Y \ X
|
|
|
- Isabel María Carmen Cáceres Quintana
- hace 7 años
- Vistas:
Transcripción
1 18 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. En la siguiente tabla se presenta la función de probabilidad conjunta del vector aleatorio discreto (X, Y ): Y \ X a) Hallar las funciones de probabilidad marginal de X ydey : p X (x) yp Y (y) respectivamente. b) Calcular la probabilidad de que tanto X como Y sean menores que 3. c) Calcular la probabilidad de que X sea par e Y sea impar. 2. Sea (X, Y ) un vector aleatorio con función de densidad conjunta { k (x f XY (x, y) = 2 + y 2 ) 20 x 30, 20 y 30 0 en otro caso. a) Cuál es el valor de k? b) Hallar las funciones de densidad marginal de X ydey : f X (x) yf Y (y) respectivamente. c) Cuál es la probabilidad de que tanto X como Y sean menores que 26? d) Cuál es la probabilidad de que máx(x, Y ) < 26? 3. De un grupo de tres profesores, dos graduados y un alumno debe seleccionarse al azar una comisión de dos personas. Sean X el número de profesores e Y el número de graduados en la comisión. a) Hallar la función de probabilidad conjunta del par (X, Y ) y las marginales de X e Y. b) Cuál es la probabilidad de que el alumno no forme parte de la comisión? 4. Sea (X, Y ) un v.a. bidimensional continuo con distribución uniforme en el trapecio de vértices ( 1, 0), (0, 1), (1, 1) y (2, 0). a) Hallar la función de densidad conjunta de (X, Y ). b) Calcular P (Y X). c) Hallar las funciones de densidad marginal f X (x) yf Y (y).
2 19 5. En los ejercicios 1 a 4: a) Decir si X e Y son independientes, justificando en cada caso. b) Hallar las funciones de probabilidad o de densidad condicional, según corresponda. 6. Para iluminar sin interrupción una sala se cuenta con dos lamparitas; cuando se quema una, se coloca la otra. Sean X e Y los tiempos de vida de cada lamparita (en 10 3 horas) y supóngase que esos tiempos son independientes y tienen distribución E (1). a) Hallar la densidad conjunta de (X, Y ). b) Hallar la probabilidad de que la sala permanezca iluminada al menos 2000 horas. 7. Dos servidores A y B procesan trabajos a medida que van llegando. El tiempo que tarda el servidor A en procesar un trabajo es una variable aleatoria X E(λ 1 ), mientras que el tiempo que tarda el servidor B es una variable aleatoria Y E(λ 2 ). Ambos servidores actúan en forma independiente. a) Dos trabajos llegan simultáneamente y es atendido uno por A y otro por B. Cuál es la probabilidad de que el servidor A termine con su trabajo antes que B? b) Supongamos que tres trabajos llegan simultáneamente. Uno es atendido por A, otro por B y el tercero queda esperando a que uno de los servidores se libere. Si λ 1 = λ 2, pruebe que la probabilidad de que el último trabajo en ser atendido sea el último en ser completado es Se tira una moneda equilibrada 3 veces, siendo X el número de caras. Si X = a se extraen sin reposición a + 1 bolillas de una urna que contiene 4 bolillas blancas y una roja. Sea Y el número de bolillas rojas extraídas. a) Hallar la distribución de Y dado X = a, para a =0, 1, 2, 3. b) Obtener una tabla con la distribución conjunta del par (X, Y ) y hallar la función de probabilidad marginal p Y. c) Son X e Y independientes? d) Si se extrajeron 2 bolillas blancas, cuál es la probabilidad de que hayan salido dos caras? 9. Alicia y José acordaron encontrarse a las 8 de la noche para ir al cine. Como no son puntuales, se puede suponer que los tiempos X e Y en que cada uno de ellos llega son variables aleatorias con distribución uniforme entre las 8 y las 9. Además se supondrá que estos tiempos son independientes. a) Cuál es la densidad conjunta de (X, Y )? b) Cuál es la probabilidad de que ambos lleguen entre las 20:15 y las 20:45? c) Si ambos están dispuestos a esperar no más de 10 minutos al otro a partir del instante en que llegan, cuál es la probabilidad de que se desencuentren?
