APÉNDICE A. MODELOS DE BIELAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APÉNDICE A. MODELOS DE BIELAS"

Transcripción

1 APÉNDICE A. MODELOS DE BIELAS A.0. SIMBOLOGÍA a v A cs A nz luz de corte, igual a la distancia desde el punto de aplicación de una carga concentrada hasta a) la cara del apoyo si se trata de un elemento continuo o en voladizo, o b) el centro del apoyo si se trata de un elemento simplemente apoyado, en mm. área de la sección transversal en un extremo de un puntal en un modelo de bielas, considerada perpendicular al eje del puntal, en mm 2. área de una cara de una zona nodal o de una sección que atraviesa una zona nodal, en mm 2. A si área total de la armadura superficial con una separación s i en la capa i que atraviesa un puntal con la armadura formando un ángulo α i con respecto al eje del puntal, en mm 2. A tp área del acero de pretensado en un tensor, en mm 2. A ts área de la armadura no tesa en un tensor, en mm 2. A s área de la armadura longitudinal comprimida, en mm 2. b s ancho del tensor, en mm. C esfuerzo de compresión que actúa sobre una zona nodal, en N. f c f ce f s f se f si f y resistencia a la compresión especificada del hormigón, en MPa. resistencia efectiva a la compresión del hormigón en un puntal o en una zona nodal, en MPa. tensión en la armadura de compresión bajo cargas mayoradas, en MPa. tensión efectiva en el acero de pretensado (después que han ocurrido todas las pérdidas de pretensado), en MPa. tensión en la capa i de la armadura superficial, en MPa. tensión de fluencia especificada de la armadura longitudinal no tesa (corresponde al límite de fluencia de la norma IRAM-IAS), en MPa. F n resistencia nominal de un puntal, de un tensor o de una zona nodal, en N. Reglamento CIRSOC 201 Apéndice A - 1

2 F nn resistencia nominal en la cara de una zona nodal, en N. F ns resistencia nominal de un puntal, en N. F nt resistencia nominal de un tensor, en N. F u l anc l b l n esfuerzo mayorado que actúa sobre un puntal, un tensor, un área de apoyo o una zona nodal en un modelo de bielas, en N. longitud en la cual se debe anclar un tensor, en mm. ancho del apoyo, en mm. longitud de la luz libre medida entre las caras de los apoyos, en mm. R reacción, en N. s i separación entre los centros de la armadura en la capa i adyacente a la superficie de un elemento, en mm. T esfuerzo de tracción que actúa sobre una zona nodal, en N. w s w t ancho efectivo de un puntal perpendicular al eje del mismo, en mm. ancho efectivo de hormigón que rodea a un tensor, utilizado para dimensionar la zona nodal, en mm. w t,max ancho efectivo máximo del hormigón que rodea a un tensor, en mm. α i β s β n Δf p θ λ ángulo entre el eje de un puntal y las barras de la capa i de armadura que atraviesa dicho puntal. factor que considera el efecto de la armadura de fisuración y de confinamiento, sobre la resistencia efectiva a la compresión del hormigón, en un puntal. factor que considera el efecto del anclaje de los tensores sobre la resistencia efectiva a la compresión de una zona nodal. aumento de la tensión en los cables de pretensado debido a las cargas mayoradas, en MPa. ángulo entre el eje de un puntal, diagonal comprimida, o campo de compresión y el cordón traccionado de un elemento. factor de modificación relacionado con la densidad (peso unitario) del hormigón. Ver el artículo φ factor de reducción de la resistencia. Ver el artículo 9.3. Reglamento Argentino de Estructuras de Hormigón Apéndice A - 2

3 A.1. DEFINICIONES Discontinuidad Cambio brusco en la geometría o en las cargas. Modelo de bielas Modelo reticulado de un elemento estructural, o de una región D de dicho elemento estructural, compuesto por puntales y tensores que se conectan a nodos, capaces de transferir las cargas mayoradas a los apoyos o a las regiones B adyacentes. Nodo En un modelo de bielas, es el punto de una unión donde se produce la intersección de los ejes de los puntales, los tensores y los esfuerzos concentrados que actúan en la unión. Puntal Elemento comprimido en un modelo de bielas. Un puntal representa la resultante de un campo de compresión paralelo o en forma de abanico. Puntal en forma de botella Puntal que es más ancho en su punto medio que en sus extremos. Región B Parte de un elemento a la cual se le puede aplicar la hipótesis de secciones planas de la teoría de flexión, especificada en el artículo Región D Parte de un elemento ubicada dentro de una distancia h, medida a partir de una discontinuidad del esfuerzo o de una discontinuidad geométrica. Tensor Elemento traccionado en un modelo de bielas. Viga de gran altura Ver los artículos y Zona nodal Volumen de hormigón alrededor de un nodo que se supone que transfiere los esfuerzos de los puntales y tensores a través del mencionado nodo. A.2. PROCEDIMIENTO DE DISEÑO PARA UN MODELO DE BIELAS A.2.1. Este Apéndice permite diseñar los elementos de hormigón estructural, o las regiones D de los mismos, modelando el elemento estructural o la región D, como un reticulado. El modelo de reticulado debe tener puntales, tensores y nodos tal como se define en el artículo A.1 y debe ser capaz de transferir todas las cargas mayoradas a los apoyos o a las regiones B adyacentes. A.2.2. El modelo de bielas debe estar en equilibrio con las cargas aplicadas y con las reacciones. A.2.3. Para determinar la geometría del reticulado se deben considerar las dimensiones de los puntales, de los tensores y de las zonas nodales. A.2.4. Los tensores podrán cruzar a los puntales, en cambio los puntales sólo se podrán cruzar o superponer en los nodos. A.2.5. El ángulo entre el eje de cualquier puntal y el eje de cualquier tensor que concurra al mismo nodo se debe considerar siempre igual o mayor que 25. Reglamento CIRSOC 201 Apéndice A - 3

4 A.2.6. El diseño de los puntales, los tensores y las zonas nodales se debe basar en: φ F (A-1) n F u siendo: F u F n el esfuerzo en un puntal o tensor, o el esfuerzo que actúa sobre una cara de una zona nodal, debida a las cargas mayoradas. la resistencia nominal del puntal, tensor o zona nodal. φ el factor de reducción de la resistencia especificado en el artículo A.3. RESISTENCIA DE LOS PUNTALES A.3.1. La resistencia nominal a la compresión de un puntal sin armadura longitudinal, F ns, se debe considerar como el menor valor obtenido de la expresión (A-2) en los dos extremos del puntal: F = f A (A-2) ns ce cs siendo: A cs f ce el área de la sección transversal en un extremo del puntal. el menor valor entre: (a) la resistencia efectiva a la compresión del hormigón en el puntal de acuerdo con el artículo A.3.2; y (b) la resistencia efectiva a la compresión del hormigón en la zona nodal de acuerdo con el artículo A.5.2. A.3.2. La resistencia efectiva a la compresión del hormigón, f ce, en un puntal, se debe considerar como f ce = 0,85 β f s c (A-3) A Para puntales con el área de la sección transversal uniforme en la totalidad de su longitud, el valor de β s será igual a 1,0. Reglamento Argentino de Estructuras de Hormigón Apéndice A - 4

