiene bombillas buenas y defectuosas. Se pide
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE 1) Se considera el experimento aleatorio de lanzar un dado. Se pide la probabilidad de obtener a) Número par b) Número par c) Múltiplo de 3 d) Múltiplo de
PROBABILIDAD. Propiedades de la probabilidad
PROBABILIDAD Definición axiomática: Sea E el espacio muestral de cierto experimento aleatorio. La Probabilidad de cada suceso es un número que verifica: ) Cualquiera que sea el suceso A, 0 A). 2) Si dos
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN TALLER DE PREPARACIÓN PARCIAL # 2 ESTADÍSTICA
UNIVERSIDAD AUTÓNOMA LATINOAMERICANA FACULTAD DE ADMINISTRACIÓN TALLER DE PREPARACIÓN PARCIAL # 2 ESTADÍSTICA Este documento tiene dos partes: la primera, corresponde a los ejercicios propuestos para practicar;
Curs MAT CFGS-17
Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir
PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado.
PROBLEMAS DE PROBABILIDAD. BOLETIN II.1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. 2. Hallar la probabilidad de sacar por suma o bien 4, o bien 11 al lanzar dos dados. 3.
2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.
4º ESO D MATEMÁTICAS ACADÉMICAS TEMA 13.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS Cuando lanzamos un dado no podemos saber de antemano qué resultado nos va a salir. Sabemos que nos puede salir cualquier número del 1 al 6, pero no cuál. Decimos que lanzar
14. En una tienda de electrodomésticos se venden dos marcas, A y B. Se ha comprobado que un tercio de los clientes elige un electrodoméstico de la
PROBABILIDAD 1. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores eran nativos de esa
4º ESO MATEMÁTICAS B ACTIVIDADES DE RECUPERACIÓN
I.E.S. Federico Mayor Zaragoza 4º ESO MATEMÁTICAS B ACTIVIDADES DE RECUPERACIÓN NOMBRE: Fecha de entrega: 01/09/2014 NÚMEROS REALES 1) Efectúe las siguiente operaciones en forma fraccionaria: 1' 3 0'75
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
PROBABILIDAD 1- El 47% de las personas de una ciudad son mujeres y el 53% restante hombres. De entre las mujeres, un 28% son jóvenes (entre 0 y 25 años), un 38% son adultas (entre 26 y 64 años) y un 34%
EJERCICIOS DE PROBABILIDAD.
EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad
Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.
Ejercicios de probabilidad
1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba
Si dos sucesos A y B son incompatibles, P(A"B) = 0 P(AUB) = P(A) + P(B)
RESUMEN PROBABILIDAD OPERACIONES CON SUCESOS: Unión Intersección Diferencia Diferencia Diferencia simétrica (A o B) (A y B) (Sólo suceso A) (Sólo suceso B) (Sólo suceso A o B) PROPIEDADES DE SUCESOS: Distributiva:
Colegio San Agustín (Santander) Página 1
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 3º Evaluación Probabilidad 1) En un viaje organizado por Europa para 120 personas, 48 de los que van saben hablar Inglés, 36 saben hablar Francés
UNIVERSIDAD DE LA SALLE
UNIVERSIDAD DE LA SALLE Taller Probabilidad Básica. Bioestadística. 1. Determine cuáles de los siguientes experimentos son aleatorios y en caso afirmativo hallar su espacio muestral: (a) Extraer una carta
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD EJERCICIO 1 Considera el siguiente conjunto de datos bidimensionales: X 1 1 2 3 4 4 5 6 6 y 2.1 2.5 3.1 3.0 3.8 3.2 4.3 3.9 4.4 a)sin efectuar cálculos
TEMA 11: AZAR Y PROBABILIDAD
1 TEMA 11: AZAR Y PROBABILIDAD SUCESOS ALEATORIOS Un experimento es aleatorio cuando no se puede predecir el resultado que se va a obtener por muchas veces que lo repitamos. El conjunto formado por todos
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar
EJERCICIOS PROBABILIDAD
EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.
6. Calcula la probabilidad de obtener un número mayor que 2 al lanzar un dado cúbico correcto con sus caras numeradas de 1 a 6.
1. Tenemos una urna con 3 bolas rojas y 2 bolas verdes. Si sacamos 3 bolas de la urna, sin devolución, entonces: a) Hallar el espacio muestral de este experimento b) Formar los sucesos (sacar los resultados)
PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.
PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES 1- En una bolsa hay 5 bolas numeradas del 1 al 5. Cuál es la probabilidad de que, al sacar tres de ellas, las tres sean impares?
