Unidad 8: Probabilidad
|
|
|
- Daniel Río San Segundo
- hace 7 años
- Vistas:
Transcripción
1 SOLUCIONES A LOS EJERCICIOS COMPLEMENTARIOS DE PROBABILIDAD 1. En un colegio hay 60 alumnos de bachillerato. De ellos 40 estudian inglés, 24 estudian francés y 12 los dos idiomas. Se elige un alumno al azar. a) Calcule la probabilidad de que estudie al menos un idioma. b) Calcule la probabilidad de que estudie francés sabiendo que también estudia inglés. c) Calcule la probabilidad de que no estudie inglés. Sean los sucesos F = estudie francés e I = estudie Inglés a) =+ = = + - = = b) /= = / / = = =, c) =1 =1 = = 2. A partir de 5 matemáticos y 7 físicos hay que construir una comisión formada por 4 miembros elegidos al azar. a) Calcule la probabilidad de que todos los miembros sean matemáticos. b) Calcule la probabilidad de que la comisión acabe formada por 2 físicos y 2 matemáticos. c) Calcule la probabilidad de que no haya ningún matemático. a) = = b) 2,2=+++++= =6 =6 = c) = = 3. Pilar tiene en un cajón de su armario 3 bufandas rojas, 2 negras y una blanca y en otro tiene 4 gorros rojos, 2 verdes y 5 negros. a) Si elige al azar un gorro y una bufanda Cuál es la probabilidad de que ambas prendas sean del mismo color?. b) Si elige al azar dos bufandas, cuál es la probabilidad de que las dos sean del mismo color?. Sean los sucesos: BR = elegir bufanda roja, BN = elegir bufanda negra, GR= elegir gorro rojo y GN = elegir gorro negro. a),,=,+,= 22 + = 66 = b),,=,+,= + = = Matemáticas CCSS II Página 1 de 5
2 4. Se tienen dos urnas A y B. En la primera hay 2 bolas blancas, 3 negras y 1 roja y en la segunda hay 3 bolas blancas, 1 negra y 1 verde. a) Se extrae una bola de cada urna, calcule la probabilidad de que ambas sean del mismo color. b) Se lanza una moneda, si se obtiene cara se extraen dos bolas de la urna A y si se obtiene cruz se extraen dos bolas de la urna B, calcule la probabilidad de que ambas bolas sean blancas. Sean los sucesos: = extraer bola blanca de la urna A, = bola blanca de la urna B, NA = extraer bola negra de la urna A, NB = extraer bola negra de la urna B. a),,=,+,= 9 + = = b),,=,+,=,+ +,= + = 5. En un barrio hay dos institutos, en el primero el 60% de los alumnos estudia inglés y en el segundo el 45% no lo estudia. Se sortea un viaje a Londres en cada uno de los institutos, calcule la probabilidad de los siguientes sucesos: a) Los dos alumnos agraciados no estudian inglés. b) Sólo estudia inglés el del primer instituto. c) Al menos uno estudia inglés. INST1 0,55 INST2 0,60 0,45 0,55 0,40 0,45 a), =0,40 0,45=, b), =0,60 0,45=, c) é=1 é=1, =1 0,18=, 6. De una baraja española de 40 cartas se retiran los oros y los ases. De las 27 cartas que quedan se extraen dos cartas al azar (sin devolver la primera). Calcula la probabilidad de los siguientes sucesos: a) Ambas son del mismo palo. b) Al menos una es una figura. c) Únicamente la segunda carta es una figura. En la baraja quedan 9 cartas de copas, 9 de espadas y 9 de bastos. a) = =++=3 = =, Matemáticas CCSS II Página 2 de 5
3 b) =1 = =1 = =, c) == = =, 7. Una empresa tiene dos fábricas, en la primera son mujeres el 60% de los trabajadores y en la segunda son hombres el 55%. Se elige al azar, un trabajador de cada fábrica para pertenecer al comité de empresa. a) Calcula la probabilidad de los siguientes sucesos: A = Ambos son hombres B = Sólo uno es mujer C = Ambos son mujeres. b) Razona si el suceso contrario del suceso C es el A, el B, el A B, el A B o algún otro suceso y calcula su probabilidad. En la 1ª fábrica: =0,40 y =0,60 ; en la 2ª fábrica: =0,55 y =0,45 a) ==0,40 0,55=, = =+=00,40 0,45+0,60 0,55=, ==0,60 0,45=, b) El suceso contrario del C es ninguno sea mujer y es el suceso A B =+= 0,22 + 0,51 =. 