5 A Para puntales ubicados de manera tal que el ancho de la sección transversal del puntal en la mitad de su longitud sea mayor que el ancho en los nodos (puntales en forma de botella), el valor de β s será: (a) con armadura que satisface el artículo A.3.3, β s = 0,75 (b) sin armadura que satisface el artículo A.3.3, β s = 0,60 λ donde el valor de λ está especificado en el artículo A Para los puntales en los elementos traccionados, o en las alas traccionadas de los mismos, el valor de β s será igual a 0,40. A Para todos los demás casos, el valor de β s será igual a 0,60. A.3.3. Si se utiliza el valor de β s especificado en el artículo A.3.2.2(a), el eje del puntal deberá ser cruzado por armadura dimensionada para resistir el esfuerzo de tracción transversal resultante de la expansión del esfuerzo de compresión en el puntal. Este Apéndice permite suponer que el esfuerzo de compresión en el puntal se expande con una pendiente de 2 en sentido longitudinal por 1 en sentido transversal, con respecto al eje del puntal. A Para un valor de f c igual o menor que 42 MPa, se puede verificar el requisito especificado en el artículo A.3.3, haciendo que el eje del puntal sea cruzado por capas de armadura que verifiquen la siguiente expresión: siendo: A si A si sen ( α i ) 0, 003 (A-4) b s s i la sección total de armadura con separación s i en una capa de armadura i que forma un ángulo α i con respecto al eje del puntal. A La armadura requerida por el artículo A.3.3 se debe disponer ya sea en dos direcciones ortogonales, formando ángulos α 1 y α 2 con respecto al eje del puntal, o bien en una sola dirección formando un ángulo α con respecto al eje del puntal. Si la armadura se coloca solamente en una dirección, α debe ser igual o mayor que 40. A.3.4. Este Apéndice permite utilizar una mayor resistencia efectiva a la compresión para los puntales, debida a la armadura de confinamiento, siempre que la misma esté avalada por ensayos y análisis. A.3.5. Para aumentar la resistencia de un puntal se podrá utilizar armadura de compresión. La misma deberá estar anclada adecuadamente, ser paralela al eje del puntal, estar ubicada dentro del mismo y encerrada por estribos o armadura en espiral que verifique el artículo En estos casos la resistencia de un puntal reforzado longitudinalmente será: F ns = f ce A cs + A' s f' s (A-5) Reglamento CIRSOC 201 Apéndice A - 5

6 A.4. RESISTENCIA DE LOS TENSORES A.4.1. La resistencia nominal de un tensor se debe determinar como F nt = A f + A ( f + Δf ) (A-6) ts y tp se p donde (f se + Δf p ) deberá ser igual o menor que f py, y A tp será cero para elementos no pretensados. En la expresión (A-6) se podrá adoptar Δf p igual a 420 MPa para armadura pretensada adherente, ó 70 MPa para armadura pretensada no adherente. Se podrán utilizar otros valores de Δf p siempre que se los justifique mediante análisis. A.4.2. El eje de la armadura de un tensor deberá coincidir con el eje del tensor en el modelo de bielas. A.4.3. La armadura en los tensores debe estar anclada mediante dispositivos mecánicos, dispositivos para anclajes postesados, ganchos normales o anclaje de barras rectas según lo especificado por los artículos A a A inclusive. A Las zonas nodales deben desarrollar la diferencia entre el esfuerzo en el tensor a un lado del nodo y el esfuerzo en el tensor al otro lado del mismo. A En las zonas nodales que anclan un tensor, el esfuerzo en el tensor se debe anclar desde el punto donde el baricentro de la armadura del tensor abandona la zona nodal extendida e ingresa al tramo. A En las zonas nodales que anclan dos o más tensores, los esfuerzos en los tensores en cada dirección se deben anclar desde el punto donde el baricentro de la armadura del tensor abandona la zona nodal extendida. A La armadura transversal requerida por el artículo A.3.3 se deberá anclar de acuerdo con el artículo A.5. RESISTENCIA DE LAS ZONAS NODALES A.5.1. La resistencia nominal a la compresión de una zona nodal será: F = f nn ce A nz (A-7) siendo: f ce la resistencia efectiva a la compresión del hormigón en la zona nodal, de acuerdo con el artículo A.5.2. Reglamento Argentino de Estructuras de Hormigón Apéndice A - 6

7 A nz el menor valor entre (a) ó (b), según corresponda: (a) el área de la cara de la zona nodal sobre la cual actúa F u, considerada perpendicularmente a la recta de acción de F u, o (b) el área de una sección que atraviesa la zona nodal, considerada perpendicularmente a la recta de acción del esfuerzo resultante que actúa sobre la sección. A.5.2. La tensión efectiva de compresión calculada sobre una cara de una zona nodal, f ce, debida a los esfuerzos de los puntales y tensores, no deberá ser mayor que el valor dado por la expresión (A-8), excepto que se disponga armadura de confinamiento dentro de la zona nodal y que su efecto sea confirmado mediante análisis y ensayos: f ce = 0,85 β n f' c (A-8) donde el valor de β n es el que se indica en los artículos A a A A En zonas nodales limitadas por puntales o áreas de apoyo, o ambas,... β n = 1,0 A En zonas nodales que anclan un tensor... β n = 0,80 A En zonas nodales que anclan dos o más tensores... β n = 0,60 A.5.3. En un modelo de bielas tridimensional, el área de cada una de las caras de una zona nodal, debe ser igual o mayor que la indicada en el artículo A.5.1, y las geometrías de cada una de dichas caras, deben ser similares a las geometrías de las proyecciones de los extremos de los puntales sobre las correspondientes caras de las zonas nodales. Reglamento CIRSOC 201 Apéndice A - 7

8 Reglamento Argentino de Estructuras de Hormigón Apéndice A - 8

CAPÍTULO 14. TABIQUES

CAPÍTULO 14. TABIQUES CAPÍTULO 14. TABIQUES 14.0. SIMBOLOGÍA A g área total o bruta de la sección de hormigón, en mm 2. En una sección hueca, A g es el área de hormigon solamente y no incluye el área del o los vacíos. Ver el

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g A s d pilote f ce β γ s área total o bruta de la sección de hormigón, en mm 2. En una sección hueca A g es el área de hormigón solamente

Más detalles

CAPÍTULO 12. LONGITUDES DE ANCLAJE Y DE EMPALME DE LA ARMADURA

CAPÍTULO 12. LONGITUDES DE ANCLAJE Y DE EMPALME DE LA ARMADURA CAPÍTULO 12. LONGITUDES DE ANCLAJE Y DE EMPALME DE LA ARMADURA 12.0. SIMBOLOGÍA a A b A s A tr altura del bloque rectangular de tensiones equivalente, definido en el artículo 10.2.7.1., en mm. área de