EJERCICIOS. 4 6 e) Si en una caja hay 2 fichas blancas y 3 fichas negras, la probabilidad de sacar una ficha negra es. 2 3
. La probabilidad de obtener un número mayor que en el lanzamiento de un dado es: EJERCICIOS. Si en una caja hay fichas blancas y fichas negras, la probabilidad de sacar una ficha negra es.. Si elegimos
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD Sean A y B dos sucesos con P(A0,, P(0, y P(A 0,. Calcular las probabilidades: a P(A/ b P(A/A c P(A B/A d P(A/A. Tenemos: ( ( ( ( P A
IES ALFONSO ESCÁMEZ PROBABILIDAD EN LA EBAU DE MURCIA
PROBABILIDAD EN LA EBAU DE MURCIA 1. (Septiembre 2017) Para que un producto cosmético tenga el informe favorable de una agencia de sanidad debe superar tres pruebas de evaluación de garantía sanitaria.
Probabilidad. Tercero A1
Probabilidad. Realizar los siguientes ejercicios en una presentación de PowerPoint, como los presentados en la clase. Se calificara la calidad, originalidad y creatividad. Los ejercicios se realizarán
PARTE 1 EJERCICIOS 1ºBACHILLERATO CIENCIAS SOCIALES. Ejercicios 1.1 = 10. Solución: Video Toma logaritmos en las siguientes expresiones:
PARTE 1 1.1 = 10 Solución: Video 1.1 1.2 Toma logaritmos en las siguientes expresiones: Solución: Vídeo 1.2 1.3 Halla el valor de: Solución: Vídeo 1.3 1.4 Hallar: Solución: Vídeo 1.4 2.1 Solución: Vídeo
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 10.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS. SUCESOS 1 Se consideran los sucesos A y B. Exprese, utilizando las operaciones con sucesos, los siguientes sucesos: a) Que no ocurra ninguno de los dos. b) Que ocurra al menos
Matemáticas 1CSS PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA EJERCICIO Se hace una quiniela con un dado para hacer quinielas que lleva en sus caras tres veces el, dos veces la X y una vez el. Calcula la probabilidad de que salga una X
ESTADÍSTICA Y PROBABILIDAD. a) Si el experimento consiste en tirar una moneda y ver qué sale, el espacio muestral es:
ESTADÍSTICA Y PROBABILIDAD 1. ESPACIO MUESTRAL a) Si el experimento consiste en tirar una moneda y ver qué sale, el espacio muestral es: b) Si se lanza un dado y una moneda el espacio muestral es: c) Si
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
A. MEDIA ARITMÉTICA Viene a ser la suma de todos los datos dividido entre el número total de datos.
A. MEDIA ARITMÉTICA Viene a ser la suma de todos los datos dividido entre el número total de datos. Ejemplo: Sean las notas de un grupo de alumnos las siguientes: 12; 15; 12; 11; 16; 19; 12 12 La media
Tema 10 Cálculo de probabilidades
Tema Cálculo de probabilidades Para realizar las actividades de este tema, indicar que Wiris tiene una pestaña de combinatoria que se puede utilizar para resolver estos problemas, aunque se resolverán
Se llaman sucesos aleatorios a aquellos acontecimientos en cuya realización influye el azar.
. SUCESOS ALEATORIOS. En nuestra vida diaria nos encontramos con muchos acontecimientos de los que no podríamos predecir si ocurrirán o no, como por ejemplo si me tocará la lotería, el número que saldrá
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS DEPARTAMENTO DE MATEMÁTICAS TERESA GONZÁLEZ 1) El 60% de los habitantes de una ciudad lee el periódico A, el 45% leen el B y el 20% de los
EJERCICIOS UNIDAD 9: PROBABILIDAD
EJERCICIOS UNIDAD 9: PROBABILIDAD 1. (2012-M1-A-3) En un congreso de 200 jóvenes profesionales se pasa una encuesta para conocer los hábitos en cuanto a contratar los viajes por Internet. Se observa que
Probabilidad - 2ºBCS. De dos sucesos A y B, asociados a un mismo experimento aleatorio, se conocen las probabilidades C. = 0.
Probabilidad - ºS EJERIIO De dos sucesos A y, asociados a un mismo experimento aleatorio, se conocen las probabilidades P ( 0., P ( A / 0. y A ) 0.. a) alcule. Halle P (. c) Determine si A y son independientes.
26. En una urna hay nueve bolas numeradas del 1 al 9.
. En una urna hay nueve bolas numeradas del al 9. a) Escribe los sucesos elementales. b) Describe dos sucesos compuestos. c) Describe dos sucesos incompatibles. a) Cada uno de los resultados posibles del
Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades
Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades Ejercicio : Tres máquinas A, B y C fabrican tornillos del mismo tipo.
