Práctica 1 Lambda Cálculo Tipado

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 1 Lambda Cálculo Tipado"

Transcripción

1 Práctica 1 Lambda Cálculo Tipado Eduardo Bonelli TP para LP 2012C1 Ejercicio 1 Probar que el conjunto de las β-formas normales se pueden describir como sigue N ::= λx 1... λx n.y N 1... N m. Ejercicio 2 Dada la caracterización de β-formas normales del ejercicio anterior responder a las siguientes preguntas: 1. Probar (por inducción en el tamaño de la forma normal) que no existe N P tal que solamente puede tener ocurrencias de la variable libre x P P. 2. Probar (por inducción en el tamaño de la forma normal) que todas las N P tal que solamente puede tener ocurrencias de variables libres x P P y z P deben ser de la forma z P o bien x(... (x(xz))...). 3. Probar que todos los términos cerrados en β-forma normal de tipo (P P ) (P P ) son de la forma n P o λf P P.f P P. Ejercicio 3 1. Comprobar, utilizando ejemplos, que las siguientes operaciones se comportan como se espera: M + M M sg M sg = λx N y N f A A z A.x f (y f z) = λx N y N f A A.x (y f) = λx N f A A z A.x (λu A.f z) z = λx N f A A z A.x (λu A.z) (f z) 2. Probar que (n A f A A ) (m A f A A ) = β (n + m) A f A A y que n A m A = β nm A, donde M N = λz.m(n(z)). 3. Probar que las funciones representables son cerradas por composición (la noción general de composición de la teórica). 1

2 Ejercicio 4 Si permitimos numerales de Church de tipos arbitrarios (i.e. N A con A arbitrario en lugar de A variable proposicional), podemos representar más funciones. En particular, la exponenciación. Probar que n A A m A = β (m n ) A (n > 0). Ejercicio 5 Completar la prueba de confluencia de βη demostrando los siguientes resultados: 1. M βη N implica M βη N 2. M βη N implica M βη N 3. M βη N y P βη Q implica M{x := P } βη N{x := Q} 4. M βη N implica N βη M 5. DP( βη ) 6. CR( βη ) Ejercicio 6 Probar WN( β ) completando los detalles del esquema de prueba visto en clase. Nota: Puede ser de utilidad la siguiente noción de creación. Considere λ. Si M β N y R es un redex en N dos situaciones pueden producirse: el redex R proviene (es un residuo o copia) de un redex S en M, o bien el redex R es nuevo (fue creado pues no proviene de ningún redex en M). Aquí hay unos ejemplos, donde se han subrayado los redexes de N que son residuos de alguno de M. M = (λu.u(wu))(ia) β (Ia)(w Ia) = N M = (λu.iu)p β IP = N Pero en M = (λu.u) (λv.p ) Q β (λv.p )Q = N el redex subrayado en N fue creado, pues no es residuo de ningún redex en M. En su PhD tesis [Lév78], Lévy muestra que hay solamente tres formas de crear nuevos redexes: 1. (λu.u) (λv.p ) Q β (λv.p )Q 2. (λu.λv.p )QR β (λv.p {u := Q})R 3. (λu.c[uq])(λv.p ) β C [(λv.p ) Q ] donde C = C{u := λv.p } y Q = Q{u := λv.p }. Ejercicio 7 1. Probar que si M está en β-forma normal y M η N, entonces N también está en β-forma normal. 2