Más detalles

CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS

CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS CAPÍTULO 19. CÁSCARAS Y PLACAS PLEGADAS 19.0. SIMBOLOGÍA E c módulo de elasticidad del hormigón, en MPa (ver el artículo 8.5.1.). f' c resistencia especificada a la compresión del hormigón, en MPa. f '

Más detalles

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa 1. Requisitos generales La tracción o la compresión que solicita la barra de acero, se debe transmitir o desarrollar hacia cada lado de la sección considerada mediante una longitud de armadura embebida

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g área total o bruta de la sección, en mm 2. d p β diámetro del pilote en la base del cabezal, en mm. cociente entre la longitud del lado

Más detalles

1. Vigas de gran altura

1. Vigas de gran altura Vigas de gran altura Victorio E. Sonzogni Noviembre 2005 1. Vigas de gran altura 1.1. Generalidades El estudio de vigas de gran altura, ménsulas cortas, etc., así como porciones de vigas cercanas a la

Más detalles

Modelos Puntal - Tensor

Modelos Puntal - Tensor SANTIAGO 27 y 29 Octubre 2015 Curso Diseño en Hormigón Armado según ACI 318-14 Clase: Aplicación del método Puntal tensor Relator: Fernando Yáñez Modelos Puntal - Tensor Fernando Yáñez, Ph.D. Director

Más detalles

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura)

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) 1) Modelos de Barras Las condiciones generales que deben cumplir los modelos de Puntales

Más detalles

Vigas (dimensionamiento por flexión)

Vigas (dimensionamiento por flexión) Vigas (dimensionamiento por flexión) 1. Predimensionamiento por control de flechas 1.1. Esbelteces límites Según Reglamento CIRSOC 201 capítulo 9 tabla 9.5.a): Luego: Luz de cálculo (medida desde el borde

Más detalles

PARTE 5 - SISTEMAS O ELEMENTOS ESTRUCTURALES CAPÍTULO 13. SISTEMAS DE LOSAS QUE TRABAJAN EN DOS DIRECCIONES

PARTE 5 - SISTEMAS O ELEMENTOS ESTRUCTURALES CAPÍTULO 13. SISTEMAS DE LOSAS QUE TRABAJAN EN DOS DIRECCIONES PARTE 5 - SISTEMAS O ELEMENTOS ESTRUCTURALES CAPÍTULO 13. SISTEMAS DE LOSAS QUE TRABAJAN EN DOS DIRECCIONES 13.0. SIMBOLOGÍA b w b 1 b 2 c 1 c 2 C E cb E cs h h f h b ancho del alma de un elemento con

Más detalles

El objetivo de esta clase es aprender a dimensionar los anclajes y empalmes de las barras de armadura.

El objetivo de esta clase es aprender a dimensionar los anclajes y empalmes de las barras de armadura. HORMIGÓN I (74.01 y 94.01) ANCLAJES Y EMPALMES ANCLAJES Y EMPALMES Lámina 1 El objetivo de esta clase es aprender a dimensionar los anclajes y empalmes de las barras de armadura. ANCLAJES Y EMPALMES Lámina

Más detalles

17 Modelos de Bielas y Tirantes

17 Modelos de Bielas y Tirantes 17 Modelos de Bielas y Tirantes ACTUALIZACIÓN PARA EL CÓDIGO 2002 La edición 2002 del Apéndice A de ACI 318 introduce la forma codificada del método de bielas y tirantes. Aunque las analogías del reticulado

Más detalles

MODELOS DE BIELAS Pasos propuestos en el Apéndice A del CIRSOC

MODELOS DE BIELAS Pasos propuestos en el Apéndice A del CIRSOC MODELOS DE BIELAS 13.1.- Generalidades Los modelos de bielas fueron utilizados desde los comienzos de la Teoría del Hormigón Armado (Ritter Mörsch) para el estudio del corte y de la torsión. Si bien su

Más detalles

INDICE 1.- COMBINACIÓN Y MAYORACIÓN DE ACCIONES

INDICE 1.- COMBINACIÓN Y MAYORACIÓN DE ACCIONES INDICE 1.- COMBINACIÓN Y MAYORACIÓN DE ACCIONES 1.1.- Requerimientos básicos de resistencia 1 1.2.- Resistencia requerida 1 1.2.1.- Resumen del Reglamento CIRSOC 201-2005 1 1.2.2.- Simplificaciones 2 1.3.-

Más detalles

CAPÍTULO 18. HORMIGÓN PRETENSADO

CAPÍTULO 18. HORMIGÓN PRETENSADO CAPÍTULO 18. HORMIGÓN PRETENSADO 18.0. SIMBOLOGÍA A cf A ct A ps A s área de la mayor sección transversal total o bruta, de las fajas del sistema losaviga, que corresponden a los dos pórticos equivalentes

Más detalles

Eliminar el Apéndice A existente

Eliminar el Apéndice A existente Eliminar el Apéndice A existente MOTIVO: El Método de Diseño por Resistencia es casi universalmente aceptado como el método de diseño de preferencia para el cálculo de estructuras de hormigón. El Método

Más detalles

PARTE 6 - CONSIDERACIONES ESPECIALES CAPÍTULO 20. EVALUACIÓN DE LA RESISTENCIA DE ESTRUCTURAS EXISTENTES

PARTE 6 - CONSIDERACIONES ESPECIALES CAPÍTULO 20. EVALUACIÓN DE LA RESISTENCIA DE ESTRUCTURAS EXISTENTES PARTE 6 - CONSIDERACIONES ESPECIALES CAPÍTULO 20. EVALUACIÓN DE LA RESISTENCIA DE ESTRUCTURAS EXISTENTES 20.0. SIMBOLOGÍA D cargas permanentes o las solicitaciones correspondientes. f c resistencia especificada

Más detalles

Apéndice C. El método de diseño del puntal y el tirante (online) C.1 INTRODUCCIÓN C.2 VIGAS DE GRAN PERALTE

Apéndice C. El método de diseño del puntal y el tirante (online) C.1 INTRODUCCIÓN C.2 VIGAS DE GRAN PERALTE Apéndice C El método de diseño del puntal y el tirante (online) C.1 INTRODUCCIÓN Este apéndice presenta un método alternativo para el diseño de miembros de concreto reforzado con discontinuidades geométricas

Más detalles

442 HORMIGON ARMADO

442 HORMIGON ARMADO DIMENSIONADO DE ARMADURAS POR RESISTENCIA A FLEXION Una vez obtenidas las solicitaciones actuantes en nuestra estructura, se procede al cálculo de la armadura requerida. Cabe aclarar que, debido a que

Más detalles

CIRSOC 201: Proyecto, Cálculo y Ejecución de Estructuras de Hormigón Armado y Pretensado" Edición Julio 1982, Actualización 1984.