3 En los ejercicios 1 a 4, calcular: a) cov (X, Y )yρ(x, Y ). b) E (X + Y )yv (X + Y ). 11. a) Probar que si X e Y son v.a. independientes entonces cov (X, Y )=ρ(x, Y )=0. b) Mostrar con un ejemplo que la recíproca no es cierta en general. (Sugerencia: Sean U y V dos v.a. independientes pero con la misma distribución. Considerar X = U + V e Y = U V.) c) Mostrar que si Y = ax+b (a 0), entonces ρ(x, Y )=±1. Cuándo es ρ(x, Y )= 1 y cuándo es 1? d) Sean σx 2 y σ2 Y las varianzas de las v.a. X e Y, i. Utilizando que: Var( X σ X + Y σ Y ) 0, verificar que ρ(x, Y ) 1 ii. Utilizando además que: Var( X σ X Y σ Y ) 0, verificar que 1 ρ(x, Y ) Sea (X, Y ) un vector aleatorio con distribución uniforme en la región: 0 x 1, x y x + h para algún 0 <h<1. (a) Calcular E (X),E(Y ),E(XY ). (b) Hallar ρ XY. (c) A qué tiende ρ XY cuando h tiende a cero? Por qué? 13. Sea X una variable aleatoria con densidad U[0, 1]. Si X = x, se elige un número Y entre 0 y x. Por lo tanto Y X=x U[0,x]. a) Hallar la densidad conjunta del par (X, Y ) y la densidad marginal f Y. b) Calcular E (Y ),V(Y), cov (X, Y )ycov(x, X + Y ). 14. Se va a guardar un archivo de longitud 100 caracteres, cada uno de los cuales toma el valor A, B, C ó D. Las probabilidades de ocurrencia de cada uno de estos caracteres son p A = 0.70, p B =0.12, p C =0.10 y p D =0.08. Se definen las variables aleatorias: A: número de veces que ocurre la letra A. B: número de veces que ocurre la letra B. etc. Suponiendo independencia: a) Qué distribución tiene el vector aleatorio (A,B,C,D)? b) Hallar las distribuciones marginales de A, B, C y D. c) Para ahorrar memoria se decide representar estos caracteres según la siguiente tabla basada en el código de Huffman. Letra Código A 1 B 00 C 011 D 010 Sea X: tamaño del archivo codificado (en bits). Hallar E(X).
4 La longitud (en cm) de ciertas varillas de metal tiene distribución N (5, 0.25). Para hacer un control de calidad se eligen 40 varillas al azar. Hallar la probabilidad de que 1 varilla mida menos de 4 cm, 13 varillas midan entre 4 y 4.8 cm, 18 varillas midan entre 4.8 y 5.5 cm, y el resto de las varillas mida más de 5.5 cm. 16. Sean X 1,...,X n variables aleatorias independientes e idénticamente distribuídas (v.a. i.i.d.) con función de distribución F X. Se definen las variables aleatorias T = máx (X 1,...,X n ) U = mín(x 1,...,X n ) a) Probar que F T (t) =[F X (t)] n. b) Probar que F U (t) =1 [1 F X (t)] n. c) Si las variables X i tienen densidad f X (x), i. hallar las densidades de T y U. ii. hallar E(T )ye(u). d) Si las variables X i tienen distribución U(0,1), hallar la esperanza del rango T U. 17. Sean X e Y v.a. independientes, tales que X Bi(n, p) ey Bi(m, p). Probar que: a) X + Y Bi(n + m, p). k (Nota: j=0 ( m k j)( n j ) = ( m+n k ).) b) La distribución de X condicional a X + Y = k es H (k, n, m + n). 18. Un laboratorio posee 14 ratas de la especie A y 11 de la especie B para experimentación. La probabilidad de que cualquiera de ellas muera en un experimento es 0.1, y se considera que las ratas mueren en forma independiente. a) Cuál es la probabilidad de que mueran más de 4 ratas? b) Si murieron 2, cuál es la probabilidad de que ambas hayan sido de la especie A? 19. Sean X e Y v.a. independientes, ambas con distribución G(p). Probar que X + Y BN(2,p).