3 2. Probar WN( βη ). Ayuda: Usar inciso anterior y Ej 6. Ejercicio 8 Probar WN( λ, ). Indicar cómo se modifica el esquema de creación de redexes y cómo debe extenderse la noción de grado de un redex. Ejercicio 9 1. Probar η-postponement: Si M η N β P, entonces existe Q tal que M + β Q η P. 2. Probar que SN( βη ) a partir de SN( β ). Ejercicio 10 Completar los detalles de la prueba de SN para λ, basada en candidatos de reducibilidad. 1. Probar que RED A satisface P1-3, para todo A en λ,. 2. Si M A, N B son reducibles, entonces también lo es ( M A, N B ) A B. 3. Si para todo N A reducible, M B {x := N A } es reducible, entonces λx A.M B es reducible. 4. Γ M A implica Γ = M A. Ejercicio 11 Extender la prueba anterior a λ,,+. Para ello considerar la siguiente inición de conjuntos de reducibilidad: M RED A+B si toda vez que M inl(p A ), entonces P A RED A y, además, si toda vez que M inl(q B ), entonces Q B RED B. Los términos neutrales son aquellos que no son de la forma M, N, λx A.M, inl(m) ni inr(m). Es decir, son: x, M N, π 1 (M), π 2 (M) y δ M (x.p ) (y.q). Ayuda: probar el siguiente lema. Sean M, N, P reducibles. Si P 1.P 1 RED A implica M{u A := P 1 } RED C y P 2.P 2 RED B implica N{v B := P 2 } RED C, entonces δ P (u A.M) (v B.N) RED C. Ejercicio 12 Probar SN de lambda cálculo no tipado con β, π i aplicando el método de David ( Ejercicio 13 Probar CR( λ, ). Ejercicio 14 Considerar el siguiente contracting map de tipos y términos de λp 1 a λ. 3

4 ( ) (r t 1... t n ) (A B) ( a ι.a) ( a ι.a) (x) (λx A.M) (M N) (ɛ(m) A ) ((λa ι.m) aι.a ) ((M t) A{a := t} ) flat(m) ([t, M] aι.a ) (let [a, y A ] = M in N B ) = = r, variable proposicional = (A) (B) = (A) = (A) = x = λx (A). (M) = (M) (N) = ɛ( (M)) (A) = (M) = = (M) = (λy (A). (N)) (M) 1. Mostrar que conmuta con la sustitución: a) (A{a := t}) = (A) b) (M{a := t}) = (M) c) (M{u := N}) = (M){u := (N)} 2. preserva tipabilidad: λp1 Γ M A implica λ (Γ) (M) A 3. M λp1 N implica (M) λ (N). Además, si M N, entonces (M) λ (N) hace al menos un paso. 4. Concluir que SN( λp1 ). Ejercicio 15 Dar una derivación del siguiente juicio en λp : α :, P : α λx α.λp P x.p : x α.p x P x Ejercicio 16 Supongamos que Γ = {α :, f : α α, R : α α, h 1 : x α.r x (f x), h 2 : x α, y α, z α.r x y R y z R x z} Dar una derivación del juicio: Γ λx α.h 2 x (f x) (f(f x)) (h 1 x) (h 1 (f x)) : x α.r x (f(f x)) Ejercicio 17 Dar una derivación α :, R : α α ( x α y α.r x y (R y x )) ( x α.r x x ) 4

5 Nota: Una relación binaria antisimétrica es irreflexiva. Ejercicio 18 Supongamos que λp Γ A : y Γ contiene P : A y Q : A. Dar una derivación de: 1. Γ λx xa.p x Q x.λy xa.p x.λz A.xz(yz) : ( x A.P x Q x) ( x A.P x) x A.Q x Ejercicio 19 Probar que los siguientes esquemas de inferencia son admisibles en λp : Γ, x : A, M : B Γ N : A Γ, {x := N} M{x := N} : B{x := N} Γ, x : A, B : κ Γ N : A Γ, {x := N} B{x := N} : κ{x := N} Γ, x : A, κ : Γ N : A Γ, {x := N} κ{x := N} : Ejercicio 20 Dado Γ = {prop :, T : prop, impl : prop prop prop, impl I : x prop y prop.(t x T y) T (impl x y), impl E : x prop y prop.t (impl x y) T x T y} Construir derivaciones de los siguientes juicios en λp : 1. Γ, x : prop impl i x x (λp T x.p) : T (impl x x) 2. Γ, x, y : prop, h : T y impl I (impl (impl x y) x) x (λp T (impl (impl x y) x).impl E (impl I (λq T x.h))) : T (impl(impl (impl x y) x) x) Ejercicio 21 En la téorica se vió la codificación shallow del lambda cálculo no tipado en λp. La relación P = β Q del lambda cálculo no tipado también se puede codificar como: P = β Q = eq P Q donde eq : D D es un predicado nuevo. Este ejercicio consiste en inir constantes que permitan probar que dos términos están relacionados por el predicado eq. Dos de estos son: refl : x D.eq x x sym : x D, y D.eq x y eq y x 5