8. En un Instituto de Idiomas se expiden dos certificados: el A (de nivel básico) y el B (de nivel superior). Para su obtención es necesario pasar una prueba o examen, pudiendo una persona presentarse a la prueba del B aunque no tenga el certificado A. Se sabe que la prueba para el certificado B la pasan 80 de cada 100 personas que tienen el A y 40 de cada 100 que no lo tienen. Dos amigos se presentan a la prueba para obtener el certificado B, uno tiene el A y el otro no, calcule la probabilidad de los siguientes sucesos: a) Ambos obtienen el certificado. b) Solamente obtiene el certificado el que ya tiene el A. c) Solamente obtiene el certificado el que no tiene el A. d) Solamente uno obtiene el certificado. Sean los sucesos: M = obtener el certificado B el amigo que tiene el A ; = 0,8, = 0,2 N = obtener el certificado B el amigo que no tiene el A ; = 0,4, = 0,6 a) = = 0,8 0,4 =, b) =0,8 0,6=, c) =0,2 0,4=, d) = + =0,48+0,08=, 9. Una fábrica produce un elemento mecánico ensamblando dos componentes A y B. Se sabe que la probabilidad de que el componente A sea defectuoso es de 0,001 y la de que B no lo sea es de 0,997. Se elige al azar un elemento, calcule la probabilidad de los siguientes sucesos: a) Solamente el componente A es defectuoso. b) Ninguno de los componentes es defectuoso. c) Ambos componentes son defectuosos. Matemáticas CCSS II Página 3 de 5
4 d) Solamente uno de los componentes es defectuoso. Sea A = el componente A es defectuoso ; = 0,001, = 0,999 B = el componente B es defectuoso ; = 0,003, = 0,997 0,001 0,003 0,997 0,999 0,003 0,997 a) =0,001 0,997=, b) =0,999 0,997=, c) =0,001 0,003=, d) = + =0,001 0,997+0,999 0,003= = 0, ,002997=, 10. Un dado está cargado de forma que la probabilidad de obtener 6 puntos es 1/2 y que las probabilidades de obtener cada una de las otras caras son iguales. Se lanza el dado, calcular la probabilidad de los siguientes sucesos: a) Se obtiene un dos. b) No se obtiene un tres. c) Se obtiene un número par d) Se obtiene un número impar 6 = 0,5 1,2,3,4,5=1 6=0, = =5 1=0,5 1=2=3=4=5=0,1 a) 2= 0,1 b) 3= 1 3= 0,9 c) =2,4,6= = 0,7 d) =1,3,5= = 0,3 11. En un asignatura de primer curso de una titulación universitaria, asisten a clase regularmente 210 alumnos de los 300 que hay matriculados. Además se sabe que aprueban el 80% de los alumnos que asisten a clase y el 15% de los que no asisten. Calcular la probabilidad de los cuatro sucesos siguientes: a) Se elige al azar un alumno matriculado y resulta que: i) ha asistido a clase. ii) no ha asistido a clase y ha aprobado. iii) ha aprobado. Matemáticas CCSS II Página 4 de 5
5 b) Se elige al azar un alumno de entre los que han aprobado y resulta que ha asistido a clase. Sean los sucesos: C = asistir a clase, = no asistir a clase y A = aprobar = 210/300 = 0,7 ; = 1 0,7= 0,3 /=0,80 ; /=0,20 ; / =0,15 ; / =0,85 0,7 C 0,80 0,20 0,3 0,15 0,85 a) i) =, ii) = / =0,3 0,15=, iii) Aplicando el teorema de la probabilidad total = /+ / = 0,7 0,80 + 0,3 0;15 =, b) Según el teorema de Bayes: /= = / =,,, =, Matemáticas CCSS II Página 5 de 5
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
PROBABILIDAD 1- El 47% de las personas de una ciudad son mujeres y el 53% restante hombres. De entre las mujeres, un 28% son jóvenes (entre 0 y 25 años), un 38% son adultas (entre 26 y 64 años) y un 34%
14. En una tienda de electrodomésticos se venden dos marcas, A y B. Se ha comprobado que un tercio de los clientes elige un electrodoméstico de la
PROBABILIDAD 1. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores eran nativos de esa
Pendientes 1ºMACS y CyT. Probabilidad PROBABILIDAD
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
PROBABILIDAD. 8. En una bolsa hay 7 bolas blancas y 3 negras. Cuál es la probabilidad de que al extraer
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
REPASO PROBABILIDAD. 4) La probabilidad de que tenga lugar el contrario de un suceso A es, la probabilidad de que
REPASO PROBABILIDAD 1) Se ha realizado una encuesta entre los estudiantes de una universidad para conocer las actividades que desarrollan en el tiempo libre. El 80% de los entrevistados ven la televisión
6
6 PROBLEMAS DE M1BP201 EJERCICIOS DE 1 DE 5 1. En el experimento que consiste en lanzar un dado cúbico y anotar el resultado de la cara superior, calcular la probabilidad de: a) Salir par. b) Salir impar.