5 Sean X 1,...,X n v.a. i.i.d.. Se define S = n X i. i=1 a) Calcular E (S) yv (S) para los siguientes casos: i. X i Bi(1,p). ii. X i G(p). b) Usando los Ejercicios 17 y 19, hallar la distribución de S para los dos casos anteriores. c) Deducir de (a) y (b) la esperanza y la varianza de variables aleatorias con distribución Bi(n, p) ybn (r, p). 21. Sean X e Y v.a. independientes tales que X P(λ) ey P(µ). Probar que: a) X + Y P(λ + µ). ( ) λ b) La distribución de X condicional a X + Y = k es Bi k,. λ + µ c) Sean X e Y v.a. tales que X P(λ)eY X=k Bi(k, p). Probar que Y P(λp). 22. Dos terminales A y B están conectadas a un servidor. La cantidad de requerimientos que realiza la terminal A en el lapso de un segundo sigue una distribución P(2) mientras que para la terminal B sigue una distribución P(3). Ambas terminales actúan en forma independiente. a) Hallar la probabilidad de que en un segundo haya más de 3 requerimientos al servidor. b) Si en un determinado segundo hubo dos requerimientos al servidor, cuál es la probabilidad de que haya provenido uno de cada terminal? c) Si el 30 % de los requerimientos necesita grabar en disco (y el 70 % restante no), hallar el valor esperado para la cantidad de requerimientos de disco en el lapso de 15 segundos.
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4. a) Hallar las funciones de probabilidad marginal de X ydey : p X (x) y p Y (y) respectivamente.
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. En la siguiente tabla se presenta la función de probabilidad conjunta del vector aleatorio discreto (X, Y ): Y \ X 1 2 3 4 1 0.10 0.05 0.02 0.02 2 0.05 0.20
1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta. 0 en otro caso.
18 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta { k (x f XY (x, y) = 2 + y 2 ) 20 x 30, 20 y 30 0 en otro caso. a) Cuál es el valor de
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 4
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 4 1. Sea (X,Y) un vector aleatorio con función de densidad conjunta i*,, í k(x2 + y2) 20
no es función de distribución de un vector aleatorio (b) Mostrar que:
Probabilidades y Estadística (M) Práctica 4 2 cuatrimestre 2004 Vectores aleatorios e independencia de variables 1. (a) Demostrar que la función 1 e x y si x 0 e y 0 F (x, y) = 0 sino no es función de
F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0
Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución
$, decidir cuál de las dos opciones es preferible, en el sentido de cuál tiene un mayor valor esperado.
Probabilidades y Estadística M) Práctica 7 Esperanza. Sea X el resultado que se obtiene al arrojar un dado equilibrado una vez. Si antes de arrojar el dado se ofrece la opción de elegir entre recibir $
0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
Cálculo de Probabilidades y Estadística. Segunda prueba. 1
08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad ½ 0.75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales)
Depto. de Matemáticas Estadística (Ing. de Telecom.) Curso 2004-2005 Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) 1. Consideremos dos variables aleatorias independientes X 1 y X 2,
a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).
Cálculo de Probabilidades II Preguntas Tema 2
Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución
Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Probabilidad y Estadística Práctica Nº 4
Distribuciones de Variables Aleatorias Distribuidas en forma Conjunta Objetivos de la práctica: Objetivo general: Al finalizar la práctica, el estudiante deberá conocer los conceptos fundamentales de las
1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional
1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional 4.1. Variable aleatoria bidimensional Las Variables Aleatorias Bidimensionales o N-Dimensionales surgen cuando es necesario trabajar en espacios
PROBABILIDADES Y ESTADÍSTICA (C) Práctica Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos.
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos. a) Definir un espacio muestral S apropiado para este experimento. b) Describir
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central
Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central Enero 2008. Sea f(u) = ce u, u R. Determine el valor de c para que f sea una función de densidad de probabilidad y calcule
Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos
Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos
Práctica 3 Esperanza Condicional
1. Generalidades Práctica 3 Esperanza Condicional 1. Sea (X i ) i I una familia de variables aleatorias definidas sobre un mismo espacio medible (Ω, F) y sea Y otra variable aleatoria en este espacio.
Probabilidad y Estadística
Vectores aleatorios Probabilidad y Estadística Vectores aleatorios Federico De Olivera Cerp del Sur-Semi Presencial curso 2015 Federico De Olivera (Cerp del Sur-Semi Presencial) Probabilidad y Estadística
Práctica 5 Martingalas a tiempo discreto
Práctica 5 Martingalas a tiempo discreto 1. Tiempos de Parada A lo largo de esta sección vamos a fijar un espacio de probabilidad (Ω, F, P ) junto con una filtración (F n ) n N definida en este espacio.