6 1. Dar constantes que reflejen transitividad, compatibilidad con aplicación, compatibilidad con abstracción y el axioma β. 2. Dar una prueba (representado como un término de λp bajo el contexto que contiene a las constantes declaradas arriba) de la fórmula x ((λy.y)z) = β x z. Ejercicio 22 Mirar las notas de curso de Frank Pfenning ( cmu.edu/~fp/courses/comp-ded/handouts/cd.pdf) donde codifica Mini-ML (sintaxis, tipado y semántica operacional) en Twelf (una implementación de LF). Referencias [Lév78] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambdacalcul. PhD thesis, Paris 7,

Lenguajes funcionales: λ-cálculo

Lenguajes funcionales: λ-cálculo Lenguajes funcionales: λ-cálculo λ-cálculo (Church 1933) Cálculo para el estudio formal del comportamiento de las funciones Sintaxis: λ expresiones Reglas de reducción de λ expresiones Método matemático

Más detalles

Teoremas de Taylor. Capítulo 7

Teoremas de Taylor. Capítulo 7 Capítulo 7 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor. Por

Más detalles

Lambda Cálculo Tipado (1/3)

Lambda Cálculo Tipado (1/3) Lambda Cálculo Tipado (1/3) Eduardo Bonelli Departamento de Computación FCEyN UBA There may, indeed, be other applications of the system other than its use as a logic Alonzo Church, 1932 3 de abril, 2007

Más detalles

Lambda-Cálculo. Mauro Jaskelioff 6/9/2011

Lambda-Cálculo. Mauro Jaskelioff 6/9/2011 Lambda-Cálculo Mauro Jaskelioff 6/9/2011 Origen del λ-cálculo El λ-cálculo fue inventado por Alonzo Church en la década de 1930. Originalmente fue inventado como parte de un sistema formal para modelar

Más detalles

Un álgebra de Heyting satisface distributividad, es lo que demostramos un poco más arriba (la prueba es muy similar). Recíprocamente, si se define

Un álgebra de Heyting satisface distributividad, es lo que demostramos un poco más arriba (la prueba es muy similar). Recíprocamente, si se define 62 (Undécima clase: Ejemplos de exponenciales) Algunos ejemplos de lógica y computación. Álgebras de Heyting. La clase pasada vimos que una álgebra de Boole, vista como categoría, es cartesiana cerrada

Más detalles

En 1936 se introdujeron dos modelos computacionales: Alan Turing inventó la máquina de Turing y la noción de función computable en sus

En 1936 se introdujeron dos modelos computacionales: Alan Turing inventó la máquina de Turing y la noción de función computable en sus Capítulo 1 Cálculo-λ En 1936 se introdujeron dos modelos computacionales: Alan Turing inventó la máquina de Turing y la noción de función computable en sus máquinas. Alonzo Church inventó un sistema formal

Más detalles

Distancia entre dos rectas que se cruzan Perpendicular común

Distancia entre dos rectas que se cruzan Perpendicular común Perpendicular común En un espacio de tres dimensiones dos rectas se cruzan cuando no tienen ningún punto en común y no están contenidas en el mismo plano. Si no tienen ningún punto en común pero sí que

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

Tema 5: Autómatas a pila. Teoría de autómatas y lenguajes formales I

Tema 5: Autómatas a pila. Teoría de autómatas y lenguajes formales I Tema 5: Autómatas a pila Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

PARADIGMAS DE PROGRAMACIÓN CALCULO LAMBDA CALCULO LAMBDA

PARADIGMAS DE PROGRAMACIÓN CALCULO LAMBDA CALCULO LAMBDA PARADIGMAS DE PROGRAMACIÓN 2006 CALCULO LAMBDA CALCULO LAMBDA El cálculo lambda fue desarrollado por Alonso Church en la década del 30 con el objeto de dar una teoría general de las funciones. El cálculo

Más detalles

Análisis lógico Cálculo de proposiciones

Análisis lógico Cálculo de proposiciones Sintaxis Semántica Sistemas de demostración Análisis lógico Cálculo de proposiciones Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página Web: www.matematicas.unam.mx/fhq