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
BOLETÍN DE EJERCICIOS PROBABILIDAD
BOLETÍN DE EJERCICIOS PROBABILIDAD 1. Un estudiante cuenta, para un examen con la ayuda de un despertador, el cual consigue despertarlo en un 80 % de los casos. Si oye el despertador, la probabilidad de
PROBABILIDAD. 1.- Justifica gráficamente las siguientes igualdades:
PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con 2 bolas negras, 1 roja y 1 verde. La experiencia
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD Sean A y B dos sucesos con P(A0,, P(0, y P(A 0,. Calcular las probabilidades: a P(A/ b P(A/A c P(A B/A d P(A/A. Tenemos: ( ( ( ( P A
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
EJERCICIOS PROBABILIDAD
EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores
RELACIÓN DE EJERCICIOS DE PROBABILIDAD
RELACIÓN DE EJERCICIOS DE PROBABILIDAD 1. A una reunión llegan Carmen, Lola, Mercedes, Juan, Fernando y Luis. Se eligen dos personas al azar sin importar el orden: a) Obtén el espacio muestral de este
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
3. Los 300 alumnos de un centro de bachillerato se distribuyen de acuerdo con la tabla:
CAPÍTULO 2. PROBABILIDAD 33 2.10. EJERCICIOS 1. A una reunión llegan Carmen, Lola, Mercedes, Juan, Fernando y Luis. Se eligen dos personas al azar sin importar el orden: a) Obtén el espacio muestral de
HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD
pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician
PROBLEMAS DE PROBABILIDAD. BOLETIN II..1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado.
PROBLEMAS DE PROBABILIDAD. BOLETIN II.1 Hallar la probabilidad de sacar una suma de 8 puntos al lanzar dos dado. 2. Hallar la probabilidad de sacar por suma o bien 4, o bien 11 al lanzar dos dados. 3.
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad eran menores de 30 años y el resto mayores. Un 25% de los menores de 30 años y un 35% de los mayores
Probabilidad. 2. Hallar la probabilidad de obtener 12 al multiplicar los resultados de dos dados correctos.
Probabilidad 1. Lanzamos un dado chapucero 1000 veces. Obtenemos f(1) = 117, f(2) = 302, f(3) = 38, f(4) = 234, f(5) 196, f(6) = 113. a. Hallar la probabilidad de las distintas caras. b. Probabilidad de
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.
08231 Cálculo de probabilidades y Estadística. Primera prueba 1
08231 Cálculo de probabilidades y Estadística. Primera prueba 1 Problema 1. Una urna contiene 9 tarjetas bicolores. Entre ellas hay una blanca y negra, otra blanca y roja, otra blanca y azul, otra negra
Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios
1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 10.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS. SUCESOS 1 Se consideran los sucesos A y B. Exprese, utilizando las operaciones con sucesos, los siguientes sucesos: a) Que no ocurra ninguno de los dos. b) Que ocurra al menos
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
EJERCICIOS PROBABILIDAD
EJERCICIOS ROBABILIDAD Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos: A "Obtener par" B "Obtener impar"
SOLUCIONES EJERCICIOS PROBABILIDAD
SOLUCIONES EJERCICIOS ROBABILIDAD Ejercicio nº 1. En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos: A "Obtener par" B
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
NOMBRE: a) Sacar par al tirar un dado a) Sacar impar al tirar un dado b) Al lanzar el dado dos veces, se obtenga una suma de puntos igual a 7.