CIRSOC 201: Proyecto, Cálculo y Ejecución de Estructuras de Hormigón Armado y Pretensado Edición Julio 1982, Actualización 1984. LOSAS ALIVIANADAS: Cuando el espesor de la losa es considerable (ya sea por condición de resistencia o de deformación), se puede disminuir su peso propio, eliminando parte del hormigón de las zonas traccionadas

Más detalles

ESTADO LÍMITE ÚLTIMO DE AGOTAMIENTO A TENSIÓN TANGENCIAL (CORTANTE Y PUNZONAMIENTO)

ESTADO LÍMITE ÚLTIMO DE AGOTAMIENTO A TENSIÓN TANGENCIAL (CORTANTE Y PUNZONAMIENTO) DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO ELU2 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 6 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 04 de Febrero de

Más detalles

CAPÍTULO 16. ESTRUCTURAS DE HORMIGÓN PRE- FABRICADO

CAPÍTULO 16. ESTRUCTURAS DE HORMIGÓN PRE- FABRICADO CAPÍTULO 16. ESTRUCTURAS DE HORMIGÓN PRE- FABRICADO 16.0. SIMBOLOGÍA A g l n área total o bruta de la sección de hormigón, en mm 2. En una sección hueca, A g es el área de hormigón solamente y no incluye

Más detalles

CAPITULO 1. CAMPO DE VALIDEZ, DOCUMENTACIÓN TÉCNICA Y DEFINICIONES

CAPITULO 1. CAMPO DE VALIDEZ, DOCUMENTACIÓN TÉCNICA Y DEFINICIONES COMENTARIOS INDICE PARTE 1. REQUISITOS GENERALES CAPITULO 1. CAMPO DE VALIDEZ, DOCUMENTACIÓN TÉCNICA Y DEFINICIONES C1.1.4. Materiales, elementos y sistemas constructivos no contemplados en este Reglamento

Más detalles

DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103

DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103 DISEÑO POR CAPACIDAD NORMA INPRES - CIRSOC 103 DEFINICIÓN Método de diseño para estructuras sometidas a la acción sísmica. En el diseño de estructuras por capacidad, los elementos estructurales que resistirán

Más detalles

Esfuerzos internos Analogía del reticulado

Esfuerzos internos Analogía del reticulado 15 Esfuerzos internos Analogía del reticulado 1. Introducción. General. En artículos anteriores hemos estudiado los esfuerzos internos desde la teoría clásica, con ella logramos establecer fórmulas para

Más detalles

Viga reticulada plana de tubos rectangulares con costura. Uniones directas de barras de alma a cordones.

Viga reticulada plana de tubos rectangulares con costura. Uniones directas de barras de alma a cordones. EJEMPLO Nº 4 Viga reticulada plana de tubos rectangulares con costura Uniones directas de barras de alma a cordones Aplicación de los Capítulos 1,, 3, 4, 5, 7 y 9 Enunciado Dimensionar la viga V de la

Más detalles

DOCUMENTO DA1 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID

DOCUMENTO DA1 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO DA1 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 01 de Febrero de

Más detalles

Ejemplo 1a: Diseño de una viga de gran altura de acuerdo con ACI

Ejemplo 1a: Diseño de una viga de gran altura de acuerdo con ACI Parte 4 Ejemplos 63 64 : Ejemplo 1a: Diseño de una viga de gran altura de acuerdo con ACI 318-02 Claudia M. Uribe Sergio M. Alcocer Sinopsis Se diseñó una viga de gran altura cargada con dos cargas concentradas

Más detalles

Ejemplo 2: Viga T con extremos entallados soportada por una viga T invertida

Ejemplo 2: Viga T con extremos entallados soportada por una viga T invertida Ejemplo 2: Viga T con extremos entallados soportada por una viga T invertida David H. Sanders Sinopsis En los extremos de las vigas con extremos entallados la transferencia de carga del apoyo hacia la

Más detalles

CAPÍTULO 7. DETALLES DE ARMADO

CAPÍTULO 7. DETALLES DE ARMADO CAPÍTULO 7. DETALLES DE ARMADO 7.0. SIMBOLOGÍA d d b d be f ci f y f yt d l s l ρ distancia desde la fibra comprimida extrema hasta el baricentro de la armadura longitudinal traccionada, no tesa, (altura

Más detalles

COMPORTAMIENTO FRENTE A ESFUERZOS DE FLEXIÓN Y CORTE

COMPORTAMIENTO FRENTE A ESFUERZOS DE FLEXIÓN Y CORTE COMPORTAMIENTO FRENTE A ESFUERZOS DE FLEXIÓN Y CORTE Lámina 1 Identificación del Problema: ELEMENTO DE HORMIGON ARMADO TIPO VIGA ESBELTA El diseño de estructuras involucra un proceso de dos etapas: 1-

Más detalles

Ejemplo 6: Viga pretensada

Ejemplo 6: Viga pretensada Adolfo Matamoros Julio Ramirez Sinopsis Se presenta el diseño de la región del extremo de una viga pretensada según el Apéndice A del Código ACI 318-2002. Se consideran dos alternativas, la primera de

Más detalles

MODELO PARA EL DIMENSIONAMIENTO FRENTE A ESFUERZOS DE FLEXIÓN Y CORTE INCIDENCIA DE LOS ESFUERZOS DE CORTE EN PIEZAS SOLICITADAS A FLEXIÓN

MODELO PARA EL DIMENSIONAMIENTO FRENTE A ESFUERZOS DE FLEXIÓN Y CORTE INCIDENCIA DE LOS ESFUERZOS DE CORTE EN PIEZAS SOLICITADAS A FLEXIÓN 74.01 HORMIGÓN I MODELO PARA EL DIMENSIONAMIENTO FRENTE A ESFUERZOS DE FLEXIÓN Y CORTE MODELO PARA EL DIMENSIONAMIENTO A FLEXIÓN Y CORTE 1 INCIDENCIA DE LOS ESFUERZOS DE CORTE EN PIEZAS SOLICITADAS A FLEXIÓN

Más detalles

CAPÍTULO D. BARRAS TRACCIONADAS

CAPÍTULO D. BARRAS TRACCIONADAS CAPÍTULO D. BARRAS TRACCIONADAS Este Capítulo es aplicable a barras prismáticas sometidas a tracción por fuerzas estáticas actuando según el eje que pasa por los centros de gravedad de las secciones transversales

Más detalles

CAPÍTULO A. REQUISITOS GENERALES A.1. INTRODUCCIÓN 1. A.2. CAMPO DE VALIDEZ 1 A.2.1. Alcance 1 A.2.2. Tipos de estructura 2

CAPÍTULO A. REQUISITOS GENERALES A.1. INTRODUCCIÓN 1. A.2. CAMPO DE VALIDEZ 1 A.2.1. Alcance 1 A.2.2. Tipos de estructura 2 ÍNDICE SIMBOLOGÍA GLOSARIO CAPÍTULO A. REQUISITOS GENERALES A.1. INTRODUCCIÓN 1 A.2. CAMPO DE VALIDEZ 1 A.2.1. Alcance 1 A.2.2. Tipos de estructura 2 A.3. MATERIALES Y NORMAS IRAM E IRAM-IAS DE APLICACIÓN

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

LINEAMIENTOS GENERALES METODOLOGÍA DE ENSEÑANZA EVALUACIÓN

LINEAMIENTOS GENERALES METODOLOGÍA DE ENSEÑANZA EVALUACIÓN Hormigón Armado y Pretensado 2/7 LINEAMIENTOS GENERALES La asignatura Hormigón Armado y Pretensado es una actividad curricular que pertenece a cuarto año (octavo semestre) de la carrera de Ingeniería Ambiental.