Más detalles

Introducción a la Lógica Modal

Introducción a la Lógica Modal Introducción a la Lógica Modal Pedro Cabalar Depto. Computación Universidade da Coruña, SPAIN 4 de mayo de 2006. Cabalar ( Depto. Computación Universidade da Coruña, SPAIN Lógica ) Modal 4 de mayo de 2006

Más detalles

Cálculo Lambda - primera parte. Paradigmas de Lenguajes de Programación. Primer cuatrimestre

Cálculo Lambda - primera parte. Paradigmas de Lenguajes de Programación. Primer cuatrimestre Cálculo Lambda - primera parte Paradigmas de Lenguajes de Programación Primer cuatrimestre - 2014 Para qué sirve el cálculo lambda? Provee un modelo de cómputo simple que permite representar todas las

Más detalles

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1 ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la

Más detalles

Valores propios y vectores propios Diagonalización

Valores propios y vectores propios Diagonalización CAPÍTULO Valores propios y vectores propios Diagonalización Este capítulo consta de cuatro secciones Con el fin de dar una idea de lo que se hará en las dos primeras secciones, se considerará un espacio

Más detalles

Problemas de Álgebra 2 o de Bachillerato

Problemas de Álgebra 2 o de Bachillerato Problemas de Álgebra 2 o de Bachillerato Problema 1 Calcular los productos de matrices A A, A B, B A y B B, siempre que sea posible, donde: 2 1 3 1 2 1. A = y B = 1 0 2 1 1 1 2 2. A = 1 1 0 2 y B = 3.

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica

Más detalles

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas.

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. Capítulo 5 Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. 5.1 Isometrías y movimientos Partimos de un espacio euclídeo (X, V, +) y recordemos que una isometría de V es un elemento ϕ Gl(V ) que conserva

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles

Introducción al Lambda Cálculo (C)

Introducción al Lambda Cálculo (C) Introducción al Lambda Cálculo (C) Francisco Rafael Yépez Pino Programación Declarativa Avanzada Introducción al -Cálculo: 1. δ-reducciones y -reducciones 1.1. Teorías 1.2. Eta-conversión y extensionalidad

Más detalles

Construcción Formal de Programas en Teoría de Tipos

Construcción Formal de Programas en Teoría de Tipos Construcción Formal de Programas en Teoría de Tipos http://www.fing.edu.uy/inco/grupos/mf/tppsf Gustavo Betarte Carlos Luna Grupo de Métodos Formales www.fing.edu.uy/~mf/ Instituto de Computación (InCo)

Más detalles

Discusión de sistemas

Discusión de sistemas Discusión de s 3x + y z = 1 1. Discutir según los valores del parámetro k el x y + z = 3 kx + 5y 4z = 1 x + my + z = m +. Discutir según los valores del parámetro m el x + y + mz = (m + 1) mx + y + z =

Más detalles

Bases Formales de la Computación

Bases Formales de la Computación Bases Formales de la Computación Pontificia Universidad Javeriana 12 de septiembre de 2008 CÁLCULOS DE PROCESOS Contenido 1 2 Sistemas Concurrentes Múltiples agentes (procesos) que interactuan entre ellos.

Más detalles

Introducción al lambda cálculo

Introducción al lambda cálculo Introducción al lambda cálculo Del libro: An Introduction to Lambda Calculi for Computer Scientists, Chris Hankin Diciembre 2007 Algoritmos Qué es un algoritmo? distintos modelos de cómputo: Algoritmos

Más detalles

Contenido del curso Fundamentos de Lenguajes de Programación

Contenido del curso Fundamentos de Lenguajes de Programación Contenido del curso Fundamentos de Lenguajes de Programación MC Mireya Tovar Vidal FCC- BUAP Cubículo 5 mtovar@cs.buap.mx Horario de atención: martes 11:00-12:00 Cálculo lambda sin tipos Cálculo lambda

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

5.2. Selección Adversa. Matilde P. Machado

5.2. Selección Adversa. Matilde P. Machado 5.2. Selección Adversa Matilde P. Machado matilde.machado@uc3m.es 5.2. Selección Adversa Asimetría de información se da siempre que una de las partes en una transacción tiene más información que otra.