(espacios muestrales, sucesos compatibles e incompatibles) 1 1. Consideremos el experimento que consiste en la extracción de tres bombillas de una caja que contiene bombillas buenas y defectuosas. Se pide
PROBABILIDAD. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.
Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán. PROBABILIDAD Junio 1994. El año pasado el 60% de los veraneantes de una cierta localidad
1. EXPERIMENTOS ALEATORIOS.SUCESOS Se llama experimento aleatorio a aquel en el que no se puede predecir el resultado.
UNIDAD 8: PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS.SUCESOS 2. CONCEPTO DE PROBABILIDAD. REGLA DE LAPLACE 3. PROBABILIDAD CONDICIONADA. INDEPENDENCIA DE SUCESOS 4. PROBABILIDAD COMPUESTA 5. PROBABILIDAD
Ejercicios de Cálculo de Probabilidades
Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor
1. En el experimento de lanzar 3 monedas, halla la probabilidad de los sucesos: A= sacar más
Ejercicios Probabilidad 1. En el experimento de lanzar 3 monedas, halla la probabilidad de los sucesos: A= sacar más caras que cruces", B= sacar al menos una cruz", C= sacar como máximo dos cruces". 2.
PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.
PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.
MATEMÁTICAS 4º ESO. TEMA 3: PROBABILIDAD
MTEMÁTICS 4º ESO. TEM 3: PROBBILIDD 3.1 Sucesos 3.2 Definición de probabilidad 3.3 Probabilidad condicionada 3.4 Probabilidad de la intersección de sucesos 3.5 Probabilidad de la unión de sucesos 3.6 Probabilidad
PROBABILIDAD. 4º E.S.O. Académicas { } { } EXPERIMENTOS ALEATORIOS OPERACIONES CON SUCESOS EXPERIMENTOS ALEATORIOS
EXPEIMENTOS ALEATOIOS POAILIDAD 4º E.S.O. Académicas Un experimento aleatorio es aquel cuyo resultado depende del azar y no se puede predecir con anterioridad. Lanzar un dado y mirar la cara superior Se
Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.
Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
Curs MAT CFGS-17
Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir
4º ESO D MATEMÁTICAS ACADÉMICAS TEMA 13.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS Cuando lanzamos un dado no podemos saber de antemano qué resultado nos va a salir. Sabemos que nos puede salir cualquier número del 1 al 6, pero no cuál. Decimos que lanzar
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD
BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD EJERCICIO 1 Considera el siguiente conjunto de datos bidimensionales: X 1 1 2 3 4 4 5 6 6 y 2.1 2.5 3.1 3.0 3.8 3.2 4.3 3.9 4.4 a)sin efectuar cálculos
Relación 2 de problemas: Probabilidad
Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Curso 04/05 Relación 2 de problemas: Probabilidad 1. Describe el espacio muestral asociado a cada uno de los siguientes experimentos
INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.
Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno
Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.
Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.