PROBABILIDADES Trabajo Práctico 3
PROBABILIDADES Trabajo Práctico 3 1. Se arroja un dado dos veces. Calcular la probabilidad de que la suma de los puntos sea 7 dado que: i. la suma es impar. ii. la suma es mayor que 6. iii. el resultado
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1
1 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado. Sean los sucesos: A: la suma de los números obtenidos es exactamente 8. B: los números obtenidos son iguales. a)
Hoja 4 Variables aleatorias multidimensionales
Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )
CO3121: Problemario Marzo 2005.
CO3121: Problemario Marzo 2005. 1. Sea f(u) = ce u, u R. Si f es una función de densidad de probabilidad, cuál es el valor de c?. 2. Sea X una v.a. con función de densidad f(x) = 2x, 0 < x < 1. Encuentre
Momentos de Funciones de Vectores Aleatorios
Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)
Probabilidades y Estadística (M) Práctica 2 (2 cuatrimestre 2003) Paseos al azar y Probabilidad Condicional
Probabilidades y Estadística (M) Práctica 2 (2 cuatrimestre 2003) Paseos al azar y Probabilidad Condicional 1. Sean x>0 e y dos enteros. Un paseo al azar (s 0,s 1,...,s x ) del origen al punto (x, y) es
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18 5.1. Concepto de proceso estocástico. Tipos de procesos. Realización de un proceso. 5.2. Características de un proceso estocástico. 5.3. Ejemplos de procesos
Distribución conjunta de variables aleatorias
Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:
TEMA 3.- VECTORES ALEATORIOS.- CURSO
TEMA 3.- VECTORES ALEATORIOS.- CURSO 017-018 3.1. VARIABLES ALEATORIAS BIDIMENSIONALES. FUNCIÓN DE DISTRIBUCIÓN CONJUNTA. 3.. VARIABLES BIDIMENSIONALES DISCRETAS. 3.3. VARIABLES BIDIMENSIONALES CONTINUAS.
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación
Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media
Relación de Problemas. Tema 5
Relación de Problemas. Tema 5. Supongamos que tenemos una muestra aleatoria simple de tamaño n de una v.a. X que sigue una distribución geométrica con función de probabilidad P (X = k) = p( p) k Calcular
Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 5
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 5 t* 1. En una línea de producción los productos pasan por 4 procesos sucesivos (preparación, armado, control y embalaje) hasta quedar listos para la venta. Sean
Resumen de Probabilidad
Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS
ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias
ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias 1. Se realizan mediciones independientes del volumen inicial y final en una bureta. Supongamos que las mediciones inicial y final siguen el
VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M. Desde un punto de vista formal, los vectores aleatorios son la herramienta matemática adecuada para transportar
LISTA DE EJERCICIOS PARA ETS DE PROBABILIDAD (IE, ICA, e ISISA)
LISTA DE EJERCICIOS PARA ETS DE PROBABILIDAD (IE, ICA, e ISISA) PROBABILIDAD CONDICIONAL 1. Dados P (A) = 0.4, P (B A) = 0.3 y P (B c A c ) = 0.2, determine: a) P (A c ). b) P (B A c ). c) P (B). d) P
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 1
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 1 1. Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos.» a) Definir un espacio muestral $ apropiado para este experimento. b) Describir
6 Variables aleatorias independientes
6 Variables aleatorias independientes Edgar Acuna ESMA 4 Edgar Acuna Dos variables aleatorias son independientes si para todo a b P[
PROBABILIDADES Y ESTADÍSTICA (C) Práctica Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos.
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos. a) Definir un espacio muestral S apropiado para este experimento. b) Describir
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
Cálculo de Probabilidades y Estadística. Segunda prueba. 1
08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. En una circunferencia de radio 1 se toman tres puntos, al azar e independientemente. Hallar la probabilidad de que el triángulo
Tema 6: Distribuciones Multivariantes
Tema : Distribuciones Multivariantes. Distribución conjunta de un vector aleatorio. Distribución conjunta de un vector aleatorio. Distribuciones marginales condicionadas.3 Independencia entre variables
Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial
Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.
PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2
PROBABILIDADES Trabajo Práctico 5 1. Sea X una variable aleatoria con función de distribución acumulada a) Calcular, usando F X, P (X 1) P (0.5 X 1) P (X >1.5) b) Hallar la mediana de esta distribución.
PROCESOS ESTOCÁSTICOS. Primera Prueba. 1
08513. PROCESOS ESTOCÁSTICOS. Primera Prueba. 1 Problema 1. Sea {Y n } una sucesión de variables aleatorias independientes e idénticamente distribuidas con distribución P {Y n = k} = 1 N + 1 Sea X 1 =
Matemática 3 Curso 2013
Matemática 3 Curso 2013 Práctica 3: Variables aleatorias discretas. Funciones de distribución Binomial, Geométrica, Hipergeométrica, Poisson. 1) Dadas las siguientes funciones, determinar cuales son funciones
Objetivos. 1. Variable Aleatoria y Función de Distribución. PROBABILIDAD Tema 2.2: Variables aleatorias discretas Denición de Variable aleatoria
PROBABILIDAD Tema 2.2: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular
Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22
Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2.
Ejercicios y Problemas. Capítulo III 1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2. (a) Calcular P (X = 0), P (X = 1), P (X = 2), P (X = 3), utilizando la función
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
Variables aleatorias continuas, TCL y Esperanza Condicional
Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función
0 si x<0. si 1 x<2 1 si x 2. si 4 x 6 1 si x>6. 1 e x si x 0
Probabilidades y Estadística (M) Práctica 3 2 cuatrimestre 2004 Variables Aleatorias. Sea X una v.a. con función de distribución (a) F X (x) = 0 si x< 3 4 si 3 x< 3 4 si x
Tema 4: Variable Aleatoria Bidimensional
Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales
Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.
Apuntes de Clases. Modelos de Probabilidad Discretos
2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica
ESTADÍSTICA Y ANÁLISIS DE DATOS. Práctica del Tema 5. Variable aleatoria (en R y R 2 )
ESTADÍSTICA Y ANÁLISIS DE DATOS Práctica del Tema 5. Variable aleatoria (en R y R ). Se considera un dado regular y se define la v.a. X: puntuación obtenida en un lanzamiento cualquiera de dicho dado.
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
Universidad Nacional de La Plata
Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.
2. En un casamiento, 6 hombres y 4 mujeres se estan por sacar un foto.
Ejercicios que se desarrollarn en clase práctica turno noche 1. Ana, Beto y Carola trabajan de lunes a viernes en una pizzería. Cada uno de ellos tiene un día de franco por semana. De cuántas formas posibles
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 3. ..,, f 0,75(1 -x2) -l<x<l fy (X) < [O en otro caso. P(X > 0) P(-0,5 < X < 0,5) P( X > 0,25) ' 0
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 3. Sea X una v.a. con función de densidad..,, f 0,75(1 -x2) -l
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 17 de abril, 2012 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
Tema1. Modelo Lineal General.
Tema1. Modelo Lineal General. 1. Si X = (X 1, X 2, X 3, X 4 ) t tiene distribución normal con vector de medias µ = (2, 1, 1, 3) t y matriz de covarianzas 1 0 1 1 V = 0 2 1 1 1 1 3 0 1 1 0 2 Halla: a) La
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
Tema 3. Probabilidad y variables aleatorias
1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad
Tema 4: Variables aleatorias.
Estadística 46 Tema 4: Variables aleatorias. El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos aleatorios, que en muchos
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
Generación de variables aleatorias continuas Método de la transformada inversa
Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
Tema 6 Algunas distribuciones importantes Hugo S. Salinas
Algunas distribuciones importantes Hugo S. Salinas 1 Distribución binomial Se han estudiado numerosas distribuciones de probabilidad que modelan características asociadas a fenómenos que se presentan frecuentemente
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 8
' PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 8 ' Sea Xi,..., Xn una muestra aleatoria de una población normal. Encontrar un intervalo de confianza de nivel exacto 1 a para la media cuando la varianza es
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 3 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. Sea X 1,..., X n una muestra aleatoria
PROBABILIDADES Y DISTRIBUCIONES
PROBABILIDADES Y DISTRIBUCIONES 1. Supongamos que se lanza una moneda cuyo peso ha sido alterado de manera que P (C) = 2/3 y P (S) = 1/3. Si aparece cara, entonces selecciona un número al azar del 1 al