Más detalles

El λ cálculo (sin tipos y con tipos)

El λ cálculo (sin tipos y con tipos) El λ cálculo (sin tipos y con tipos) Blas Carlos Ruiz Jiménez Pablo Guerrero García Dpto. de Lenguajes y Ciencias de la Computación Dpto. de Matemática Aplicada Universidad de Málaga Pza. El Ejido s/n,

Más detalles

Soluciones del capítulo 9 Optimización Estática

Soluciones del capítulo 9 Optimización Estática Soluciones del capítulo 9 Optimización Estática Héctor Lomelí y Beatriz Rumbos 6 de febrero de 00 9 Sean A y B dos subconjuntos convexos de R n : b Sea A + B = {a + b : a A y b B} y sean x, y A + B Se

Más detalles

LAMBDA-CÁLCULO NO TIPADO

LAMBDA-CÁLCULO NO TIPADO SISTEMAS NO TIPADOS LAMBDA-CÁLCULO NO TIPADO Convenciones: 1. La aplicación es asociativa por la izquierda 2. Los cuerpos de las abstracciones son asociativas por la derecha Estrategias de evaluación en

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 3: Anillos Ejemplos construcciones 1. Probar que los siguientes conjuntos son anillos con las operaciones indicadas. Decidir en cada caso si son conmutativos,

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

Definiciones de computabilidad OTROS MODELOS COMPUTACIONALES. Computabilidad-Turing. Tesis de Church-Turing

Definiciones de computabilidad OTROS MODELOS COMPUTACIONALES. Computabilidad-Turing. Tesis de Church-Turing Definiciones de computabilidad OTROS MODELOS COMPUTACIONALES Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página Web: www.matematicas.unam.mx/fhq

Más detalles

Cálculo Lambda - primera parte. Paradigmas de Lenguajes de Programación. Segundo cuatrimestre

Cálculo Lambda - primera parte. Paradigmas de Lenguajes de Programación. Segundo cuatrimestre Cálculo Lambda - primera parte Paradigmas de Lenguajes de Programación Segundo cuatrimestre - 2010 Tipos y términos Las expresiones de tipos (o simplemente tipos) de C-λ b son σ ::= Bool σ τ Sea X un conjunto

Más detalles

Fundamentos de lenguajes de programación cuántica

Fundamentos de lenguajes de programación cuántica Fundamentos de lenguajes de programación cuántica Día 5: Control y datos cuánticos Alejandro Díaz-Caro Universidad Nacional de Quilmes 22 o Escuela de Verano de Ciencias Informáticas Río Cuarto, Córdoba

Más detalles

Lógica Lógica de Predicados

Lógica Lógica de Predicados Lógica de Predicados 1 Motivación Un sistema informático no es otra cosa que un modelo de una parte de la realidad, típicamente de un servicio. el servicio que debe proveer la bedelía de la facultad o

Más detalles

Lógica Lógica de Predicados. Motivación

Lógica Lógica de Predicados. Motivación Lógica de Predicados 1 Motivación Un sistema informático no es otra cosa que un modelo de una parte de la realidad, típicamente de un servicio. el servicio que debe proveer la bedelía de la facultad o

Más detalles

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 Ejercicio 1. Sea V un espacio vectorial. Probar que: (a) Si a es un escalar y v es un vector tales que a.v = 0, entonces a = 0 ó v = 0. (b) Para

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3 Universidad Nacional de Colombia Departamento de Matemáticas 2015555- Álgebra Lineal Básica - Grupo Taller (1) Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio

Más detalles

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica Proposiciones atómicas y compuestas Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@cienciasunammx Página

Más detalles

Práctico 6 Lógica de Predicados

Práctico 6 Lógica de Predicados Práctico 6 Lógica de Predicados Ejercicio 1 Considere un conjunto A de números reales que incluya al 0. Considere un lenguaje de primer orden con un símbolo de relación binario M que denota la relación

Más detalles

Expresiones regulares, gramáticas regulares Unidad 3

Expresiones regulares, gramáticas regulares Unidad 3 Expresiones regulares, gramáticas regulares Unidad 3 Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes,

Más detalles

La ED lineal de segundo orden homogénea. y (x) + p(x)y (x) + q(x)y(x) = 0 (1)

La ED lineal de segundo orden homogénea. y (x) + p(x)y (x) + q(x)y(x) = 0 (1) MATEMÁTICAS ESPECIALES II - 2018 PRÁCTICA 8 Ecuaciones diferenciales ordinarias de segundo orden con coeficientes analíticos. Parte 1 - Soluciones alrededor de un punto ordinario. La ED lineal de segundo

Más detalles

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez.