PROBABILIDAD 3º E.S.O. { } EXPERIMENTOS ALEATORIOS EXPERIMENTOS ALEATORIOS OPERACIONES CON SUCESOS
EXPERIMENTOS ALEATORIOS PROBABILIDAD 3º E.S.O. Un experimento aleatorio es aquel cuyo resultado depende del azar y no se puede predecir con anterioridad. Lanzar un dado y mirar la cara superior Se llama
Probabilidad. Probabilidad
Espacio muestral y Operaciones con sucesos 1) Di cuál es el espacio muestral correspondiente a las siguientes experiencias aleatorias. Si es finito y tiene pocos elementos, dilos todos, y si tiene muchos,
Unidad 13 Probabilidad condicionada
Unidad Probabilidad condicionada PÁGINA 05 SOLUCIONES. La composición de la bolsa queda con canicas rojas, azules y verdes. Por tanto, el color más probable de las que quedan dentro es azul.. La probabilidad
PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL
Matemáticas 1º CCSS 1 RESUMEN PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL Algunas definiciones La probabilidad es una medida de la posibilidad de que acontezca un suceso aleatorio determinado, asignándosele un
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS DEPARTAMENTO DE MATEMÁTICAS TERESA GONZÁLEZ 1) El 60% de los habitantes de una ciudad lee el periódico A, el 45% leen el B y el 20% de los
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción
TEMA 6. PROBABILIDAD
TEMA 6. PROBABILIDAD ACCESO CICLO SUPERIOR En este tema vamos a estudiar el comportamiento del azar. A pesar de que entendemos la palabra azar como sinónimo de imprevisible, vamos a ver cómo, en realidad,
TEMA 6. PROBABILIDAD
TEMA 6. PROBABILIDAD En este tema vamos a estudiar el comportamiento del azar. A pesar de que entendemos la palabra azar como sinónimo de imprevisible, vamos a ver cómo, en realidad, el azar tiene ciertas
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE
EJERCICIOS I APLICACIÓN DE LA REGLA DE LAPLACE 1) Se considera el experimento aleatorio de lanzar un dado. Se pide la probabilidad de obtener a) Número par b) Número par c) Múltiplo de 3 d) Múltiplo de
GRUPO PI. Sandra Gallardo; María Consuelo Cañadas; Manuel J. Martínez-Santaolalla; Marta Molina; Maria Peñas
2. PROBABILIDAD. Taller: JUGANDO CON LA PROBABILIDAD. Autores: GRUPO PI. Sandra Gallardo; María Consuelo Cañadas; Manuel J. Martínez-Santaolalla; Marta Molina; Maria Peñas Juego 1: Cruzar el río. Observa
GUIA Nº1: EJERCICIOS DE CÁLCULO DE PROBABILIDADES
GUIA Nº: EJERCICIOS DE CÁLCULO DE PROBABILIDADES. Hallar la probabilidad de sacar una suma de puntos al lanzar dos dados.. Hallar la probabilidad de sacar por suma o bien, o bien al lanzar dos dados..
este será el espacio muestral, formado por todos los sucesos individuales o casos posibles caso
EXPERIENCIA ALEATORIA: aquella cuyo resultado no podemos prever porque éste depende del azar. Cada uno de los resultados obtenidos en la experiencia aleatoria se llama CASO y al conjunto de todos los casos
2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
Tema 10 Cálculo de probabilidades
Tema Cálculo de probabilidades Para realizar las actividades de este tema, indicar que Wiris tiene una pestaña de combinatoria que se puede utilizar para resolver estos problemas, aunque se resolverán
10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos.
13 Soluciones a las actividades de cada epígrafe PÁGINA 132 1 En una urna hay 10 bolas de cuatro colores. Sacamos una bola y anotamos su color. a) Es una experiencia aleatoria? b) Escribe el espacio muestral
Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades
Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades Ejercicio : Tres máquinas A, B y C fabrican tornillos del mismo tipo.
Probabilidad Selectividad CCSS Andalucía. MasMates.com Colecciones de ejercicios
1. [2014] [EXT-A] Se sabe que dos alumnos de la asignatura de Matemáticas asisten a clase, de forma independiente, el primero a un 85% de las clases y el segundo a un 35%. Tomando al azar un día de clase,
PROBLEMAS RESUELTOS DE PROBABILIDAD
PROBLEMAS RESUELTOS DE PROBABILIDAD D A B y B 1. Sean A y B subconjuntos del conjunto U y sea C A B E A. a) Dibuje diagramas de Venn separados para representar los conjuntos C, D y E. b) Utilizando las
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES 1- En una bolsa hay 5 bolas numeradas del 1 al 5. Cuál es la probabilidad de que, al sacar tres de ellas, las tres sean impares?
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de
Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.
Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
IES ALFONSO ESCÁMEZ PROBABILIDAD EN LA EBAU DE MURCIA
PROBABILIDAD EN LA EBAU DE MURCIA 1. (Septiembre 2017) Para que un producto cosmético tenga el informe favorable de una agencia de sanidad debe superar tres pruebas de evaluación de garantía sanitaria.
Probabilidad del suceso imposible
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------
b) Cuál es la probabilidad de que salga un número par? c) Cuál es la probabilidad de que salga un número impar?
La probabilidad es la rama de la matemática que mide la incertidumbre. Debido a eso, es muy utilizad para analizar las posibilidades de ganar en juegos de azar. Sin embargo, sus aplicaciones se diversifican
19y20 Cálculo de probabilidades.