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS.
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS. En los siguientes ejercicios se recomienda: Considerar previamente, cuando proceda, el espacio muestral. Utilizar siempre el lenguaje de sucesos convenientemente.
Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.
Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir
Cálculo de probabilidades. Probabilidad condicionada. Independencia.
MTEMÁTICS PLICDS LS CIENCIS SOCILES II 2 o Bachillerato. Grupos D y E. Curso 2009/2010. Hoja de ejercicios III Cálculo de probabilidades. Probabilidad condicionada. Independencia. 1 Se lanzan dos dados
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
Calcúlense: a) b) c) b)
Probabilidad 1º) Lanzamos dos dados y sumamos las puntuaciones obtenidas. Describe el espacio muestral. 2º) Lanzamos dos dados, sumamos las puntuaciones obtenidas y hallamos el resto de dividir por cinco
CLASIFICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL
OBJETIVO 1 CLASIICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL Nombre: Curso: echa: Un experimento determinista es aquel experimento en el que podemos predecir su resultado, es decir, sabemos lo que
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS
1. Experimentos aleatorios. 2. Operaciones con sucesos. 3. Probabilidad. Regla de Laplace 4. Probabilidad condicionada. Suceso Independiente. 5. Tabla de contingencia 6. Experimentos compuestos. Teorema
SOLUCIONES EJERCICIOS PROBABILIDAD
SOLUCIONES EJERCICIOS ROBABILIDAD Ejercicio nº 1. En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos: A "Obtener par" B
1. EXPERIMENTOS ALEATORIOS.SUCESOS Se llama experimento aleatorio a aquel en el que no se puede predecir el resultado.
UNIDAD 8: PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS.SUCESOS 2. CONCEPTO DE PROBABILIDAD. REGLA DE LAPLACE 3. PROBABILIDAD CONDICIONADA. INDEPENDENCIA DE SUCESOS 4. PROBABILIDAD COMPUESTA 5. PROBABILIDAD
EJERCICIOS PROBABILIDAD
EJERCICIOS ROBABILIDAD Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos: A "Obtener par" B "Obtener impar"
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017
PROBABILIDAD (EvAU EBAU 2017) 1 ALGUNOS PROBLEMAS DE PROBABAILIDAD PROPUESTOS EN LAS PRUEBAS DE EvAU EBAU DE 2017 Publicado el día 29 de junio de 2017. El presente documento se actualizará cuando se disponga
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
R E S O L U C I Ó N. Otra forma de hacer el problema:
Un turista que realice un crucero tiene un 50% de probabilidad de visitar ádiz, un 40% de visitar Sevilla y un 30% de visitar ambas. alcule la probabilidad de que: a) Visite al menos una de las dos ciudades.
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
TEMA DE AMPLIACIÓN PROBABILIDAD. 1. Introducción. Conceptos básicos sobre límites. Qué vamos a estudiar en este tema?
TEMA DE AMPLIACIÓN PROBABILIDAD 1. Introducción. Conceptos básicos sobre límites Qué vamos a estudiar en este tema? 1. Espacio muestral y sucesos 2. Operaciones con sucesos 3. Probabilidad. Regla de Laplace
Ejercicios de Cálculo de Probabilidades
Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor
TEMA 7. PROBABILIDAD. Adaptado a Bolonia. Mariel García Montenegro
TEMA 7. PROBABILIDAD. Adaptado a Bolonia Mariel García Montenegro Marzo 2009 2 CRONOGRAMA DE LA ASIGNATURA 1. Experimentos aleatorios(23 marzo) 2. Probabilidad y sus propiedades(24 marzo) 3. Probabilidad
PROBLEMAS RESUELTOS DE PROBABILIDAD
PROBLEMAS RESUELTOS DE PROBABILIDAD D A B y B 1. Sean A y B subconjuntos del conjunto U y sea C A B E A. a) Dibuje diagramas de Venn separados para representar los conjuntos C, D y E. b) Utilizando las
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS.
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS. En los siguientes ejercicios se recomienda: Considerar previamente, cuando proceda, el espacio muestral. Utilizar siempre el lenguaje de sucesos convenientemente.
c) Extraer una bola de una urna que contiene 20 bolas numeradas del 1 al 20 y mirar el número que tiene la bola extraída.
TEMA 11: AZAR Y PROBABILIDAD SUCESOS ALEATORIOS Se llaman sucesos aleatorios a todos aquellos acontecimientos en cuya realización influye el azar. Para estudiar el azar y sus propiedades, se realizan experiencias