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Medidas Problemas para examen Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Sigma-álgebras 1. Propiedades elementales de σ-álgebras. Demuestre que una σ-álgebra es

Más detalles

EJERCICIO 1. Calcular la distancia AB.

EJERCICIO 1. Calcular la distancia AB. EJERCICIO 1 Calcular la distancia AB. Al ser el segmento paralelo al PV su verdadera magnitud coincide con la proyección vertical. 50 B" A" B A EJERCICIO 1 Calcular la distancia entre los puntos A( 4,3,3)

Más detalles

Análisis convexo, cálculo diferencial y aplicaciones

Análisis convexo, cálculo diferencial y aplicaciones Análisis convexo, cálculo diferencial y aplicaciones Juan PEYPOUQUET Universidad Técnica Federico Santa María V-Escuela 2016 Valparaíso, 11 al 21 de octubre FUNCIONES CONVEXAS Funciones convexas Una función

Más detalles

Lógica Proposicional. Del conjunto de hipótesis Γ se deduce α?

Lógica Proposicional. Del conjunto de hipótesis Γ se deduce α? Proposicional Metateoría: Corrección y Completitud Proposicional - 1 Del conjunto de hipótesis Γ se deduce α? Γ = α? -Tablas de verdad - Equivalencia lógicas Existen métodos que siempre responden SI o

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Forma Clausular. Forma Clausular

Forma Clausular. Forma Clausular Forma Clausular Formas Normales: Literal: fórmula atómica o negación de fórmula atómica Un literal se denota con l y su complementario con l C L = P binario, Q unario, f unaria l 1 =

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA, ESIME ZACATENCO SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN POSGRADO EN INGENIERÍA ELÉCTRICA CURSO DE PROPÓSITO ESPECIFICO

Más detalles

Álgebra I Práctica 7 - Polinomios

Álgebra I Práctica 7 - Polinomios FCEyN - UBA - 1er cuatrimestre 2016 Generalidades Álgebra I Práctica 7 - Polinomios 1. Calcular el grado y el coeficiente principal de f Q[X] en los casos i) f = (4X 6 2X 5 + 3X 2 2X + 7) 77. ii) f = (

Más detalles

Sobre álgebras topológicas

Sobre álgebras topológicas Sobre álgebras topológicas Encuentro Nacional de Jóvenes investigadores en Matemáticas Reyna María Pérez-Tiscareño 2 de Diciembre, 2015 Universidad Autónoma Metropolitana Unidad Iztapalapa 1) Introducción

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

Lógica Proposicional. Significado de una Fórmula Proposicional

Lógica Proposicional. Significado de una Fórmula Proposicional Proposicional Semántica Semántica Proposicional - Significado de una Fórmula Proposicional El significado de una proposición está dado por su valor de verdad (o sea, si es Verdadera o Falsa) que se obtiene

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

Lógica Proposicional

Lógica Proposicional Proposicional Semántica Semántica Proposicional - Significado de una Fórmula Proposicional El significado de una proposición está dado por su valor de verdad (o sea, si es Verdadera o Falsa) que se obtiene

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Clase 5 1. Lógica proposicional. Razonamientos

Clase 5 1. Lógica proposicional. Razonamientos Clase 5 1 Lógica proposicional Razonamientos Clase 5 2 LOGICA - INTRODUCCION!OBJETIVO Uno de los fundamentales objetivos ha sido el estudio de las DEDUCCIONES, RAZONAMIENTOS O ARGUMENTOS LOGICA DEDUCTIVA