Más detalles

GENERALIDADES Y DETALLES DE ARMADO.

GENERALIDADES Y DETALLES DE ARMADO. GENERALIDADES Y DETALLES DE ARMADO. Utilización de ganchos en el hormigón armado. El anclaje de las armaduras en las estructuras de hormigón armado, resultan de asegurar en los distintos elementos estructurales

Más detalles

Hormigón Armado y Pretensado

Hormigón Armado y Pretensado 30 Hoja 1 de 5 UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Civil Escuela: Ingeniería Civil. Departamento: Estructuras. Carácter:

Más detalles

PROYECTO DE CIMENTACIONES (Documento en borrador, en elaboración)

PROYECTO DE CIMENTACIONES (Documento en borrador, en elaboración) DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO EE6 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 9 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 06 de Abril de 2009

Más detalles

5.6. DISPOSICIONES PARA CONSTRUCCIONES DE HORMIGON ARMADO SISMORRESISTENTE

5.6. DISPOSICIONES PARA CONSTRUCCIONES DE HORMIGON ARMADO SISMORRESISTENTE 5.6. DISPOSICIONES PARA CONSTRUCCIONES DE HORMIGON ARMADO SISMORRESISTENTE 5.6.1. Elementos estructurales predominantemente flexionados (vigas) 5.6.1.1. Valores de diseño para solicitaciones normales Se

Más detalles

CAPÍTULO B. REQUERIMIENTOS DE PROYECTO

CAPÍTULO B. REQUERIMIENTOS DE PROYECTO CAPÍTULO B. RQURIMINTOS D PROYCTO ste Capítulo contiene especificaciones que son de aplicación para todo el Reglamento. B.1. ÁRA BRUTA n secciones formadas por elementos planos, el área bruta, A g, de

Más detalles

Acero más traccionado: Armadura, pretensada o no, más alejada de la fibra comprimida extrema.

Acero más traccionado: Armadura, pretensada o no, más alejada de la fibra comprimida extrema. ANEXOS AL CAPÍTULO 1 DEFINICIONES A continuación se definen los términos más utilizados en este Reglamento, y que son comunes a todos sus Capítulos. Las definiciones especializadas aparecen en la simbología

Más detalles

RAZONES PARA COLOCAR ARMADURA EN ELEMENTOS COMPRIMIDOS

RAZONES PARA COLOCAR ARMADURA EN ELEMENTOS COMPRIMIDOS 74.01 HORMIGON I ELEMENTOS COMPRIMIDOS: COLUMNAS CORTAS ASPECTOS CONSTRUCTIVOS Y REGLAMENTARIOS 20-05-09 Lámina 1 El hormigón es un material eficiente para tomar compresión. RAZONES PARA COLOCAR ARMADURA

Más detalles

NOTAS SOBRE ACI REQUISITOS PARA HORMIGÓN ESTRUCTURAL. con Ejemplos de Diseño PCA PORTLAND CEMENT ASSOCIATION

NOTAS SOBRE ACI REQUISITOS PARA HORMIGÓN ESTRUCTURAL. con Ejemplos de Diseño PCA PORTLAND CEMENT ASSOCIATION NOTAS SOBRE ACI 318-02 REQUISITOS PARA HORMIGÓN ESTRUCTURAL con Ejemplos de Diseño PCA PORTLAND CEMENT ASSOCIATION 2 Contenido 1 Requisitos generales... 1-1 1.1 CAMPO DE VALIDEZ... 1-1 1.1.6 Losas a nivel

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo once: Dimensionado DOS 6. Dimensionado en hormigón armado. 6.1. General. El diseño y cálculo de las piezas de hormigón armado se debe realizar según el Reglamento

Más detalles

CAPÍTULO C. ANÁLISIS ESTRUCTURAL Y ESTABILIDAD

CAPÍTULO C. ANÁLISIS ESTRUCTURAL Y ESTABILIDAD CAPÍTUO C. ANÁISIS ESTRUCTURA Y ESTABIIDAD Este Capítulo contiene especificaciones generales para el análisis estructural y para la estabilidad global de la estructura y de sus barras componentes. C.1.

Más detalles

loseta 0,04x1x1x24 kn/m 3 = 0,96 kn mortero 0,02x1x1x21 kn/m 3 = 0,42 kn piso linóleo... = 0,05 kn total g = 1,43 kn/ m 2

loseta 0,04x1x1x24 kn/m 3 = 0,96 kn mortero 0,02x1x1x21 kn/m 3 = 0,42 kn piso linóleo... = 0,05 kn total g = 1,43 kn/ m 2 EJEMPLO Nº 5 Viga reticulada multiplano de tubos circulares con costura. Uniones directas de barras de alma a cordones. Aplicación Capítulos 1,, 3, 4, 5, 7 y 9. Enunciado Dimensionar la viga V 1 de la

Más detalles

HERRAMIENTA DE CÁLCULO POR EL MÉTODO DE BIELAS Y TIRANTES

HERRAMIENTA DE CÁLCULO POR EL MÉTODO DE BIELAS Y TIRANTES 2010 ARQUITECTURA TÉCNICA ALUMNO: ZAMORA PASCUAL, PABLO TUTOR: LORENTE MONLEÓN, SANDOKAN EL MÉTODO DE BIELAS Y TIRANTES ESTRUCTORAS DE CIMENTACION 1,- ZAPATA SOMETIDA A FLEXION RECTA 2,- ZAPATA SOMETIDA

Más detalles

PROYECTO DE URBANIZACIÓN POLÍGONO P-39 CASAS DO REGO SANTIAGO DE COMPOSTELA

PROYECTO DE URBANIZACIÓN POLÍGONO P-39 CASAS DO REGO SANTIAGO DE COMPOSTELA PROYECTO DE URBANIZACIÓN POLIGONO P-39 CASAS DO REGO PROYECTO DE URBANIZACIÓN POLÍGONO P-39 CASAS DO REGO SANTIAGO DE COMPOSTELA 5 ANEXOS A LA MEMORIA 5.4 Memoria de cálculo de estructuras ÍNDICE 1.- NORMA