ACTIVIDADES DE REFUERZO 9y20 Cálculo de probabilidades. Probabilidad compuesta. Consideremos el experimento consistente en extraer una carta de una baraja española y anotar su palo. Sean los sucesos A:
EJERCICIOS DE PROBABILIDAD
Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una
EJERCICIOS DE PROBABILIDAD.
EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
TEMA: AZAR Y PROBABILIDAD.
TEMA: AZAR Y PROBABILIDAD. 1. EXPERIENCIAS ALEATORIAS. SUCESOS. Una experiencia aleatoria es toda aquella cuyo resultado depende del azar. (Extraer una carta de una baraja, lanzar una moneda, lanzar unos
Ejercicios de probabilidad
1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba
PROBABILIDAD SUCESOS ALEATORIOS
16 Lo fundamental de la unidad Nombre y apellidos:... Curso:... Fecha:... PROBABILIDAD SUCESOS ALEATORIOS Un suceso aleatorio es aquel en cuya realización influye... El conjunto de todos los casos de una
Pág. 1. Relaciones entre sucesos
Pág. Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los sucesos: A = MENOR QUE 5; B = PAR. c) Halla los sucesos
SÉPTIMA SESIÓN DE APRENDIZAJE VI UNIDAD
SÉPTIMA SESIÓN DE APRENDIZAJE VI UNIDAD PROPÓSITO DE LA SESIÓN: Determinar el espacio muestral y los sucesos de una situación problemática contextualizada. Situación 1: En una urna hay 15 bolas numeradas
DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA
OBJETIVO 1 DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA EXPERIMENTOS ALEATORIOS Y DETERMINISTAS Experimento determinista es aquel que, una vez estudiado, podemos predecir, es decir, que sabemos
Cálculo de probabilidades. Probabilidad condicionada. Independencia.
MTEMÁTICS PLICDS LS CIENCIS SOCILES II 2 o Bachillerato. Grupos D y E. Curso 2009/2010. Hoja de ejercicios III Cálculo de probabilidades. Probabilidad condicionada. Independencia. 1 Se lanzan dos dados
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
POBLEMS ESUELTOS SELECTIVIDD NDLUCÍ 2006 MTEMÁTICS PLICDS LS CIENCIS SOCILES TEM 5: POBBILIDD Junio, Ejercicio 3, Parte I, Opción Junio, Ejercicio 3, Parte I, Opción B eserva 1, Ejercicio 3, Parte I, Opción
EJERCICIOS PROPUESTOS CON SOLUCION PARA LA SERIE DE PROBABILIDAD Y ESTADISTICA 1ª. PARTE
EJERCICIOS DE ESTADISTICA CON SOLUCION PROPUESTOS POR PROFR. FRANCISCO J. PATIÑO D. ENERO 2013 EJERCICIOS PROPUESTOS CON SOLUCION PARA LA SERIE DE PROBABILIDAD Y ESTADISTICA 1ª. PARTE 1. Indica que variables
PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL
Matemáticas 1º CCSS 1 PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL PROBLEMAS RESUELTOS Probabilidad 1. Al extraer una carta de una baraja de 40 cartas calcula la probabilidad de que sea a) Un rey b) El rey de
Apuntes de Probabilidad Curso 2017/2018 Esther Madera Lastra
1. EXPERIMENTO ALEATORIO Un experimento aleatorio es aquel que al ser realizado en idénticas condiciones, no se puede predecir el resultado que se va a obtener en una relación concreta, aunque se conozcan
04 Ejercicios de Selectividad Probabilidad. 1. [ A-3] Lena y Adrián son aficionados al tiro con arco. Lena da en el blanco con probabilidad
Ejercicios propuestos en 2009 7 1 [2009-1-A-3] Lena y Adrián son aficionados al tiro con arco Lena da en el blanco con probabilidad 11, y 9 Adrián con probabilidad Si ambos sucesos son independientes,
EJERCICIOS UNIDAD 9: PROBABILIDAD
EJERCICIOS UNIDAD 9: PROBABILIDAD 1. (2012-M1-A-3) En un congreso de 200 jóvenes profesionales se pasa una encuesta para conocer los hábitos en cuanto a contratar los viajes por Internet. Se observa que