Más detalles

Lógica proposicional. Semántica Lógica 2018

Lógica proposicional. Semántica Lógica 2018 Lógica proposicional. Semántica Lógica 2018 Instituto de Computación 20 de marzo Instituto de Computación (InCo) Lógica proposicional. Semántica Curso 2018 1 / 1 Significado de una fórmula proposicional

Más detalles

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Lógica Proposicional - clase 1 Lenguaje de lógica proposicional, semántica, tautología, consecuencia semántica, conjunto satisfacible,

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Métodos de Solución) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Primavera 2008, Clase 3 Julio López EDO 1/18 1) Ecuaciones

Más detalles

R h R = R 1. φ : R 1 R 2 R 1. ker α = φ(ker α) R2. u R 1 R 2 R 1. φ(u) R 2. R 2 R 1 φ

R h R = R 1. φ : R 1 R 2 R 1. ker α = φ(ker α) R2. u R 1 R 2 R 1. φ(u) R 2. R 2 R 1 φ R h (R, m, κ) κ = R C R h R ˆR R R h ˆR R h R h R R h R = κ[x 1,..., X n ] X1,...,X n R 1 R 2 R 1 R 1 R 2 R 1 φ : R 1 R 2 R 1 R 2 R 1 R 2 R 1 R 2 R 1 a 1,..., a n R 1 α : R1 n R 1 α : R2 n R 2 x α(x) :=

Más detalles

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta. . Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos

Más detalles

Sistema Bidimensional

Sistema Bidimensional Capítulo 7 Sistema Bidimensional 7.1. Sistema Cartesiano La correspondencia entre pares ordenados de números reales y puntos en el plano, idea inicial que se debe a Renato Descartes (1596-1650), es lo

Más detalles

Relaciones IIC1253. IIC1253 Relaciones 1 / 32

Relaciones IIC1253. IIC1253 Relaciones 1 / 32 Relaciones IIC1253 IIC1253 Relaciones 1 / 32 Relaciones binarias Dado: conjunto A R es una relación binaria sobre A si R A A. Para indicar que a,b A están relacionados a través de R usamos las notaciones:

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Teorema de incompletitud de Gödel

Teorema de incompletitud de Gödel Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. IIC2213 Teorías 79 / 109 Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. Corolario

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Ejercicios de teoría de la medida

Ejercicios de teoría de la medida Ejercicios de teoría de la medida Pedro Alegría Capítulo. Dada una aplicación F : Ω Ω, demostrar que: a) Si A es una σ-álgebra de Ω, A = {B Ω : F B) A} lo es de Ω. b) Si A es una σ-álgebra de Ω, A = F

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A.García, L. Martínez, T.Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017 Tema 1 Preliminares

Más detalles

Problemas de Decisión

Problemas de Decisión Problemas de Decisión La motivación de este capítulo puede estar dado por lo siguiente: Dado un conjunto Σ de fórmulas proposicionales en L(P ), existe un algoritmo general para determinar si Σ = ϕ Qué

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 24 de diciembre de 2017

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 24 de diciembre de 2017 Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 4 de diciembre de 017 Índice general 1. Álgebra 5 1.1. Año 000............................. 5 1.. Año 001.............................

Más detalles

LógicaS Modales. Ricardo Oscar Rodríguez Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

LógicaS Modales. Ricardo Oscar Rodríguez Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Departamento de Computación, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Segunda Clase. 1er. Cuatrimestre, 2016 Outline 1 Repaso clase anterior Sintáxis Lógicas Modales Autocongruentes

Más detalles

1. Ejercicios unidad temática 1

1. Ejercicios unidad temática 1 . Ejercicios unidad temática.. Ejercicios a resolver en clase Ejercicio.. Sean las matrices: B = a. Hallar B, B 5, B 2 y B 2. b. Hallar C 2, C 5, C, C 2 y C 2. y C = Ejercicio.2. Sean dos matrices A, B

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

El Teorema de Stone-Weierstrass

El Teorema de Stone-Weierstrass Capítulo 3 El Teorema de Stone-Weierstrass Vamos a ver en esta lección el teorema clásico de Weierstrass y la importante generalización del mismo dada por Stone. El teorema de Weierstrass El teorema de