Más detalles

1. Las armaduras transversales de un pilar de hormigón HA-30/B/20/IIa:

1. Las armaduras transversales de un pilar de hormigón HA-30/B/20/IIa: 1. Las armaduras transversales de un pilar de hormigón HA-30/B/20/IIa: a) Contribuyen a evitar el pandeo del pilar b) Contribuyen a resistir esfuerzos axiles y flectores c) Zunchan el hormigón al que rodean,

Más detalles

Ejemplo 4: Viga de gran altura con una abertura

Ejemplo 4: Viga de gran altura con una abertura Ejemplo 4: Viga de gran altura con una abertura Lawrence C. Novak, SE Heiko Sprenger Sinopsis El problema elegido para este trabajo, es decir una viga de gran altura con una abertura rectangular, representa

Más detalles

MURO. Altura: 4.50 m Espesor superior: 60.0 cm Espesor inferior: 60.0 cm ENCEPADO CORRIDO

MURO. Altura: 4.50 m Espesor superior: 60.0 cm Espesor inferior: 60.0 cm ENCEPADO CORRIDO Datos generales Cota de la rasante: 0.00 m Altura del muro sobre la rasante: 0.00 m Enrase: Intradós Longitud del muro en planta: 6.00 m Sin juntas de retracción Tipo de cimentación: Encepado corrido Geometría

Más detalles

ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO. Zona a: Zona en la cual no es de esperar fisuras por flexión.

ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO. Zona a: Zona en la cual no es de esperar fisuras por flexión. HORMIGÓN II 74.5 ARMADURA DE CORTE VERIFICACION Y DIMENSIONAMIENTO Definición de zonas a y b Zona a: Zona en la cual no es de esperar fisuras por flexión. Zona b: Zona en la cual las fisuras por corte

Más detalles

Curso: HORMIGÓN ESTRUCTURAL 1

Curso: HORMIGÓN ESTRUCTURAL 1 Curso: HORMIGÓN ESTRUCTURAL 1 MÓDULO 7: ANCLAJE DE ARMADURAS Agustin Spalvier (aspalvier@fing.edu.uy) 1 er Semestre - 2018 Universidad de la República - Uruguay Resumen 1 er Semestre 2018 Agustin Spalvier

Más detalles

Mercedes López Salinas

Mercedes López Salinas ANÁLISIS Y DISEÑO DE MIEMBROS ESTRUCTURALES SOMETIDOS A FLEXIÓN Mercedes López Salinas PhD. Ing. Civil Correo: elopez@uazuay.edu.ec ESTRUCTURAS DE ACERO Y MADERA Facultad de Ciencia y Tecnología Escuela

Más detalles

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN

CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN CAPÍTUO F. VIGAS Y OTRAS BARRAS N FXIÓN ste Capítulo es aplicale a arras prismáticas, con secciones compactas no compactas, sujetas a flexión corte. as arras formadas por un solo perfil ángulo (de ángulo

Más detalles

Determinemos las solicitaciones. (Diagramas de M y Q).

Determinemos las solicitaciones. (Diagramas de M y Q). DIMENSIONAMIENTO PARA ESFUERZOS DE CORTE. 22/04/2009 Lámina 1 Determinemos las solicitaciones. (Diagramas de M y Q). Lámina 2 1 Reducciones del diagrama de corte. Lámina 3 Lámina 4 2 Lámina 5 Distinguimos

Más detalles

APÉNDICE D. ANCLAJE EN HORMIGÓN

APÉNDICE D. ANCLAJE EN HORMIGÓN APÉNDICE D. ANCLAJE EN HORMIGÓN D.0. SIMBOLOGÍA A brg área de apoyo de la cabeza del perno o bulón de anclaje, en mm 2. A Nc A Nco área de falla proyectada del hormigón de un anclaje individual o grupo

Más detalles

Sistema Estructural de Masa Activa

Sistema Estructural de Masa Activa Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,

Más detalles

Universidad Nacional de Misiones

Universidad Nacional de Misiones Universidad Nacional de Misiones Facultad de Ingeniería Departamento de Ingeniería Civil CONSTRUCCIONES METÁLICAS Y DE MADERA CURSO: 5º AÑO CIVIL TRABAJO PRÁCTICO Nº 3 Dilger, Lucas Omar Eitner, Gabriel

Más detalles

2. Unión Tipo Aplastamiento y Deslizamiento Crítico: Son los dos tipos de uniones

2. Unión Tipo Aplastamiento y Deslizamiento Crítico: Son los dos tipos de uniones 1. Área Bruta (A g ): El área bruta de una barra en cualquier punto, es la suma de los productos de los espesores por los anchos brutos de cada elemento de la sección, medidos en la sección normal al eje

Más detalles

ELEMENTOS ESENCIALES DE UNA PLACA DE ANCLAJE

ELEMENTOS ESENCIALES DE UNA PLACA DE ANCLAJE PLACAS DE ANCLAJE ELEMENTOS ESENCIALES DE UNA PLACA DE ANCLAJE 1. PLACA BASE a) LARGO, ANCHO, ESPESOR b) GEOMETRÍA DE LA PLACA c) CALIDAD DEL ACERO 2. CARTELAS DE RIGIDEZ ( id.) 3. PERNOS DE ANCLAJE a)

Más detalles

REFORMA Y SUSTITUCIÓN DE REDES DE ABASTECIMIENTO Y SANEAMIENTO DE LA CALLE VALLEJO EN AUTOL ESTRATOS

REFORMA Y SUSTITUCIÓN DE REDES DE ABASTECIMIENTO Y SANEAMIENTO DE LA CALLE VALLEJO EN AUTOL ESTRATOS A3. MEMORIA TÉCNICA DE LA ESTRUCTURA CÁLCULO MUROS HASTA 3,00 M. 1.- NORMA Y MATERIALES Norma: EHE-08 (España) Hormigón: HA-25, Control Estadístico Acero de barras: B 500 S, Control Normal Tipo de ambiente:

Más detalles

UNIVERSIDAD DIEGO PORTALES. AYUDANTÍA N 2 IOC2015 -Fundaciones

UNIVERSIDAD DIEGO PORTALES. AYUDANTÍA N 2 IOC2015 -Fundaciones AYUDANTÍA N IOC015 -Fundaciones 1.- Una fundación cuadrada de dimensión BxL, posee su sello de fundación a 3.5 m desde la superficie. La tensión admisible del suelo es de 35 /. Se supondrá una altura de

Más detalles

afpmlpf`fþk=ab=^oj^aro^p

afpmlpf`fþk=ab=^oj^aro^p OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos afpmlpf`fþk=ab=^oj^aro^p iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