Más detalles

Construcción Formal de Programas en Teoría de Tipos. Introducción a Coq

Construcción Formal de Programas en Teoría de Tipos. Introducción a Coq Construcción Formal de Programas en Teoría de Tipos Introducción a Coq Grupo de Métodos Formales www.fing.edu.uy/~mf/ Instituto de Computación Facultad de Ingeniería Universidad de la República Escuela

Más detalles

Trabajo Final Estructuras Algebraicas Módulos Proyectivos e Inyectivos

Trabajo Final Estructuras Algebraicas Módulos Proyectivos e Inyectivos Trabajo Final Estructuras Algebraicas Módulos Proyectivos e Inyectivos Gisela Vanesa Clemente Proesor: Demetrio Stojano Departamento de Matemática Facultad de Ciencias Exactas Universidad Nacional de La

Más detalles

Problemas Regulares de Sturm-Liouville

Problemas Regulares de Sturm-Liouville Capítulo 5 Problemas Regulares de Sturm-Liouville Como hemos visto en el capítulo dedicado a los espacios de Hilbert, el método de separación de variables aplicado a la resolución de ecuaciones en derivadas

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

Diferenciciación en R n

Diferenciciación en R n Diferenciciación en R n R. Álvarez-Nodarse Universidad de Sevilla Cómo definir la derivada? Definición Sea A un abierto de R n, a A y f : A R n R m. La derivada parcial i-ésima (1 i n) de f en a se define

Más detalles

1. Teoría de Conjuntos y Funciones

1. Teoría de Conjuntos y Funciones Universidad Central de Venezuela Facultad de Ciencias Escuela de Matemática Álgebra I 1. Teoría de Conjuntos y Funciones 1.1. Teoría de Conjuntos 1. Dados los conjuntos A, B y C, demuestre que: a) (A B)

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)

Más detalles

6.7. Clasificación de formas cuadráticas

6.7. Clasificación de formas cuadráticas 6.7 Clasificación de s s 1.1. Definición de s s en R n El concepto básico que sirve para definir una es el de polinomio homogéneo de segundo grado en varias variables. En toda esta sección sobreentenderemos

Más detalles

Lambda cálculo no tipado

Lambda cálculo no tipado Capítulo 1 Lambda cálculo no tipado Vamos a revisar la definición y propiedades básicas del lambda cálculo puro o no tipado. A mediados de los 60s, Peter Landin observó que un lenguaje de programación

Más detalles

Formulaciones equivalentes del Axioma de Elección

Formulaciones equivalentes del Axioma de Elección Formulaciones equivalentes del Axioma de Elección MARU SARAZOLA Resumen En este documento presentamos algunas formulaciones equivalentes del axioma de elección. En la primera sección, se presenta el enunciado

Más detalles

Escuela de Matemáticas

Escuela de Matemáticas Escuela de Matemáticas Universidad de Costa Rica MA-004: Álgebra Lineal Prácticas Sistemas de ecuaciones lineales, Matrices Determinantes MSc Marco Gutiérrez Montenegro 07 Sistemas de ecuaciones lineales

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

2.1. Estructura algebraica de espacio vectorial

2.1. Estructura algebraica de espacio vectorial Tema 2 Espacios vectoriales de dimensión finita 21 Estructura algebraica de espacio vectorial Los vectores libres en el plano son el sustento geométrico del concepto de espacio vectorial Se trata de segmentos

Más detalles

Problemas de factorización simultánea en módulos de Banach 1.

Problemas de factorización simultánea en módulos de Banach 1. Problemas de factorización simultánea en módulos de Banach 1. Mg. Ana Barrenechea UNCPBA Facultad de Ciencias Exactas Departamento de Matemática NUCOMPA 21 de Septiembre de 2016 Mg. Ana Barrenechea UNCPBA

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Qué son esos espacios de Hilbert? Qué son esos espacios de Hilbert? David Hilbert Para relajarnos

Más detalles

Completitud en Lógica de Predicados

Completitud en Lógica de Predicados Completitud en de Predicados Predicados - Completitud 1 Corrección. Significa que las derivaciones expresan una consecuencia lógica. Establece una correspondencia tal que partiendo de nociones sintácticas

Más detalles