COMENTARIOS AL CAPÍTULO 12. LONGITUDES DE ANCLAJE Y DE EMPALME DE LA ARMADURA

COMENTARIOS AL CAPÍTULO 12. LONGITUDES DE ANCLAJE Y DE EMPALME DE LA ARMADURA COMENTARIOS AL CAPÍTULO 12. LONGITUDES DE ANCLAJE Y DE EMPALME DE LA ARMADURA C 12.0. SIMBOLOGÍA Las unidades que se indican en este artículo, para orientar al usuario, no tienen la intención de excluir

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones

Más detalles

La geometría del forjado y las distancias quedan determinadas en la siguiente figura. Imagen del programa ALTRA PLUS

La geometría del forjado y las distancias quedan determinadas en la siguiente figura. Imagen del programa ALTRA PLUS COMPROBACIÓN VIGA DE HORMIGÓN ARMADO Se realiza la comprobación de una viga armada con las seguientes características - Viga de hormigón: 30x50 - Armado superior : ϕ 16mm - Armado inferior : 3 ϕ 0mm -

Más detalles

CONSTRUCCIONES METÁLICAS Y MADERA TRABAJO PRÁCTICO 3

CONSTRUCCIONES METÁLICAS Y MADERA TRABAJO PRÁCTICO 3 TRACCIÓN AXIL-UNIONES ABULONADAS CONSTRUCCIONES METÁLICAS Y MADERA TRABAJO PRÁCTICO 3 EJERCICIO NRO 1: 1.1-ÁREA BRUTA Para elementos planos, el área bruta, Ag, de una barra en cualquier punto se puede

Más detalles

EJEMPLOS DE APLICACIÓN DEL MÉTODO DE BIELAS Y TIRANTES AL PROYECTO DE ZONAS DE DISCONTINUIDAD

EJEMPLOS DE APLICACIÓN DEL MÉTODO DE BIELAS Y TIRANTES AL PROYECTO DE ZONAS DE DISCONTINUIDAD ANEJO 16 EJEMPLOS DE APLICACIÓN DEL MÉTODO DE BIELAS Y TIRANTES AL PROYECTO DE ZONAS DE DISCONTINUIDAD 1. GENERALIDADES Una vez definido el modelo de bielas y tirantes, de acuerdo con los principios establecidos

Más detalles

DOCUMENTO EE2 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID

DOCUMENTO EE2 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO EE2 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 01 de Febrero de

Más detalles

ELEMENTO DE HORMIGON ARMADO TIPO VIGA ESBELTA. El diseño de estructuras involucra un proceso de dos etapas:

ELEMENTO DE HORMIGON ARMADO TIPO VIGA ESBELTA. El diseño de estructuras involucra un proceso de dos etapas: HORIGÓN I (74.01 y 94.01) ELU DE AGOTAIENTO A Flexión y Corte Identificación del Problema: 74.01 y 94.01 - HORIGON I ELEENTO DE HORIGON ARADO TIPO IGA ESBELTA El diseño de estructuras involucra un proceso

Más detalles

HORMIGÓN ARMADO II TP 8 TRAZADO DE ARMADURAS EN PIEZAS SOMETIDAS A FLEXIÓN Y CORTE

HORMIGÓN ARMADO II TP 8 TRAZADO DE ARMADURAS EN PIEZAS SOMETIDAS A FLEXIÓN Y CORTE HORMIGÓN ARMADO II TP 8 TRAZADO DE ARMADURAS EN EZAS SOMETIDAS A FLEXIÓN Y CORTE El tratamiento del problema del trazado de armaduras (comunmente llamado doblado de armaduras) presenta algunas particularidades

Más detalles

Selección de listados

Selección de listados ÍNDICE 1.- NORMA Y MATERIALES... 2 2.- ACCIONES... 2 3.- DATOS GENERALES... 2 4.- DESCRIPCIÓN DEL TERRENO... 2 6.- GEOMETRÍA... 2 7.- ESQUEMA DE LAS FASES... 3 8.- CARGAS... 3 9.- RESULTADOS DE LAS FASES...

Más detalles

Secciones críticas para cimentaciones superficiales y cabezales de pilotes

Secciones críticas para cimentaciones superficiales y cabezales de pilotes 1 DISEÑO DE CABEZALES POR CORTE SEGÚN ACI 318-14 1. Reglamento para Concreto Estructural (ACI 318S-14) y Comentario 13.2.7 Secciones críticas para cimentaciones superficiales y cabezales de pilotes 13.4.2.5

Más detalles

CUANDO UN ELEMENTO TRACCIONADO O COMPRIMIDO EXPERIMENTA UN CAMBIO DE DIRECCION

CUANDO UN ELEMENTO TRACCIONADO O COMPRIMIDO EXPERIMENTA UN CAMBIO DE DIRECCION HORMIGÓN I (74.01 y 94.01) DESVIO DE ESFUERZOS DESVÍO DE ESFUERZOS Lámina 1 CUANDO UN ELEMENTO TRACCIONADO O COMPRIMIDO EXPERIMENTA UN CAMBIO DE DIRECCION SE ORIGINAN ESFUERZOS DE DESVÍO QUE HABRÁ QUE

Más detalles

Viga laminada flexada con platabanda de refuerzo soldada. Aplicación Capítulos B, F y J

Viga laminada flexada con platabanda de refuerzo soldada. Aplicación Capítulos B, F y J 25 EJEMPLO N 6 Viga laminada flexada con platabanda de refuerzo soldada. Aplicación Capítulos B, F J Enunciado: Dimensionar las platabandas a agregar a un perfil laminado para la viga de la Figura Ej.

Más detalles

bir=bpcrbowl=`loq^kqb

bir=bpcrbowl=`loq^kqb OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bir=bpcrbowl=`loq^kqb iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

Hormigón Armado y Pretensado

Hormigón Armado y Pretensado Hormigón Armado y Pretensado Página 1 de 5 Programa de: Hormigón Armado y Pretensado UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Constructor

Más detalles

Ejemplo 26.1 Sistema de losa pretensada armada en dos direcciones

Ejemplo 26.1 Sistema de losa pretensada armada en dos direcciones Ejemplo 6.1 Sistema de losa pretensada armada en dos direcciones Diseñar una franja de pórtico transversal equivalente de la placa plana pretensada ilustrada en la Figura 6-. f ' = 4000 psi; w = 150 lb

Más detalles

Cátedra Estructuras 3 FAREZ LOZADA LANGER

Cátedra Estructuras 3 FAREZ LOZADA LANGER FACULTAD DE ARQUITECTURA Y URBANISMO UNLP Cátedra Estructuras 3 FAREZ LOZADA LANGER EJERCICIO RESUELTO: Viga Alivianada y viga Reticulada Plana CURSO 2016 Elaboración: NL Tutor: PL Nov 2016 Nivel I EJEMPLO

Más detalles

ESTRSCTSRAS DE CONCRETO I

ESTRSCTSRAS DE CONCRETO I Estructuras de Concreto I (IC-0802) Prof.: Ing. Ronald Jiménez Castro Análisis y diseño a cortante Además del refuerzo longitudinal a flexión, las vigas de concreto deben incluir un refuerzo transversal.

Más detalles

Ejemplo. Diseñar una losa, de 5m x 15m, simplemente apoyada en todo su perímetro.

Ejemplo. Diseñar una losa, de 5m x 15m, simplemente apoyada en todo su perímetro. Ejemplo 1 er Semestre 2017 Luis Segura Curso: Hormigón 1 17 Diseñar una losa, de 5m x 15m, simplemente apoyada en todo su perímetro. Materiales: f ck = 25 Mpa; f yk = 500 Mpa Rec. mec = 3 cm. q d = 10

Más detalles

PROYECTO DE FORJADOS RETICULARES

PROYECTO DE FORJADOS RETICULARES DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO EE4 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 08 de Febrero de

Más detalles

CHEQUEO DE NUDOS NSR-09

CHEQUEO DE NUDOS NSR-09 CHEQUEO DE NUDOS NSR-09 Definición según NSR 98: Nudo: Es la porción de la columna limitada por las superficies superiores e inferiores de las vigas que llegan a ella. Daños en el sismo de Popayán, en

Más detalles

CONCRETO I. SEMANA 10_18 Jul 1. Análisis y diseño a cortante. Estructuras de Concreto I (IC-0802) Prof.: Ing. Ronald Jiménez Castro

CONCRETO I. SEMANA 10_18 Jul 1. Análisis y diseño a cortante. Estructuras de Concreto I (IC-0802) Prof.: Ing. Ronald Jiménez Castro Estructuras de Concreto I (IC-0802) Prof.: Ing. Ronald Jiménez Castro Análisis y diseño a cortante Además del refuerzo longitudinal a flexión, las vigas de concreto deben incluir un refuerzo transversal.

Más detalles

9 Distribución de la armadura de flexión

9 Distribución de la armadura de flexión 9 Distribución de la armadura de flexión ACTUALIZACIÓN PARA EL CÓDIGO 2002 En la edición 1999 del Código se introdujo un cambio significativo en 10.6.4 que afectó la distribución de la armadura de flexión

Más detalles

MEMORIA DESCRIPTIVA. PROPIETARIO: SIMACON FECHA: Septiembre de 2016 MEMORIA DESCRIPTIVA:

MEMORIA DESCRIPTIVA. PROPIETARIO: SIMACON FECHA: Septiembre de 2016 MEMORIA DESCRIPTIVA: MEMORIA DESCRIPTIVA PROPIETARIO: FECHA: Septiembre de 2016 MEMORIA DESCRIPTIVA: El proyecto de paredes estructurales de hormigón armado es regulado por ACI 318 Capítulo 14, Paredes (CIRSOC 201-2005 Capítulo

Más detalles

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS VIGAS MIXTAS El tema se refiere a vigas formadas por perfiles metálicos donde la losa de hormigón armado colabora para absorber los esfuerzos de compresión. Este tipo de vigas tiene la ventaja de colocar

Más detalles

MIEMBROS SUJETOS A TENSIÓN. INTRODUCCIÓN. Mercedes López Salinas

MIEMBROS SUJETOS A TENSIÓN. INTRODUCCIÓN. Mercedes López Salinas MIEMBROS SUJETOS A TENSIÓN. INTRODUCCIÓN Mercedes López Salinas PhD. Ing. Civil Correo: elopez@uazuay.edu.ec ESTRUCTURAS DE ACERO Y MADERA Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y

Más detalles

Notación. Mayúsculas latinas. Minúsculas latinas

Notación. Mayúsculas latinas. Minúsculas latinas Notación Mayúsculas latinas A A c A s E E a E c E cm E p E s I K M M fis M u N N 0 N u N ext N d P k P k T V u V u1 V u2 V cu V su W W h Área Área de hormigón Área de acero Módulo de deformación Módulo

Más detalles

13 Torsión ACTUALIZACIÓN PARA EL CÓDIGO 2002 ANTECEDENTES

13 Torsión ACTUALIZACIÓN PARA EL CÓDIGO 2002 ANTECEDENTES 13 orsión ACUALIZACIÓN PARA EL CÓDIGO 00 En la edición 00 del Código se incluyen nuevas ecuaciones en los artículos 11.6.1 y 11.6. para determinar la torsión crítica y el momento torsor mayorado, respectivamente,

Más detalles

qb`klildð^=abi=mobqbkp^al

qb`klildð^=abi=mobqbkp^al OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos qb`klildð^=abi=mobqbkp^al iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

INSTITUTO DE INGENIERÍA UNAM, MÉXICO

INSTITUTO DE INGENIERÍA UNAM, MÉXICO INSTITUTO DE INGENIERÍA UNAM, MÉXICO Aplicación en la Ingenieria Estructural de Concretos y Aceros de Alta Resistencia. Reglamentación y Diseño Estructural Mario E. Rodriguez Instituto de Ingenieria, UNAM

Más detalles

CAPÍTULO IX CAPACIDAD RESISTENTE DE BIELAS, TIRANTES Y NUDOS

CAPÍTULO IX CAPACIDAD RESISTENTE DE BIELAS, TIRANTES Y NUDOS CAPÍTULO IX CAPACIDAD RESISTENTE DE BIELAS, TIRANTES Y NUDOS Artículo 40º Capacidad resistente de bielas, tirantes y nudos 40.1 Generalidades El modelo de bielas y tirantes constituye un procedimiento

Más detalles

4. Refuerzo a cortante

4. Refuerzo a cortante 4. Refuerzo a cortante La adhesión del Sistema MBrace en elementos tales como vigas, permite el incremento de su resistencia a cortante, al aportar cuantía resistente a tracción en las almas y tirantes

Más detalles

Cátedra: Estructuras de Hormigón Armado y Pre-tensado TRABAJO PRÁCTICO ESTRUCTURAS DE HORMIGÓN ARMADO Y PRE TENSADO

Cátedra: Estructuras de Hormigón Armado y Pre-tensado TRABAJO PRÁCTICO ESTRUCTURAS DE HORMIGÓN ARMADO Y PRE TENSADO TRABAJO PRÁCTICO ESTRUCTURAS DE HORMIGÓN ARMADO Y PRE TENSADO Trabajo Práctico: N 4 Tema: Verificación de secciones de Hormigón pretensado Fecha de realización: 04/09/2017 Fecha de presentación: 10/09/2017

Más detalles

Dimensiones en cm. Figura Ej. 4-1

Dimensiones en cm. Figura Ej. 4-1 11 EJEMPO N 4 Barra sometida a tracción con empalme. Unión abulonada con unión tipo deslizamiento crítico. Aplicación Capítulos B, D y J. Enunciado: Dimensionar un perfil doble te (IPB) sometido a tracción;

Más detalles